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Abstract— The availability of affordable Micro Aerial Vehi-

cles (MAVs) opens up a whole new field of civil applications.

We present an Infrastructure for Compact Aerial Robots Under

Supervision (ICARUS) that realizes a scalable low-cost testbed

for research in the area of MAVs starting at about $100. It

combines hardware and software for tracking and computer-

based control of multiple quadrotors. In combination with

the usage of lightweight miniature off-the-shelf quadrotors our

system provides a testbed that virtually can be used anywhere

without the need of elaborate safety measures. We give an

overview of the entire system, provide some implementation

details as well as an evaluation and depict different applications

based on our infrastructure such as an Unmanned Ground

Vehicle (UGV) which in cooperation with a MAV can be

utilized in Search and Rescue (SAR) operations and a multi-

user interaction scenario with several MAVs.

I. INTRODUCTION

Over the last years the quadrotor—a multirotor helicopter
with four rotors—has emerged as the standard research
platform for Micro Aerial Vehicles (MAVs) due to its afford-
ability and mechanical simplicity. MAVs are utilized in nu-
merous fields, e.g., first response, reconnaissance and surveil-
lance, transportation and logistics, inspection of industrial
facilities, measuring, construction and aerial photography or
videography. In recent years, a lot of impressive research
results have been published, such as quadrotors performing
quite sophisticated feats with balls [1], [2], balancing inverted
pendulums [3] and passing them to other quadrotors [4].
Further examples include quadrotors carrying out aggressive
acrobatic maneuvers [5] as well as assembling structures with
small construction elements [6].

The main prerequisite for autonomously controlling a
quadrotor is the determination of its position and orientation
in space, its pose. Outdoors, it can be determined based
on information obtained from Global Positioning System
(GPS) and on-board magnetometer and inertial measurement
units. Indoors, i.e., in GPS-denied environments such as
collapsed buildings, the pose has to be estimated using other
sensors and algorithms. The most common one is an on-
board camera in conjunction with Simultaneous Localization
and Mapping (SLAM) algorithms as described in [7].

Research in the field of MAVs requires controlled indoor
test environments, which at least consist of an (optical)
outside-in pose estimation component as well as a radio
control system to pilot the individual MAVs. Latest en-
vironments like the Flying Machine Arena (FMA) [8] or

The authors (givenname.surname@cvmr.info) are with the
Computer Vision & Mixed Reality Group of RheinMain University of
Applied Sciences, Wiesbaden, Germany, which supported this work by
internal research funds.

the General Robotics, Automation, Sensing & Perception
(GRASP) testbed [9] are well-equipped with costly tech-
nology. Most test environments use multi-camera motion
capturing systems, such as Vicon or OptiTrack for pose
estimation, which settle in the six-figure US dollar range.
A common used quadrotor is the Ascending Technologies
Hummingbird, an MAV in the four-figure US dollar range
of about 500 g weight.

The great expense of the aforementioned testbeds prevent
them to become more widespread. But nowadays convenient
hobby quadrotor platforms start at $10. Due to the size
and weight of the latest consumer miniature quadrotors,
elaborate security precautions which exceed the installation
of fly screen are not necessary since these lightweight
machines will not cause considerable damage to humans or
components of the infrastructure. The hobby platforms are
by far not as well equipped as professional quadrotors or
even freely programmable. Therefore control tasks can not
be accomplished directly on the MAVs but have to be done
on the computer that remote controls them.

With ICARUS, we present an infrastructure for general
research and application purposes consisting of a lightweight
framework and software architecture resorting to affordable
off-the-shelf hardware that is easily replicable. In its smallest
expansion, our system is very portable and can be used for
live demonstrations, e.g., as part of a lecture or exhibition.
With ICARUS, research in the exciting field of multirotors
gets started at overall hardware expenses of about $100 spent
on a commercial multirotor platform and a radio control
transmitter module, a Raspberry Pi in conjunction with its
official camera and a tracking marker.

The following section gives an overview of our system and
its components. Section III describes the software architec-
ture. In Section IV the system’s accuracy is discussed. Sec-
tion V presents applications realized with ICARUS. Finally,
Section VI summarizes our research and proposes future
work.

II. SYSTEM COMPONENTS

An architectural overview of ICARUS is depicted in Fig. 1.
As the main purpose of the presented system is to facilitate
the realization of a low-cost testbed, we consequently use
low-cost miniature off-the-shelf hobby quadrotors, which
were slightly modified by attaching tracking markers. The
quadrotors are tracked by an infrared-based monocular
tracking system using at least one monochromatic camera.
Thereby, the flight area can easily be expanded using multiple
cameras. The quadrotors are piloted by a consumer notebook
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Fig. 1: Overview of ICARUS: After pose estimation of the individual quadrotors based on optical tracking the control
variables are determined and sent via different radio control systems to the quadrotors.

connected to different radio control approaches. Override and
manual control is enabled using a gamepad. The minimum
setup can be realized for under $100 and therefore is af-
fordable even for individual researchers and students. The
complete system also runs independently on a ground robot
as described later in Section V-A.

A. Optical Tracking

The main demands on the tracking of quadrotors are
accuracy, frequency, robustness to rapid movement and the
capability to distinguish multiple targets. In our system
we use the High-Speed and Robust Monocular (HSRM)-
Tracking system proposed in [10], a monocular outside-in
tracking algorithm based on active infrared LED markers,
which sufficiently meets all these demands while being
very lightweight compared to multi-camera motion capturing
systems used in other testbeds. One of the main advantages
of this algorithm is, that it does not exploit any frame-
to-frame strategies, guaranteeing prompt relocalization after
temporary tracking losses, which is crucial in a MAV en-
vironment. Our prototype markers weigh about 4 g, keeping
the interference of the flight characteristics to a minimum.

Employing a monocular tracking algorithm, we can use
one or multiple cameras, allowing us to easily scale the
radius of action. The registration of multiple cameras to a
common coordinate frame can be done by simply using one

of the markers. Since each camera can estimate its relative
pose to the marker, the relation between multiple cameras is
instantly known whenever they see the same marker at the
same time. The registration process determines the relative
transformation between two cameras by minimizing the least
mean squared error as proposed in [11] over a sequence of
simultaneously estimated marker poses. Thus arbitrary multi-
camera setups can quickly be calibrated incrementally when
each camera’s field of view overlaps with the field of view
of at least one other camera. We fuse the measurements of
all cameras over a parameterizable time window by linearly
blending the marker poses in dual quaternion representation
as described in [12]. Due to the monocular fashion of the
tracking algorithm, multiple cameras with different frame
rates can be utilized within the same setup.

Since the implementation of HSRM-Tracking is single-
threaded, multi-camera setups can also easily be parallelized
by simply processing each camera in a dedicated thread. Cur-
rent quadcore consumer laptops could therefore process four
high-speed cameras in parallel at full frame rate. Our most
sophisticated implementation uses four high-speed Ximea
MQ013MG-ON USB3 cameras in conjunction with Fujinon
1:1.2/6 mm DF6HA-1B lenses, operating at 150Hz with
1280⇥1024 pixels resolution filming downwards from above
the flight area. To be less dependent on ambient lighting, all
cameras are equipped with infrared pass filters.



B. Quadrotor Control

We demonstrate the capability of our system using low-
cost off-the-shelf miniature quadrotors from the hobby area.
The only modification consists in the attachment of the
aforementioned active tracking markers and connecting them
to the quadrotors’ power supply. All quadrotors possess
on-board microcontrollers realizing an inner control loop
to stabilize their horizontal position. Our system currently
uses two approaches for the outer control loop: A simple
hover controller which is tuned to maximize stiffness and a
trajectory controller, both using a typical feedback control
realized by multiple PID controllers. In section IV, we
demonstrate that this simple control strategy leads to sat-
isfactory results despite our tracking system refraining from
using any prediction or estimation algorithms. Of course,
these results can be further improved by the implementation
of statistical filtering, such as an extended Kalman filter.

To apply the general PID control approach to our in-
frastructure, the terms of the PID controller have to be
chosen and their gains have to be tuned. PID control is
a compromise of different purposes and dependent on the
demands to the system’s dynamics. Generally simulations
are helpful to test PID gains before applying them to the
real system, thus reactions of the system to influences like
changing the set point can be judged. All PID gains were
determined experimentally.

In hover control, four independent PID controllers are
used to approach the target pose. Thereby, each of the
quadrotors input channels namely throttle, roll, pitch, and
yaw are controlled the same way a human would do using
a radio control system.

For the throttle control all terms of the PID controller
are used. The height error is fed into the throttle controller.
Next to the usual steady state error, the integral term also
deals with the throttle needed to overcome gravity and
compensates for the battery’s dropping voltage. Relying
on the integral term instead of a feed-forward term may
result in inertia but yielded good experimental results. To
avoid integrator windup, our system uses the conditional
integration approach described in [13].

Due to our system’s limitation of the quadrotors operating
at a near hover state, the control errors for roll and pitch are
calculated by projecting the quadrotors’ positions onto the
ground plane. For the quadrotor control to be independent
of its yaw orientation the set point is transformed into the
quadrotors coordinate system. Although a proportional and
differential action would be sufficient for both the controllers,
a low integral action was added to reduce the drift of hobby
quadrotors, which would be leveled out by a hobby pilot by
trimming the radio control.

Since our implementation is based on quaternions, the yaw
control error can simply be calculated by multiplying the
target orientation by the inverse of the quadrotor’s heading
and extracting the yaw Euler angle as the error fed into
the control equation. As for the yaw controller a pure
proportional controller proved to be effective.

The trajectory controller currently uses the approach
proposed in [14], where next to the throttle and yaw PID
controller described above two further PID controllers min-
imize errors along the path segment of the trajectory and
orthogonal to it.

C. Radio Control Systems

In a regular handheld radio control, potentiometers pick
up the positions of the levers and switches and convert
them into electrical signals which are modulated to a high-
frequency signal and transmitted to the on-board receiver
of the quadrotor. After demodulation, the signal is converted
into a proportional electrical signal controlling actuators such
as electronic speed controllers or servos.

We substitute the handheld radio control system by a mi-
crocontroller connected to a computer. This microcontroller
generates the required electrical signals to drive a transmit-
ter based on control signals received from the computer.
Thereby, the transmitter can be either a bare transmitter
module (Arduino Triple Transmission (ATT) approach) or
a handheld radio control connected to the microcontroller
by its trainer port (Arduino Trainer Port (ATP) approach).
Both approaches are open sourced at GitHub1 and provide
cheap solutions to computer-control multirotors or planes
from the hobby area. The currently used hardware uses
Spektrum DSMX modulation–which is widespread in the
model flight community–and can be exchanged for devices
using other hobby standards such as Graupner HoTT or
FrSky ACCST. In addition to these approaches, ICARUS also
supports the Bitcraze Crazyradio. All systems are enabled to
be flown simultaneously. In the following we describe the
implementation of both approaches based on the open source
Arduino platform.

1) Arduino Triple Transmission: The ATT approach di-
rectly drives multiple transmitter modules removed from
Spektrum budget radio controls via serial communication.
As microcontroller we use an Arduino Due, which operates
on 3.3V matching the operating voltage of the transmitting
units. Beside the USB interface it has three additional hard-
ware serial pins allowing the control of up to three transmitter
modules. To bind a module to a quadrotor’s receiver the
binding signal has to be applied before switching on the
transmitter module. The required current of 30mA cannot
be supplied by the Arduino’s pins, so some additional circuit
based on a transistor or relay is required to switch the units
on and off.

2) Arduino Trainer Port: The ATP approach employs the
pulse-position modulated (PPM) trainer port signal and thus
can be used with any radio control system equipped with a
trainer port. In combination with an open source radio con-
trol, where manufacturer-dependent transmitters can simply
be exchanged, there is no limitation to a particular radio
protocol. As our system should be cost-efficient, we aim
to drive as many control units as possible with a single
microcontroller.

1Repository links listed at cvmr.info/icarus/#opensource.



As can be seen in Fig. 2, the frame of a typical trainer port
signal takes 22ms and encodes six channels: throttle, roll,
pitch, yaw, and two additional channels (e.g., for switching
flight modes). The length of a channel’s high level signal
depends on the according lever’s position and takes 700 µs
to 1530 µs. With a separation of each channel by a 400 µs
low level signal, encoding all channels requires a period of
7000 µs to 11 980 µs. The rest of the frame is filled with a
high level signal.

Signal

1 2 3 4 5 6

Synchronization

1

0

7000–11980 µs

22000 µs

Fig. 2: Characteristic of a six channel trainer port signal.

A total number of 12Bytes (2Bytes per channel) are
needed to encode control information within the signal.
Limited by the maximum buffer size of 64Bytes of the
serial interface, up to five control units can be driven
simultaneously by a single Arduino Due. A pulse-position
modulated signal is typically created by using a sleep system
call. Since these calls are implemented in a synchronized
fashion, they cannot be used to create multiple signals in
parallel on a single core architecture like Arduino. Our
solution discretizes all five signals with a precision of one
microsecond, in which within the synchronization phase a
byte pattern mirroring the current signal states is created and
then transferred to the Arduino’s port registers at once. Due
to the time needed for processing, we can drive all control
units with a temporal accuracy of ±2ms, which is sufficient
for all control purposes.

III. SOFTWARE ARCHITECTURE

Our infrastructure is based on the libraries developed
in [15] and was distributed and extended by the integration
of an existing simulation environment in [16]. To achieve a
maximum flexibility, the main demands of the ICARUS soft-
ware architecture are scalability and platform independence
in a distributed system. The developed software architecture
connecting the parts of the infrastructure mentioned in the
last section is displayed in Fig. 3 and uses a publish-subscribe
messaging pattern to gain the desired flexibility. By providing
loose coupling and a dynamic network topology the publish-
subscribe pattern meets all requirements to the infrastructure.
The following section describes the individual components
of the software architecture.

The ICARUS-COP (Control Panel) is a web application
which summarizes all important controls the user needs for
interaction with the infrastructure. It enables the user to
toggle radios and bind quadrotors and to execute predefined
series of Tasks or to script new ones. The quadrotor’s
PID gains can be tuned with this interface as well. The
origin of the reference coordinate system can be redefined
by the current pose of a quadrotor. Beyond that, the user
can manually control multirotors using a gamepad. The input

generates Commands which then are sent to the correspond-
ing radio control system. When using the ICARUS-COP
on a mobile device its gyroscopes and accelerometers—
if available—can be utilized for a more abstract control.
The Abstract Control interface allows the user to
pilot quadrotors by natural interaction. Currently this inter-
face is implemented as gesture-based control and generates
Tasks based on detected gestures. This interface is easily
exchangeable for other interaction paradigms, e.g., a speech
recognition component. The Visualization is a local
OpenGL application providing visual feedback for the user
by displaying the quadrotors’ poses, their target poses, the
control errors fed to the PID control as well as the camera
poses, their frustums and images.

The Flight Control maintains synchronized task
queues for each quadrotor. The PID control is encapsulated
in a variety of yet implemented tasks, e.g., the hover task,
which uses the tracking-determined pose of a quadrotor and
calculates the control commands based on the PID control
loop. The Commands then are sent to the radio bound to the
according quadrotor. Beyond that, the Flight Control
supervises each quadrotor and initiates emergency landing
tasks in case a quadrotor leaves the radius of action.

Abstract
Control

Visualization ICARUS-COP

Flight
Control

Tracking MultiRadio

Simulation

Tasks

Commands

Poses

Copters

Fig. 3: The software architecture of ICARUS.

Due to the modularity in software architecture, compo-
nents of the system can easily be replaced, e.g., pose estima-
tion and radio control can be exchanged for a Simulation
environment currently implemented by the Gazebo robotics
simulator. The PID gains can be determined using the
simulation, before applying them to the real quadrotors to
prevent crashes. Using the same interfaces, simulated and
real quadrotors can fly together in a mixed environment.
Since the space of an outside-in controlled infrastructure
is limited, the simulation environment additionally enables
larger experiments, e.g., the generation of swarm scenarios
which exceed the number of available quadrotors.

IV. EVALUATION

This section evaluates the accuracy of our infrastructure
in different flight modes. Videos of the experiments can be



found online2. Evaluation periods of these experiments start
with the arrival at the first waypoint and end with the arrival
at the last waypoint. The poses provided by our tracking
system were smoothed over a time window of 66.6ms, which
at a frame rate of 150Hz corresponds to 10 poses in the
single-camera-setup and 20 poses in the two-camera-setup.
The precision of HSRM-Tracking (see [10] for details) has
to be considered in the evaluation.
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(d) Comparison of a real quadrotor and its
simplified model simulated by Gazebo.

Fig. 4: Results of different experiments.

A. Hovering
A flight in which the quadrotor was instructed to hover at

the target height of 1300mm for 60 s was carried out in a sin-
gle camera environment. The target position of the quadrotor
corresponded to a distance of approximately 1200mm to
the camera. The position error of the hover controller can
be seen in Fig. 4a. The Root-Mean-Square Error (RMSE) of
this experiment is 7.6mm, the mean and standard deviations
are t̄ = (0.6±4.4,�0.2±5.9,�2.3±4.1), and the maximum
deviations are dmax = (12.6, 18.3, 20.8).

B. Circular Trajectory
Using the trajectory controller, in this experiment a

quadrotor was instructed to fly five circles with a diameter
of 2000mm at a speed of 0.5m s�1 . The distance between
the waypoints was 25mm. To be able to monitor this area, a
two-camera-setup was used. To demonstrate the monocular
fashion of our tracking algorithm, the quadrotor orbited a
person occluding different areas of each camera’s field of
view, as can be seen in the long-exposure photography in
Fig. 5c. In this experiment, the quadrotor flew with a mean
velocity of 0.47m s�1. The RMSE is 33.8mm. The plot can
be seen in Fig. 4b.

2Videos available at cvmr.info/icarus/#videos.

C. Skywriting

In this experiment, a quadrotor followed the trajectory of
the letters CVMR with a total width of 1000mm and a height
of 292mm using the hover controller. The baseline of the
lettering was at a height of 1000mm. A 3D plot of the
quadrotor’s trajectory is shown in Fig. 4c. The RMSE of
this experiment is 22.2mm.

D. Simulation

To compare a simulated and a real quadrotor against each
other, a 15 s hover flight at the target height of 1300mm was
carried out in a two camera setup with both quadrotors using
the same PID gains. The comparison of the heights depicted
in Fig. 4d shows high consistency between simulation and
reality.

V. APPLICATIONS

As proof of concept, this section describes three applica-
tions based on ICARUS. These contain a quadrotor controlled
by a ground robot, gesture-based human interaction with
quadrotors and light paintings created by the quadrotors’
trajectories.

1 2 3 4 5

6 7 8 9 10

(a) Gesture-based interaction: A user selects a quadrotor by pointing at it with the right
arm (2). Lifting the left arm instructs the quadrotor to take off (3). While the left arm is
up, the quadrotor imitates the motion of the user’s right hand (4–7). When lowering the
left arm, the quadrotor stays in hover mode and may be selected by another user (8).
Bringing both hands together (9) lets the quadrotor perform a landing (10).

(b) MAV tracked and controlled by a
mobile ground robot.

(c) Light paintings of the flights evaluated in
Section IV.

Fig. 5: Different applications based on the presented infras-
tructure.



A. Flying Periscope
Our experimental Search and Rescue (SAR) application

is based on a mobile ground platform and molds a flying
periscope by collaborating with a quadrotor similar to the
system proposed in [17]. A quadrotor controlled by the
ground robot can be seen in Fig. 5b. Especially in the field of
SAR operations the limited field of view of on-board sensors
and cameras mounted on an Unmanned Ground Vehicle
(UGV) can easily be expanded by collaborating with MAVs,
which can investigate the surrounding area from a higher
point of view. Furthermore the extended mobility of an MAV
can be exploited. On the other hand, the UGV can serve the
MAV as power supply platform to recharge its battery. For
this project, we employed the whole infrastructure including
HSRM-Tracking on the Raspberry Pi 3 using the Raspberry
Pi camera module, operating at 50Hz with 1280⇥720 pixels
resolution.

B. Multi-User Interaction with MAVs
Since operating control levers is not very intuitive for the

user, we extended ICARUS by a multi-user environment for
gesture-based interaction and control of multiple quadrotors
using a Microsoft Kinect. A typical user interaction sequence
is shown in Fig. 5a.

C. Light Painting
The long-exposure photographies of the evaluation flights

described in Section IV can be seen in Fig. 5c. This pho-
tographic technique is called light painting and provides a
good intuition for the accuracy of our control system.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented ICARUS, a least cost and
portable infrastructure solely built on off-the-shelf hardware
for the navigation and control of multirotors, especially of
low-cost miniature quadrotors. We evaluated the components
of the system with regard to pose accuracy and ported the
infrastructure to a common mobile ground platform.

Future work regarding that mobile platform includes the
integration into our main testbed to provide our quadrotors
a landing platform equipped with inductive charging units in
order to increase the radius of operation. Furthermore it is
planned to extend our gesture-based control by exploring new
human-robot-interaction paradigms such as tactile control of
quadrotors as proposed in [18]. To enhance our infrastruc-
ture, we are currently working on the generation of feasible
smooth trajectories and a model-predictive control approach
to reduce the jerk of the quadrotors as described in [19]. We
plan to make our implementation of the trajectory generation,
quadrotor dynamics and control publicly available to the
community by integrating it into ROS [20]. After that, it
is our goal to escape the controlled indoor environment we
are currently restricted to due to the use of an outside-
in tracking approach. Thus each MAV will be equipped
with a camera allowing for visual SLAM (e.g., ORB-SLAM
proposed in [21], available in ROS), to be employed in order
to obtain full autonomy.
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[10] H. Tjaden, F. Stein, E. Schömer, and U. Schwanecke, “High-speed and
robust monocular tracking,” in 10th International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and
Applications (VISIGRAPP), May 2015.

[11] S. Umeyama, “Least-squares estimation of transformation parameters
between two point patterns,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 13, no. 4, pp. 376–380, Apr 1991.
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Outdoor Obstacle Avoidance based on Hybrid Visual Stereo SLAM for
an Autonomous Quadrotor MAV

Radouane Ait-Jellal and Andreas Zell

Abstract— We address the problem of on-line volumetric
map creation of unknown environments and planning of safe
trajectories. The sensor used for this purpose is a stereo camera.
Our system is designed to work in GPS denied areas. We design
a keyframe based hybrid SLAM algorithm which combines
feature-based stereo SLAM and direct stereo SLAM. We use
it to grow the map while keeping track of the camera pose in
the map. The SLAM system builds a sparse map. For the path
planning we build a dense volumetric map by computing dense
stereo matching at keyframes and inserting the point clouds
in an Octomap. The computed disparity maps are reused on
the direct tracking refinement step of our hybrid SLAM. Safe
trajectories are then estimated using the RRT* algorithm in
the SE(3) state space. In our experiments, we show that we can
map large environments with hundreds of keyframes. We also
conducted autonomous outdoor flights using a quadcopter to
validate our approach for obstacle avoidance.

I. INTRODUCTION

Quadcopters are mobile robots which are suited for many
robotic applications. Building inspection, agricultural fields
surveillance and package delivery are some applications of
quadcopters, just to name a few examples. Unlike fixed
wing flying robots, quadcopters can achieve high manoeu-
vrability about all three axes and in all directions and they
have the ability to hold the position (hovering). To achieve
full autonomous flights, a quadcopter should rely only on
its on-board sensors. Limited by the payload it can carry
and by the real-time requirements for safe navigation of a
quadcopter, many sensors are not suitable for autonomous
quadcopters. Laser scanners which have sufficient frame rates
and scan-lines are usually too heavy to be carried by a
small quadcopter and they have high power consumption
as well. The requirement to work in outdoor environments
excludes the choice of using IR pattern based RGBD sensors
as main sensors since, with substantial infra-red light from
the sun, these sensors fail to estimate the depth images.
Stereo cameras can provide data at high frame rates, they
are lightweight, passive (do not illuminate the scene), energy
efficient and customizable. Given enough data to build dense
volumetric maps, the quadcopter can safely navigate in
cluttered environments by avoiding obstacles. However, we
need to run dense stereo matching on the on-board CPU
to estimate the disparity map and use this disparity map to
estimate the depth. To allow real time operation, the over-
head, which is introduced by the on-board computation of the
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(a) (b)

Fig. 1. (a) Our outdoor environment. The red line shows the straight
line between the start and destination positions going through two obstacles
(trees). (b) the 3D reconstruction using our stereo camera and a set of
collision-free 3D paths generated by our system.

disparity, can be minimized by computing the disparity only
at keyframes and by reducing the resolution. The volumetric
mapping of large unknown space requires usage of SLAM
(simultaneous localization and mapping) designed to operate
at large scale and a memory efficient representation of the
dense volumetric map. In this work, we design a hybrid
SLAM that works in large scale environments based on the
open-source ORB-SLAM2 [1] and for the memory efficient
volumetric map we use Octomap [2] [3]. For efficient 3D
path planning, we use the RRT* [4] algorithm. The output
of the 3D planner is then set as desired way-points for our
quadcopter micro aerial vehicle (MAV).
In this work, we propose a system for 3D outdoor obstacle

avoidance using stereo. This system was tested on a quad-
copter MAV and the quadcopter was able to run all software
packages, shown in Fig. 2, in real-time. In addition to the
module for 3D obstacle avoidance, we propose a hybrid
visual stereo SLAM algorithm which combines a feature-
based method and a direct image alignment method. Our
choice is motivated by three reasons: first, we want to use
more information from the images and not only abstract them
to a set of features. Second, since we compute the relatively
costly dense stereo matching for the keyframes, we want
to benefit from that not only for building volumetric maps
but also for refining the tracking poses. Third and finally, in
some aspects feature-based methods and direct methods are
complementary. So by combining them they compensate for
each other’s drawbacks. For example, when the stereo camera
has moved over large distances between two frames the
direct methods might diverge, since they need a good initial
guess. In the best case they might need considerably more
iterations to converge. This might make real time operation
difficult to achieve. Using a coarse-to-fine approach and/or a



motion model might help in some cases. On the other hand,
the feature based approach can deal very efficiently with
large camera movements. Having to deal with very sparse
features, we can afford to enlarge the search domain for
correspondences, while still keeping real-time capabilities.
The benefit of using direct methods rather than feature based
methods is in cases of degraded image quality due to camera
defocus and motion blur. In these cases, feature extraction
might fail, causing tracking loss while the image alignment
would give a reasonably good motion estimation.

II. RELATED WORK

A basic capability that a mobile MAV should fulfill for
safe navigation is obstacle avoidance. Heng et al. [5] have
proposed a stereo approach for obstacle avoidance. They
build an Octomap and use the anytime dynamic A* planner
[6] to achieve collision-free path planning in 2D. For pose
estimation they use either artificial landmarks or a Vicon
tracking system. In our approach, we plan paths in full 3D-
space using the efficient RRT* [4] algorithm and we run
a hybrid SLAM on-board. The feature based part of our
hybrid visual stereo SLAM system uses the popular ORB-
SLAM2 [1] algorithm. The ORB-SLAM2 algorithm splits
the tracking from the local mapping using two separate CPU
threads. This architecture was initially proposed by Klein et
al. [7] in their popular parallel tracking and mapping (PTAM)
algorithm. The PTAM algorithm was then successfully used
by many mobile robotic researchers [8] [9]. The ORB-
SLAM2 algorithm starts by extracting a (sparse) set of ORB
[10] features on both left and right images of the current
stereo frame. The features are then matched on the previous
stereo frame to establish 2D-2D correspondences. Using the
map we get 2D-3D correspondences. A PnP solver is then
used to optimize the initial pose. Using the co-visibility graph
(a graph which connects keyframes which share enough
map points) a local map is extracted and the pose gets
refined by using more map points. The local map contains
the keyframes and the map points observed by these local
keyframes. The final pose we get from ORB-SLAM2 is
estimated using only sparse features. Valuable information
might be missed by abstracting the images to a set of ORB
features. We propose to further refine the pose by using direct
image alignment and use more data from the image. We do
not use all of the pixels but only those which have valid depth
(from dense stereo matching) and have an image gradient
larger than a given threshold. Direct methods for SLAM
are becoming popular, and efficient implementations exist
[11] [12] [13]. The afore-mentioned implementations use the
forward additive or forward compositional [14] variants of
the Lucas Kanade [15] [14] algorithm. We use the more effi-
cient inverse compositional alignment algorithm [16], which
allows the pre-computation of the Jacobian (and Hessian).
Forster et al. [17] introduced sparse direct image alignment
where they use the inverse compositional algorithm to align
a set of sparse features. They extend their approach for
multiple cameras in the recent work [18]. Unlike [17] and

Fig. 2. System overview. The system includes a hybrid SLAM algorithm
and a path planner. The tracking thread of the SLAM algorithm provides
an estimate of the current pose to the controller. The path planner provides
intermediate destinations to the controller. The Pixhawk position controller
manages to fly smoothly through the intermediate way-points.

[18] we build a hybrid SLAM and not only a visual odometry
system.

III. OVERVIEW

A. Block diagram of the proposed system

Fig. 2 shows an overview of our system. The hybrid
stereo SLAM algorithm is in charge of keeping track of
the quadcopter pose in real time while at the same time
building a sparse map of the environment. At keyframes we
compute dense stereo matching. The resulting disparity map
is then used to create a 3D point cloud which is inserted
in the occupancy grid map. The disparity map is also used
by the tracking thread to refine the poses using direct image
alignment. The planner gets an up to date binary occupancy
grid map and the start (current) pose and destination pose and
then plans a safe path for obstacle avoidance. The planner
outputs smooth trajectory of way-points. The poses from the
localization thread of the SLAM system are fused with the
measurements from the on-board IMU using an Extended
Kalman Filter (EKF) to estimate the quadcopter state. The
controller gets the desired pose and the current pose and
controls the motor speeds to fly to the desired position.
The Pixhawk [19] controller is a cascaded controller which
includes a high level position controller and a low level



attitude controller. The low level controller outputs the motor
speeds.

B. Least squares problems
The least squares (LS) algorithm is used for optimizing

non-linear cost functions in many parts of our system. We
use least squares in the feature based tracking to optimize re-
projection distances. Then, we use least squares in the direct
image alignment to minimize photometric errors (intensity
differences). On the local mapping thread, least squares are
used in local bundle adjustment (LBA) to locally optimize the
SLAM map. On the SLAM back-end, least squares are used
to optimize a pose graph when loops are detected and after-
wards to optimize the whole system (all keyframe poses and
all map points) by global bundle adjustment (GBA). In gen-
eral, given an error function e(x) = [e1(x), ..., em(x)]T 2
Rm, where the variable x = [x1, ..., xn

]

T 2 Rn is a vector
of parameters. We seek to estimate the optimal solution x⇤

that minimizes the energy function E(x) (Eq. 1).

x⇤
= argmin

x

E(x) (1)

=

mX

i=0

|e
i

(x)|2 (2)

= e(x)|e(x) (3)

In general, e is non-linear so we compute an approximation
using the first order Taylor expansion and solve the opti-
mization problem iteratively. Around the initial guess x̆ we
consider a small perturbation �x :
e(x̆ + �x) ⇡ e(x̆) + J�x, here J is the Jacobian of e(x)
computed in �x = 0 (in x = x̆). The elements E

i

of the
energy function E(x) can then be approximated such that:

E(x̆+ �x) = e(x̆+ �x)T e(x̆+ �x) (4)
⇡ (e(x̆) + J�x)T (e(x̆) + J�x) (5)
= E(x̆) + 2e(x̆)|J�x+ �x|J|J�x (6)
= E(x̆) + 2e(x̆)|J�x+ �x|H�x (7)

Where H = J|J is the approximate Hessian. By computing
the derivative with respect to �x and setting it to zero we
can compute the increment �x⇤ which minimizes Eq. 7 and
solves the following linear system (Eq. 8):

H�x⇤
= �e(x̆)|J (8)

This linear system can be written as:

Ax = b (9)

where: A = H , b = �e(x̆)|J and x = �x⇤. In our
implementation we use Cholesky factorization to solve the
linear system in Eq. 8. The increment �x⇤ is then added to
the initial guess x̆.

x⇤
= x̆+ �x⇤ (10)

For the inverse compositional direct alignment step of our
algorithm, the Hessian and its inverse can be pre-computed
(for all iterations). Thus, solving the linear system in Eq. 8

becomes trivial. The parameter update is also different since
it involves inverted composition rather than forward additive
increments (See Eq. 26).
The Gauss Newton solver iterates the following steps: first,
it locally approximates the non-linear cost function with a
linear function according to Eq. 5, then it computes in closed
form the increment �x⇤ according to Eq. 8, and finally it
updates the parameter vector according to Eq. 10. While
the intermediate problem (linear approximation) is solved in
closed form, the initial non-linear problem in Eq. 1 needs to
be iteratively solved. In every iteration, we use the current
updated parameter vector as an initial guess (linearization
point). The iterative process continue until some termination
criteria are met, e.g., when the algorithm converges or we
reach a maximum number of iterations.

IV. THE HYBRID SLAM SYSTEM

We propose a hybrid visual stereo SLAM algorithm which
combines a feature-based method and a direct image align-
ment method. As discussed on the introduction, feature-
based approaches are generally fast and can handle large
camera movements. We make use of this characteristic and
design a hybrid visual stereo SLAM which uses the motion
estimation from a feature-based visual SLAM as an initial
guess for a direct image alignment method refinement step.
Our hybrid stereo SLAM is based on the popular ORB-
SLAM2 algorithm [1]. We modify the tracking thread such
that we refine the poses using direct image alignment and
we modify the mapping thread such that we compute dense
binocular stereo matching at keyframes.

A. Notation
We use the following notation in this work:
• {I l

cur

, Ir
cur

} and {I l
ref

, Ir
ref

}: the left and right images
of the current frame and reference keyframe respec-
tively.

• x = (u, v): pixel with the coordinates (u, v).
• p = (X,Y, Z): point in 3D space corresponding to the

image pixel x = (u, v).
• T 2 SE(3): a 3D rigid body transform. T = {R, t}

where R 2 SO(3) and t 2 R3.
• ⇠ 2 se(3): minimal parametrization of the 3D rigid

body transform in the Lie algebra.
• T

f

: transform estimated by the feature-based approach.
• T

d

: transform estimated by the direct image alignment
approach using the inverse compositional algorithm.

• W (x, ⇠): 3D warp which maps pixels from the reference
keyframe to the current frame.

• rI: image intensity gradients (Jacobians).
• ⇡, ⇡�1: pinhole camera projection model and its in-

verse.
• f

x

, f
y

, c
x

, c
y

: camera intrinsic parameters.
• ⇢: Huber robust cost function.
• e: error function.
• J and H: Jacobian and Hessian.
• x̆: initial guess for the parameter x which we use to

initialize the optimization.



• x⇤: optimal value of the parameter x, which we get after
the optimization.

B. Lie algebra parametrization for motion estimation
A rigid body transform g transforms as point p 2 R3 in

the 3D space to a point g(p) 2 R3 in 3D space:

g : R3 ! R3

p ! g(x) (11)

The rigid body transform g can be expressed by a 4 ⇥ 4

matrix T 2 SE(3), which is composed by a rotation matrix
R 2 SO(3) and a translation vector t = (t

x

, t
y

, t
z

) 2 R3.

g(p) = g(p, T ) = T.p = Rp+ t (12)

where

T =


R t

01⇥3 1

�
(13)

and

R =

2

4
r11 r12 r13
r21 r22 r23
r31 r32 r33

3

5 (14)

We use the Lie group SE(3) and its corresponding Lie
algebra se(3) to get a minimal parametrization of the
3D rigid body transforms. On the associated Lie algebra
se(3), the corresponding transform is a 6-dimentional vector
⇠ = (⇠1, ⇠2, ⇠3, ⇠4, ⇠5, ⇠6). These coordinates are called the
twist coordinates, where the first (⇠1, ⇠2, ⇠3) are the linear
velocities and (⇠4, ⇠5, ⇠6) are the angular velocities. Here,
we represent the rotation part of the transform with exactly
three parameters (⇠4, ⇠5, ⇠6) rather than nine parameters as
in the rotation matrices representation. The use of the Lie
group solves the singularities of the compact Euler-angles
representation.
A rigid body transform T can be mapped to its corresponding
⇠ using the logarithmic map as follow:

log : SE(3) ! se(3)

g ! ⇠ = log(T ) (15)

The inverse of this operation is the exponential map.

exp : se(3) ! SE(3)

⇠ ! T = T (⇠) = exp(⇠) (16)

C. Tracking: Minimizing distances and intensity differences
Our system uses ORB-SLAM2 to estimate ⇠⇤

f

, the pose of
the current frame based on features. Any other feature-based
stereo SLAM can be used. We compute T

f

by minimizing
the re-projection error (see Eq. 18) between predicted pixel
locations and the observed pixels locations ( see Eq. 17).

e
f

(x
i

) = x
i

� ⇡(RX
i

+ t) (17)

T ⇤
f

= argmin

T

f

X

i2@
⇢ (kx

i

� ⇡(RX
i

+ t)k⌦
i

) (18)

Fig. 3. Feature based motion estimation: we try to find the transform (pose
of the current camera) for which the sum of all re-projection distances
ei (shown in red, the unit is Pixel) is minimal. Note that in a 3D-3D
correspondence approach, distances (in Meter unit) between 3D points. Due
to triangulation inaccuracy, these methods are generally less accurate than
approaches based on 2D-3D correspondences.

Fig. 4. Direct image alignment motion estimation: illustration of the inverse
compositional algorithm. Here, we minimize the photometric errors. The
color (gray values) of the squares encode the intensity value [0-255]. The
search for the warp increment (image bottom left) is done in the reference
image (top left) and then this warp is inverted and composed (Eq. 26) with
the current warp of the target image (right image). The result, is a direct
warp from the template image to the target image.

where ⌦

i

is a weighting (inverse covariance matrix) associ-
ated to the scale at which the feature was extracted. And ⇢
is the Huber robust cost function. We note that we minimize
distances (in pixels) on the image plane. We illustrate this
case in Fig 3. The final pose ⇠⇤

f

we get with the feature
based motion estimation is used as initial guess for our direct
image alignment motion refinement. This is described in the
following equation (Eq. 19):

˘⇠
d

= ⇠⇤
f

(19)

The 3D warp W (x
i

, ⇠
d

) which maps a pixel x
i

2 I l
ref

in the
reference keyframe into its corresponding pixel in the image
I l
cur

using the pinhole camera projection model ⇡ is given
by:

W : R2 ⇥ R6 ! R2

(x, ⇠
d

) ! W (x, ⇠
d

) = ⇡(⇡�1
(x, Z), g(T (⇠

d

))) (20)
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and its inverse maps a 2D pixel x = (u, v), with known
depth Z, to its corresponding 3D point p = (XY Z):

⇡�1
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u
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75 (22)

We compute T
d

by minimizing the re-projection photometric
error between the predicted intensities of the pixels and the
observed intensities. We illustrate this case in Fig 4. We work
with 8-bit gray-scale images with intensities in the interval
[0-255]. The error is defined as follow (Eq. 23):

e
d

(x
i

) = I l
ref

(W (x
i

, �⇠
d

))� I l
cur

(W (x
i

, ⇠
d

)) (23)

We optimize using pixels x
i

2 D
ref

where D
ref

is the set
of pixels x

i

2 I l
ref

such that x
i

has a valid depth and the
magnitude of the intensity gradient at x

i

is larger than a
given threshold. In practice we use about 15% of the image
pixels. Note that the domain D

ref

here is defined in I l
ref

for
the inverse compositional image alignment. For the forward
additive algorithm and the compositional forward algorithm,
the domain is defined on I l

cur

.
We iteratively optimize the following energy function to align
I l
cur

with I l
ref

:

⇠⇤
d

= argmin

⇠

d

X

x2D

ref

kI l
ref

(W (x
i
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d

))� I l
cur

(W (x
i

, ⇠
d

))k2

(24)
= argmin

⇠

d

E
d

(�⇠
d

) (25)

Since the increment �⇠
d

is computed for the reference
keyframe image (the template image not the target image)
we need to invert it and and compose it with the current
parameter estimate. The warp update at iteration k + 1 is
given by Eq. 26.

T k+1
d

= T k

d

⇤ exp(��⇠⇤
d

) (26)

In the iterative optimization process, we linearize around
�⇠ = 0 at every iteration using Eq. 5 applied to the cost
function in Eq. 24.

E
d

⇡
X

x2D

ref

kI l
ref

(W (x, 0))� I l
cur

(W (x, ⇠
d

)) + J
d

�⇠
d

k2

(27)

The derivation of the Jacobians for our inverse compositional
algorithm is similar to the forward compositional algorithm
in [20]. However, Jacobians in our case are computed for the
I l
ref

image and not for I
cur

as in [20].

J
d

(x, ⇠
d

) =

@E
d

@⇠
d

(28)

The Jacobian can be computed using the chain rule.

J
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The individual Jacobians in Eq. 28 can be derived as follow.
The intensity Jacobian J

I

is evaluated at x = ⇡(g(p
i

, T (0)),
where T (0) = I4x4.

J
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(W (x, �⇠
d

))

@⇡

���
x=⇡(g(p

i

,T (0))=x

i

(31)
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The camera projection Jacobian is:
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The Jacobian of the function g is:
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The Jacobian of T is:
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Finally, we get the expression for our per-pixel Jacobian:
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Note that the per-pixel Jacobian J
d

is a 6-dimensional vector.
By checking the dimensions of the different matrices which



Fig. 5. This figure shows the features tracked on the current frame, the
disparity map of the last keyframe (the color encode the disparity value)
and a view of the volumetric reconstruction. The current point cloud which
overlaps with the map is also drawn.

compose J
d

, we get:

J
d|{z}

1⇥6

= J
I|{z}

1⇥2

. J
⇡|{z}

2⇥3

. J
g|{z}

3⇥12

. J
T|{z}

12⇥6

(40)

V. OUTDOOR 3D OBSTACLE AVOIDANCE USING STEREO

In this section we describe our stereo-based 3D path
planning system. A volumetric map (Octomap) is maintained
by the system. Stereo dense disparity maps are projected to
3D to create point clouds (Octomap scans). These measure-
ments are then used to update the octree [21]. Collision-free
trajectories can then be planned for safe navigation in 3D.

A. Occupancy grid map and dense stereo matching
The map built by ORB-SLAM2 is too sparse to be used for

path planning. Thus, we build a dense volumetric occupancy
grid map. For real-time purposes we update the occupancy
grid map only at keyframes. When the tracking thread of
the SLAM system decides to create a new keyframe we also
store (with the keyframe) the intensity images (left and right
at half resolution). At the mapping thread we estimate the
disparity map by using the popular semi-global matching
(SGM) dense stereo matching [22]. While there exist more
efficient local stereo matching algorithms [23] [24], the need
to estimate the disparity maps only at keyframes motivates
us to use the globally more accurate stereo algorithm SGM.

B. Path planning in 3D occupancy grid map
The 3D path planner gets a binary version of the up-to-

date octree and updates its bounds using the current octree
bounding boxes. The planning in 3D is more challenging
than in 2D and efficient methods need to be used. Standard
path planners such as A⇤ are not efficient for usage on-board
a quadcopter. We choose to use a variant of the efficient
rapidly-exploring random trees RRT [25]. We use the open-
source library OMPL, which implements a set of planning
algorithms. One of the algorithms used for path planning in
this setup is RRT* [26]. It is a variant of the original RRT. In
the following the choice of this algorithm is illustrated. RRT

is a sampling-based algorithm and provides probabilistic
completeness [26]. That means that the probability that the
planner fails to find a solution, if there is one, goes to zero as
the number of samples approaches infinity. Such a sampling-
based planner requires a collision checking module as it does
not represent obstacles explicitly [26]. A problem of RRT is
that it doesn’t provide any guarantees to an optimal solution.
If we use RRT in this setup we get a valid solution very
fast but as stated it is not necessarily optimal. Experiments
show that it is very often not even close to optimal. But as
we are planning paths for a Quadrotor optimal paths (or at
least short paths) are important to not waste battery power.
To achieve an optimization of the planned path RRT* is
used. Basically the tree is constructed in the same manner
as in normal RRT but not all feasible connections will be
inserted. Normal RRT just inserts a connection between the
new node and its nearest neighbor (considering the euclidean
distance). The RRT* algorithm will check all nodes in the
surrounding of a new node and only insert the shortest
path to the new node, considering a cost function, into the
tree. This cost function differs from the euclidean distance,
because on the path from the root to the node, which
will be connected to the new node, there might be some
obstacle that increases the cost in comparison to a straight
line connection. Therefore the nearest neighbor of the new
node does not have to be on the shortest path to the new
node. After that all the surrounding nodes are checked again
whether there is a new shortest path to each of them using
the newly inserted node. If that is the case the tree gets
rewired to maintain it a tree structure. As stated in [26],
RRT* is probabilistically complete, like the normal RRT, but
moreover it is asymptotically optimal. That means that the
returned solution converges almost surely to the optimal path
[26]. This property made the RRT* algorithm a good choice
for this path planning scenario. Moreover the algorithm
is not limited to finding geometric shortest paths but can
also optimize towards a mixed optimization objective taking
different costs (e.g. avoiding power extensive maneuvers)
into account. In the quadcopter online planning scenario
it has to be considered that one has to make a trade-off
between spending energy and time flying a non-optimal path
vs. spending energy and time hovering too long to compute
the optimal path plus flying this path. Once a path is planned
the way-points are sent to the Pixhawk controller via a serial
connection. The Pixhawk controller takes care of flying the
quadcopter to the desired destination. The desired destination
includes the position (XYZ) and the yaw angle.

VI. RESULTS
A. Platform description

In our real experiments we used a custom-made quad-
copter. It is shown in Fig. 7. The components of the
quadcopter are as follows: a stereo camera with a pair of
Point-Grey Firefly monochrome cameras with a resolution
of 640x480 pixels. The baseline between the two camera is
22cm. The stereo camera delivers synchronized stereo pairs
at 30Hz. The flight control is from the open-source project
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(d) (e) (f)

Fig. 6. Thanks to the volumetric global map maintained by our algorithm, we can plan collision-free paths between any two positions on the global map.
(a) a view of the outdoor environment in which we did the experiment. (d) a Google Maps view of this area. The yellow rectangle shows the mapped area
and the red line inside it shows the straight line between the start and goal position for the planner. (b) the sparse map built by the SLAM algorithm. This
map which is used for pose estimation and re-localization. (c) the 3D volumetric map (Octomap) which is used by the planner. The green dots show the
robot trajectory. (e) and (f) show two views of a set of 3D paths between the start and destination positions. These views correspond to the black rectangle
region of the map in (c).

Fig. 7. Quadcopter used for our outdoor real experiments with the forward
looking stereo camera.

Pixhawk [19]. The on-board computer is an Intel NUC mini-
pc. It has an Intel core i7-5557U CPU with 2x3.1GHz, 4MB
cache, 28 Watts thermal design power (TDP) and 8GB RAM.

B. Obstacle avoidance in outdoor environment

We performed outdoor experiments in an environment
with vegetation (grass), trees, walls and asphalt. Some pic-
tures of this environment can be seen in Fig. 1(a), 6(a) and
6(d). Fig. 6 shows the details of an outdoor experiment.
It shows the sparse map and the volumetric map. A set
of collision-free paths between two points are also shown.
Table I shows some statics from the outdoor experiment. The
running times are reported for the case where all software

#Stereo pairs 9040
#Keyframes 1128
#Map points 30616
Feature based tracking (time) 52 ms
Direct alignment refinement (time) 21 ms
Dense stereo 320 ⇥ 240 pixels (time) 55 ms
Dense stereo 640 ⇥ 480 pixels (time) 183 ms
Octree update 320 ⇥ 240 pixels (time) 62 ms
Octree update 640 ⇥ 480 pixels (time) 191 ms
Octree memory (size) 360 MB
Binary Octree (size) 1.1 MB
Planning RRT* (time) 10 s
Average #WPs 86

TABLE I
SOME STATISTICS FROM THE OUTDOOR OBSTACLE AVOIDANCE

EXPERIMENT.

packages of our system (see Fig. 2) are running at the
same time. The running times for performing dense stereo
matching and octree update are given for two different
resolutions (640⇥480 and 320⇥240). The planning time is
set to 10 seconds. WPs means the number of intermediate
way-points.

C. Results of the Hybrid SLAM on the Kitti Dataset

We evaluated our hybrid SLAM method on the Kitti
odometry benchmark [27]. The Kitti datasets are recorded
using a car with a stereo camera mounted on the top of
the vehicle. The recorded trajectories have a total length
of about 39 Km divided into 22 sequences. Ground truth
trajectories are provided for the first 11 sequences. Some
sequences include loop closures and dynamic objects (cars
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Fig. 8. Results on the Kitti odometry benchmark. Our algorithm (blue)
is compared with the ORB-SLAM2 [1] (green). The ground truth is also
drawn (red). Top: sequence 12. We achieve a considerable improvement. Our
method accumulates less drift. Middle: for a better visualization we zoom in
the last part of the trajectories of the previous image. Bottom: sequence 00
which has many loops. No significant improvement. The trajectories almost
overlap.

driving around). Our results show that the refinement step
(using the direct image alignment) improves the accuracy
for sequences (e.g. sequence 12) with no loop closures.
Fig. 8 shows the results obtained for the Kitti sequences 12
and 00. For the sequence 12 of the Kitti benchmark which
has no loop closure the drift becomes larger with the travelled
distance. Our refinement step helped to keep the drift very
low. For sequences with many loop closures (e.g. sequence
00), we get almost the same results as the original algorithm.
A loop closure detection and correction contribute to reduce
the drift for the feature-based SLAM more than it does for
our hybrid method. This can be confirmed by disabling the
loop closure thread of the SLAM system.
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Abstract— An approach for object detection in depth images 
based on local and global convexity is presented. The approach 
consists of three steps: image segmentation into planar patches, 
greedy planar patch aggregation based on local convexity and 
segment grouping based on global convexity. The proposed 
approach improves upon existing similar methods, which use 
convexity as a cue for object detection, by detecting convex 
objects represented by multiple spatially separated image 
regions as well as hollow convex objects. The presented method 
is experimentally evaluated using a publicly available 
benchmark dataset and compared to two state-of-the art 
approaches. The experimental analysis demonstrates 
improvement achieved by high-level segment grouping based on 
global convexity.  

I. INTRODUCTION 

The ability to perceive a scene as a set of objects is very 
important for an intelligent robot which operates in complex 
and unstructured environments. Several successful 
approaches for segmentation of depth images obtained by an 
RGB-D camera into objects have been proposed [1]–[6]. 
Many cues are investigated in search for appropriate criteria 
which could be used to decide whether particular image 
regions belong to one object or to different objects. Since the 
probability that two randomly positioned objects form one 
convex surface is very low, convexity has been used as one 
of the most reliable cues for separating objects in the scene 
[4]–[6].  

The research presented in this paper investigates the 
application of global convexity as a powerful cue for object 
detection in complex and cluttered scenes. The focus is on 
situations where an object is represented by multiple spatially 
separated image regions due to occlusion. An example is the 
box denoted by the yellow rectangle in Fig. 1. Such instances 
are referred to in this paper as disconnected objects. Another 
interesting situation involves hollow convex objects such as 
glasses, cups, bowls, open boxes and cans etc., which are 
often represented in the image by one convex and one 
concave surface separated by depth discontinuity, for 
example the bowl denoted by the green rectangle in Fig. 1. 
Methods, such as those presented in [4] and [5], which detect 
objects as connected convex surfaces result in 
oversegmentation, i.e. false segmentation in which such 

 
*This work has been fully supported by the Croatian Science Foundation 

under the project number IP-2014-09-3155. 
R. Cupec, D. Filko and E. K. Nyarko are with the Faculty of Electrical 

Engineering, Computer Science and Information Technologies Osijek, J. J. 
Strossmayer University of Osijek, Kneza Trpimira 2B, 31000 Osijek, 
Croatia (phone: ++385 91 224 6019; fax: ++385 31 224 605; e-mail: 
robert.cupec@etfos.hr, damir.filko@etfos.hr, nyarko@etfos.hr).  

 

objects are represented by multiple convex segments. The 
method presented in this paper consists of three steps. The 
first step is segmentation of the input depth image into planar 
patches. The second step is grouping of planar patches using 
local convexity criterion, analogously to the approach 
proposed in [5]. An example of surfaces obtained by this 
second step is presented in the bottom left image of Fig. 1. It 
can be seen that some objects are represented by multiple 
segments. The final third step is high-level grouping of 
segments based on convexity of their union, which allows for 
the detection of disconnected objects and hollow convex 
objects as whole entities, as demonstrated in the bottom right 
image in Fig. 1. An efficient approach for determining 
approximate convexity of the union of two surfaces is 
proposed, which is based on representing the surfaces by 
planar patches.  

II. RELATED RESEARCH 

A number of approaches for segmenting RGB-D images 
into objects are proposed. A commonly used approach 
consists of two steps: (i) segmentation of image into smooth 
surface patches and (ii) aggregation of these patches into 
objects. The aggregation of surface patches is usually 
performed by forming a graph whose nodes are the surface 
patches, which is then segmented according to relations 
between neighboring patches. In this section, we review 
several methods based on this basic approach, which is also 
used in the research presented in this paper. The approach 
proposed in [1] segments a depth image into regions of 
smoothly curved surfaces bounded by sharp edges and then 
connects the detected smooth surfaces into objects. After 
image segmentation into smooth surfaces, an adjacency 
matrix is formed representing connectivity of adjacent 
surfaces. This adjacency matrix is used by a greedy algorithm 
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Figure 1. RGB-Image (top left), ground truth image (top right), 
segmentation based on local convexity (bottom left) and segmentation result 
after high-level grouping based on global convexity (bottom right). The 
example is selected from OSD [2]. 



  

which is based on the detection of triplets of adjacent 
surfaces. 

In the approach proposed in [2][3], an RGB-D image is 
first segmented into planes and NURBS. Relations between 
two adjacent surface patches are described by feature vectors 
representing geometric and color properties of these two 
patches and the boundary which separates them. In addition 
to relations between adjacent patches, the discussed approach 
also considers the relations between spatially separated 
patches. Two different feature vectors are defined, one for 
neighboring and another for non-neighboring patches. These 
feature vectors are rather complex and they include 16 
properties describing curvature of the border between the 
patches, variance of distances and color difference along the 
border, difference between size, color, texture and normal 
directions of the patches. Two SVM classifiers are then 
trained using an appropriate training dataset consisting of 
feature vectors describing the relations between two surface 
patches, where manually segmented images are used as the 
ground truth. One classifier is used for adjacent and the other 
for non-adjacent surface pairs. The SVM classifiers assign a 
value to each relation, which indicates the probability that the 
two surface patches corresponding to this relation belong to 
the same object. Image segmentation is based on graph 
representation of the image, where graph nodes represent 
surface patches. The relations between two surface patches 
are represented by edges connecting their corresponding 
nodes. Hence, each edge corresponds to a feature vector. The 
trained SVM classifiers are used to compute energy terms for 
the edges based on their corresponding feature vectors. 
Finally, a graph segmentation procedure based on the 
approach proposed in [7] is applied to the discussed graph. 
This procedure results in groups of nodes, each representing 
an object in the considered image.  

This paper focuses on convexity as one of the most 
powerful cues for distinguishing objects from each other. An 
approach for hierarchical segmentation of triangular meshes 
into convex shapes is proposed in [8]. In [4], an efficient 
method for segmentation of depth images into approximately 
convex surfaces is proposed and its application for detecting 
simple objects is demonstrated. First, the image is segmented 
into triangles by a recursive approach based on Delaunay 
triangulation proposed in [9]. Then, the obtained triangles are 
grouped into approximately convex surfaces by a region 
growing procedure. An approach to object detection based on 
local convexity is presented in [5]. The image is first 
segmented into supervoxels using the VCCS method 
proposed in [10]. These supervoxels are then represented by 
a graph, where each node represents a supervoxel and nodes 
corresponding to adjacent supervoxels are connected by 
edges. A heuristic criterion based on convexity is used to 
decide whether or not two nodes connected by an edge 
belong to the same object. Then, a region growing procedure 
is applied to detect connected subgraphs of the discussed 
graph representing objects in the considered image. It is 
demonstrated that a simple criterion based on local convexity 
gives segmentation performance comparable to the much 
more complex method presented in [2] which combines many 
cues. The research presented in this paper supplements the 
research reported in [4] and [5] by investigating the 

improvement in object detection which can be achieved by 
grouping spatially separated image regions into objects using 
convexity cue only.  

The method proposed in [6] also uses local and global 
convexity as cues for segmenting a 3D scene into objects. 
This method first decomposes the scene into a set of 
candidate mesh segments and then ranks each segment 
according to five intrinsic shape measures: compactness, 
symmetry, smoothness and local and global convexity as well 
as a recurrence measure (presence of similar objects in other 
scenes). To partition a scene mesh into segments, the mesh is 
represented by a graph and the graph based segmentation 
proposed in [7] is applied. In contrast to the approach 
presented in this paper, this method is designed for 3D scene 
models obtained by fusion of multiple views, while in this 
paper we investigate the ability of object detection from a 
single viewpoint. Furthermore, besides convexity, the 
approach presented in [6] uses other cues. On the other hand, 
in this paper, we investigate the object detection performance 
that can be achieved by using convexity as the only cue. 

III. DEPTH IMAGE SEGMENTATION BASED ON LOCAL 
CONVEXITY 

The approach investigated in this paper consists of three 
steps: (i) segmentation into planar patches, (ii) hierarchical 
planar patch clustering and (iii) high-level grouping of 
spatially separated segments into objects. The first two steps 
are explained in this section, while the high-level segment 
grouping, which is the focus of this paper, is described in 
Section IV 

A. Segmentation into Planar Patches 
A common approach to object detection is to first 

segment the input image into smooth surface patches. In [2] 
this is achieved by detection of planar patches and NURBS, 
in [1] and [6] by detection of low curvature regions using 
region growing and graph-based segmentation [7] 
respectively, while in [5] clustering into supervoxels is 
performed. In this paper, segmentation into planar patches 
based on region growing is used as the preprocessing step. 

The approach used in the research presented in this paper 
has the same underlying principle as the segmentation 
method proposed in [11]. This approach is based on region 
growing and it requires a triangular mesh as input. The region 
growing procedure is initialized by creating a region 
consisting of a randomly selected seed point and growing this 
region by adding neighboring points which lie on the plane 
defined by the seed point and its normal within a predefined 
threshold. After the region growing procedure is completed, 
i.e. if no more points satisfying the planarity criterion can be 
added to the grown region, a new randomly selected mesh 
point, which currently isn't assigned to any planar segment, is 
used as the seed for the next region growing process. We 
improved this method by fitting the common boundary of 
adjacent patches to the intersection line between their 
supporting planes. 

The input to our segmentation method is a triangular 
mesh. In the experiments reported in this paper, triangular 



  

meshes are created from depth images by the mesh 
construction algorithm presented in [11], which is included in 
the Point Cloud Library (PCL) [12]. The approach used in 
this research performs region growing in two stages. In the 
first stage, region growing is performed analogously to the 
approach proposed in [11], which grows a region until 
reaching the boundaries of already existing patches. In the 
second stage, the grown region is expanded into adjacent 
patches by adding points belonging to these patches, which 
satisfy the planarity criterion of the currently grown region. 
The result of expansion of the currently grown region into an 
existing planar patch is a connected set of points which 
belong to both of these two regions. Then the minimum cost 
boundary between the grown region and the patch is searched 
for inside this common region, where the part of the 
boundary along the intersection line between the supporting 
planes of these two regions has zero cost. Thereby, the 
boundaries which are aligned with the intersection lines of 
adjacent planar patches are favored. Since the main topic of 
this paper is high-level grouping using global convexity 
criterion, only the basic idea of the applied planar patch 
extraction method is explained in this section, while a more 
detailed description of this method is given in [13]. An 
example of depth image representation by planar patches is 
shown in Fig. 2. 

The result of the described procedure is a representation 
of the input image by a set of approximately coplanar 
subsets, referred to in this paper as planar patches Ci, i = 1, 
…, npp. Each planar patch is assigned a normal ni, i.e. a unit 
vector perpendicular to the supporting plane of Ci, parameter 
di representing the distance of this plane w.r.t. the camera 
reference frame and a set 

kC
V of boundary points in which 

three adjacent planar patches meet, referred to in this paper 
as vertices. Vertices play an important role in the high-level 
segment grouping based on global convexity.  

The purpose of fitting the boundaries of adjacent planar 
patches to intersection lines between their supporting planes 
is to obtain a representation of the input depth image which 
can be regarded as an approximate polygonization of this 
depth image. A benefit of this representation is that the 
convex hull of the vertices of a set of planar patches obtained 
by the proposed method represents a good approximation of 
the convex hull of the union of all points of this set. This 
property is used in the third step of the proposed object 
detection described in Section IV.  

B. Relations between Adjacent Planar Patches 
Analogously to the approach presented in [5], the method 

considered in this paper relies on local convexity as the main 

cue for aggregation of planar patches in the second step. 
Planar patches obtained in the first step can be represented by 
a graph � whose nodes are these patches. Each two nodes in 
this graph, which represent adjacent planar patches Ci and Cj, 
are connected by an edge Eij, representing the boundary 
separating these two patches. 

We define the convexity relation between two adjacent 
planar patches Ci and Cj by introducing a separating plane, 
which contains the intersection line of the supporting planes 
of Ci and Cj and is oriented at the same angle w.r.t. these two 
planes, cf. Fig. 3. The separating plane of Ci and Cj is defined 
by normal nij and distance dij defined by 
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If ij ijJ J� �! , then the boundary between Ci and Cj is 
considered to be convex. Otherwise, the boundary is 
considered to be concave. Each edge Eij is assigned a feature 
vector fij consisting of three components. The first two 
components are 

  � � � �1 sign arccos T
ij ij i jf J J� � � � �n n , (4) 

 � �2 max ,ij ijf J J� � . (5) 

These two components together represent a measure of 
convexity of the boundary separating two planar patches. The 
first component represents the angle between the supporting 
planes of the two patches, where positive angles represent 
convex and negative values concave boundary. The second 
component measures the property that one of the patches lies 

  
 

Figure 2. RGB-Image (left) and planar patches extracted from this image 
(right). 
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Figure 3. Two planar patches Ci and Cj separated by a convex (a) and 
concave (b) boundary. Green lines denote boundaries between patches. 



  

mostly on one side of the separating plane. Intuitively, the 
larger the values f1 and f2, the higher is the probability that 
the two planar patches belong to the same object.  

The third component f3 of the feature vector fij is the 
average distance between the closest boundary points of the 
two planar patches. This component has large values along 
depth discontinuities, which usually separate planar patches 
belonging to different objects.  

C. Greedy Planar Patch Aggregation 
Feature vectors fij assigned to every edge Eij are used to 

estimate the probability that two adjacent planar patches Ci 
and Cj belong to the same object. For that purpose, a 
classification function h is defined which maps vectors fij 
onto the interval [–1, 1]. Higher positive values of function h 
correspond to a higher probability that Ci and Cj belong to 
the same object, while negative values indicate that these two 
patches probably belong to two different objects. A function 
hk, k = 1, 2, 3 is defined for each component fk of vector fij, 
which maps this component onto the interval [–1, 1] and the 
resulting classification function is computed as 

 � � � � � � � �� �1 1 2 2 3 3min , ,h h f h f h f f . (6) 

Functions hk, shown in Fig. 4, implement a priori 
knowledge about correlation between the convexity and 
discontinuity properties of boundaries between planar 
patches and the probability that they belong to the same or 
different objects. It is a well-known fact, used in previous 
research on this topic [4]–[6] , that a convex surface probably 
represents a single object. Hence, h1(f1) = 1 for f1 > 0. 
However, some objects can also have concave surfaces. Two 
planar patches with a small angle between them whose union 
is a concave surface probably belong to the same object. 
Hence, function h1 falls proportionally for negative values of 
angle f1 until this value reaches a predefined value W1. As 
explained in Section III.B, higher values of f2 indicate a 
higher probability of two patches belonging to the same 
object. Value f2 by its definition cannot be less than 0.5. 
Hence, function h2 rises linearly from –1 to 1 on the interval 
[0.5, 1]. Function h3 falls from 1 to –1 as the average distance 
between boundary points of the two patches increases from 0 
to a predefined value W3, which implements a simple rule that 
larger depth discontinuities probably correspond to 
boundaries between different objects. Although the 
classification function is defined according to heuristic rules, 
these rules are very simple and require only two parameters 
W1 and W3 to be set. 

Values h(fij) computed for all edges Eij are used to 
formulate the considered object detection problem as a graph 
energy minimization problem. Each edge Eij is assigned the 
cost of the boundary between planar patches Ci and Cj, 
computed as 

 vij = wij · h(fij), (7) 

where wij is the boundary length. A higher cost of the 
boundary separating two planar patches indicates that this is 
not an object boundary, i.e. that these two patches belong to 
the same object. On the other hand, a negative cost indicates 
that this boundary is probably the object boundary separating 
two patches belonging to two different objects. The total 
energy of the graph � is defined as the sum of all edge costs. 
By removing the boundary between two planar patches Ci and 
Cj, the nodes representing these two patches are merged into 
a new node and a new graph is obtained. If Ci and Cj are both 
adjacent to a planar patch Ck, then the edges Eik and Ejk are 
substituted in the new graph by a single edge whose cost is 
ik jkv v� . If the cost of the edge Eij connecting Ci and Cj is 
0ijv ! , then the graph obtained by removing this edge has a 

lower total energy. 

We perform minimization of the total graph energy by 
applying a greedy iterative algorithm, which removes the 
boundary with the highest cost in each iteration. This process 
is repeated until all remaining boundaries have negative 
costs. This algorithm is referred to in this paper as Greedy 
Planar Patch Aggregation (GPPA). It is based on the 
approach proposed in [14] with the boundary weighting 
scheme adopted from [15]. A detailed description of this 
method can be found in [15]. The result of this algorithm is a 
set of segments obtained by aggregation of planar patches.  

IV.  SEGMENT GROUPING USING GLOBAL CONVEXITY 
In this section, the third step of the proposed object 

detection approach is described. The planar patch 
aggregation method, described in Section III, groups adjacent 
planar patches into connected sets, referred to in this paper as 
segments, according to local convexity and depth 
discontinuity cues. In order to detect disconnected and 
hollow convex objects, a convexity criterion is evaluated for 
all segment pairs and those which satisfy this criterion are 
considered as candidates for grouping.  

Let’s consider a segment S consisting of planar patches 
Ck, where each planar patch is assigned a set of vertices 

kC
V defined in Section III.A. Furthermore, let SV be the set of 
all vertices of all planar patches constituting S. This segment 
is convex if and only if for every vertex P � SV  and every 
planar patch kC S�   

 T
k kd H� � dn p  (8) 

where p � �3 is a vector defining the position of P w.r.t. the 
camera reference frame and 0H  . If we relax this condition 
by allowing H to be a small positive constant, the definition of 
approximately convex surface is obtained.  

This convexity criterion is used as the basis for the 
segment grouping criterion proposed in this paper. Two 
segments Si and Sj are considered to represent one object if a 
high percentage of their supporting points belong to the same 
approximately convex surface. This property is evaluated by 
Algorithm 1.  
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Figure 4. Classification functions defined for relation features. 



  

Algorithm 1 Convexity Measure 
Input: Si, Sj, H 
Output: O(Si, Sj) 
1 : Sij m Si � Sj 
2 : Q m list of planar patches contained in Sij sorted in 

descending order 
3 : V m � 
4 : Sconv m � 
5 : Repeat 
6 :  Ck m the first planar patch in Q 
7 :  Remove Ck from Q. 
8 :  For every vertex p � V 
9 :   If T

k kd H� � !n p , then go to line 18. 
10 :  end for 
11 :  For every Cl � Sconv 
12 :   For every vertex p �

kC
V  

13 :    If T
l ld H� � !n p , then go to line 18. 

14 :   end for 
15 :  end for 
16 :  

kC
V V Vm �  

17 :  Sconv m Sconv � Ck 
18 : until Q is empty. 
19 : Compute O(Si, Sj) using (9). 
20 : Return O(Si, Sj). 

For a given pair of segments Si and Sj, this algorithm 
determines a set Sconv � Si � Sj which represents an 
approximately convex surface. The percentages of the 
supporting points of Si and Sj belonging to Sconv are computed 
and the minimum of these two percentages is taken as the 
convexity measure of the segment pair (Si, Sj). 

Computation of the convexity measure O(Si, Sj) can be 
described by equation 

 � �, min , conv jconv i
i j

i j

S SS S
S S

S S
O

§ ·��
¨ ¸ 
¨ ¸
© ¹

. (9) 

Note that the computational complexity of the proposed 
method for measuring the convexity of the union of two 
surfaces depends on the number of planar patches belonging 
to these surfaces and their vertices, which is significantly 
lower than the total number of supporting image points of 
these surfaces.  

The applied convexity criterion represents a rather weak 
constraint, which can result in many false objects. In order to 
reduce the probability of false segment grouping, the 
criterion of maximum object size is used in addition to the 
aforementioned convexity criterion. The bounding box of the 
union of two segments is determined. Only those segment 
pairs whose bounding box size is less than a predefined 
threshold amax are considered for grouping. This additional 
constraint can be implemented by setting O(Si, Sj) to zero for 
all segment pairs whose bounding box exceeds the threshold. 
In the experiments reported in this paper, amax is determined 
according to the size of objects in a training set.  

The described convexity measure is used in a greedy 
segment grouping procedure. The procedure starts by 
identifying the pair of segments (Si, Sj) with the highest 
convexity measure O(Si, Sj). If O(Si, Sj) ≥ Wconv, where Wconv is a 
predefined threshold, then these two segments are merged 
into a new segment S’. The procedure continues by 
identifying all pairs of segments, where one member of the 
pair belongs to S’ and the other is not already grouped, and 
selecting the pair with the highest convexity measure. Let  
(Sp, Sq) be this pair and, without loss of generality, let’s 
assume that Sp � S’ and Sq � S’. If for all Sr � S’, 
� �,q r convS SO Wt , then Sq is added to S’. This segment 

growing process stops when no more segments can be added 
to S’. After that, the pair of remaining segments with the 
highest convexity measure is identified and the described 
segment growing procedure is repeated. The segment 
grouping process is completed when there are no more 
segment pairs with convexity measure ≥ Wconv. 

In order to extend the proposed method to a wider class 
of objects, a preprocessing step, which identifies hollow 
convex objects is introduced. Before computing O(Si, Sj), the 
convexity of segments Si and Sj is examined. For every 
segment Si, the ratio conv i iS S S�  is computed, as 
explained in Algorithm 1. In addition to this ratio, the same 
ratio is computed by assuming that the considered segment 
represents the inner surface of a hollow convex object. This 
is achieved by flipping the normals of all planar patches 
which constitute segment Si. If the second ratio is greater, 
then O(Si, Sj) is computed by evaluating the condition 
� �T

l ld H� � � !n p instead of T
l ld H� � !n p  in lines 9 and 13 

of Algorithm 1. This relaxed condition is applied to adjacent 
segments only.  

In order to avoid small particles being falsely merged to 
distant objects, only segments with size greater than a 
predefined threshold Wgroup are considered in the described 
segment grouping process.  

At the end of this grouping process, the segments with 
size smaller than a threshold Wattach are attached to the largest 
adjacent segment whose size is t Wattach. Such a 
postprocessing step is also applied in [5]. 

The method described in this section is referred to in this   
paper as Global Convexity Segment Grouping (GCSG). Two 
examples of detecting disconnected and hollow convex 
objects are shown in Fig. 5. Objects which are represented by 
multiple segments after GPPA step (top images) are 
connected after application of GCSG (bottom images).   

V. EXPERIMENTAL EVALUATION  
The proposed segmentation method is implemented in 

C++ programming language using PCL [12] and OpenCV 
library [16]. The method is experimentally evaluated using 
Object Segmentation Database (OSD) [17], a publicly 
available dataset containing 111 RGB-D images of household 
objects placed on a table with manually annotated ground 
truth. This dataset is suitable for evaluation of the proposed 
method for several reasons. First, it has already been used by 



  

other researchers [2][5] and, hence, we can make a clear 
comparison of our work with two state-of-the art methods. 
Furthermore, objects of simple shapes such as those used in 
OSD appear often in industry, household environments and 
medical institutions, and the method proposed in this paper is 
designed for improving the detection of such objects. 

Each RGB-D image in OSD is assigned a ground truth 
image. Every pixel of a ground truth image is manually 
assigned a label of the object it belongs to. The segmentation 
results are compared to the corresponding ground truth data 
according to two performance measures – oversegmentation 
error and undersegmentation error, which are defined in the 
same way as in [2] and [5]. The oversegmentation error Fos 
and undersegmentation error Fus are defined as 

 1 true
os

total

N
F

N
 � ,      false

us
total

N
F

N
 , (10) 

where Ntrue is the number of correctly assigned pixels, Nfalse is 
the number of falsely assigned pixels and Ntotal is the total 
number of pixels assigned to all objects in the corresponding 
ground truth image.  

The values of the parameters of the proposed method, 
which are used in this analysis are given in Table I. The 
comparison of the proposed method with the LCCP method 
presented in [5] and the approach presented in [2] is given in 
Table II. The results of the segmentation obtained by the 
second step of our approach are denoted in Table II by 
GPPA, while the results obtained by the complete algorithm 
are denoted by GPPA + GCSG. Two variants of the approach 
proposed in [2] are presented in Table II, the one which 
considers only relations between adjacent surfaces (SVMnb) 
and the one which connects spatially separated surfaces 
(SVMnnb). The results denoted by LCCP [5] are taken from 
[5], while the results denoted by LCCP-PCL are generated by 
the implementation of LCCP included in PCL. 

From the presented analysis it can be concluded that the 
GCSG step reduces the oversegmentation error by 32% (from 
9.8% to 6.6%). Furthermore, the proposed method results in 
a 21% lower oversegmentation error in comparison to LCCP 
[5] and 38% lower oversegmentation error in comparison to 
LCCP-PCL. In the same time, the undersegmentation error is 
12% higher in comparison to LCCP [5] and 10% higher in 
comparison to LCCP-PCL. Since LCCP relies on local 
convexity, it cannot detect disconnected objects and has 

problems with detecting hollow objects. Our method, on the 
other hand, is designed as a postprocessing step which 
reduces this problem. In comparison to the approach 
presented in [2], our method has 47% higher 
oversegmentation error, but 45% lower undersegmentation 
error. 

Since the disconnected and hollow objects contribute to 
the total number of object pixels in OSD with a relatively 
small percentage, the effect of convex-based segment 
grouping is not clearly visible in the analysis presented in 
Table II, which considers the complete database. In order to 
get a better insight into the improvement of detection of 
disconnected and hollow objects, we performed an analysis 
which focuses on these objects. All disconnected and hollow 
objects are manually selected from the ground truth images 
and for each of these objects the percentage of its pixels 
covered by the dominant segment obtained by the evaluated 
method is computed. This percentage is in the presented 
analysis referred to as coverage of a ground truth object. A 
total of 37 disconnected objects and 32 hollow objects are 
considered in this analysis. The graphs in Fig. 6 represent the 
percentage of the considered objects whose coverage is 
greater or equal to a particular coverage. It can be seen that 
for 80% of disconnected objects, the coverage achieved by 
GCSG is over 0.72 and for 80% of hollow objects the 
achieved coverage is over 0.74. Without application of 
GCSG, these values are 0.47 and 0.42. For LCCP-PCL these 
values are 0.47 and 0.31.  
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Figure 6. Coverage of ground truth objects with the dominant segment. 

   
 

   
Figure 5. Segmentation before (top) and after high-level segment grouping 
based on global convexity (bottom). 

TABLE I.  PARAMETER VALUES 

W1 W2 H Wconv amax Wgroup Wattach 
–p/6 0.03 m 0.015 m 0.8 0.3 m 300 1000 

 

TABLE II.  COMPARISON OF SEGMENTATION METHODS 

 Fos Fus 
Richtsfeld et al. [2], SVMnb 
(SVMnb)SVMnb 

4.5 7.9 
Richtsfeld et al. [2], SVMnnb 2.7 69.5 
LCCP [5] 8.4 3.9 
LCCP-PCL 10.7 4.0 
GPPA 9.8 4.2 
GPPA + GCSG 6.6 4.4 

 
TABLE III.  EXECUTION TIMES 

 planar patches GPPA GCSG Total 
avg. (ms) 222.6 31.9 9.7 264.2 
max. (ms) 360.6 54.6 13.0 408.0 

 

 



  

The computational efficiency of the proposed approach is 
analyzed in Table III. The first column represents the 
computation times needed for segmentation of depth images 
into planar patches. The second and third column represent 
execution times of GPPA and GCSG steps respectively. In 
the last column, the total execution time of the proposed 
method is presented. For each of the aforementioned steps, 
the average and maximum execution times are displayed. The 
algorithm is executed on a PC with Intel Core i7 processor 
and 8GB RAM. Computation of normals is performed using 
PCL and its computation time is not considered in Table III.  

VI. CONCLUSION 
The research presented in this paper is motivated by 

results of previous investigations in the field of object 
detection in depth images, which indicate: (i) that convexity 
and depth discontinuity are powerful cues for deciding 
whether or not two adjacent image regions belong to the 
same object and (ii) that by relying only on these two cues for 
detection of objects of simple shapes in cluttered scenes, 
object detection performance comparable to much more 
complex approaches can be achieved. 

In order to confirm the aforementioned observation, an 
approach for segmentation of depth images based on 
convexity and depth discontinuity as the only cues is 
presented. Analogously to existing similar approaches, the 
proposed approach starts by segmenting the input depth 
image into surface patches, computes features characterizing 
relations between adjacent surface patches and then groups 
these patches using an appropriate graph segmentation 
algorithm. The proposed approach uses planar surface 
patches, features based on local convexity and depth 
discontinuity and a greedy graph segmentation algorithm. As 
the final step, the proposed method performs a high-level 
segment grouping based on global convexity in order to 
aggregate disconnected segments representing occluded 
objects as well as to merge adjacent convex and concave 
surfaces representing hollow convex objects. 

The considered method is limited to the detection of 
simple convex and hollow convex objects. However, efficient 
detection of such objects is very useful since they are 
common in industry, household environments and medical 
institutions and we wanted to provide a practical tool for such 
applications. The presented experimental analysis using a 
publicly available benchmark dataset clearly demonstrates 
the improvement achieved by high-level segment grouping 
based on global convexity. Nevertheless, although the Object 
Segmentation Database (OSD) used to validate the proposed 
approach contains a certain number of images with 
disconnected and hollow convex objects, a thorough 
validation using an image dataset specific to the problem of 
detecting disconnected and hollow convex objects would be 
of great interest. Since, to the best of our knowledge, such a 
dataset is not publicly available, one possible direction of our 
future work is to create one.  

Although convexity and depth discontinuity can be used 
for reliable detection of simple objects, which are ubiquitous 
in industry, household environments and medical institutions, 
detection of objects of complex shapes would by no means 

require more sophisticated cues. One approach is to measure 
the similarity of the union of two surfaces in a scene with the 
objects observed in the training phase and to decide whether 
or not these two surfaces represent the same object according 
to the similarity of their union with one or multiple observed 
objects. This will be the topic of our future research. 
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Kinematic Model based Visual Odometry for Differential Drive Vehicles

Julian Jordan1 and Andreas Zell1

Abstract— This work presents KMVO, a ground plane based
visual odometry that utilizes the vehicle’s kinematic model
to improve accuracy and robustness. Instead of solving a
generic image alignment problem, the motion parameters of a
differential drive vehicle can be directly estimated from RGB-
D image data. In addition, a method for outlier rejection is
presented that can deal with large percentages of outliers. The
system is designed to run in real time on a single thread of a
mobile CPU.

The results of the proposed method are compared to other
publicly available visual odometry and SLAM methods on a
set of nine real world image sequences of different indoor
environments.

I. INTRODUCTION

A precise and robust self localization is a crucial com-
ponent for many robotic tasks. Although a variety of dif-
ferent approaches exist, most publicly available methods
are designed to work with a forward looking sensor. For
obstacle detection and avoidance, a downward facing camera
is more suitable to perceive obstacles directly in front of
the vehicle, and for reliable detection of negative obstacles.
Having images mostly displaying the ground is not beneficial
for visual odometry for several reasons, especially in indoor
environments: it can have a very low contrast, quickly re-
peating texture, the ground plane does not provide geometric
information and is close to the camera, increasing the effect
of motion blur. Additionally, reflections and overexposure are
more likely to occur. In order to achieve robust and reliable
results with the described setup, an adapted visual odometry
is required.

This work proposes a visual odometry method specifically
designed to work with a downward facing camera, mounted
on a differential drive vehicle. Due to the non-holonomic
constraints of a differential drive, the motion can be de-
scribed by two parameters. It is shown that estimating these
two parameters directly from image data can significantly
improve the accuracy of the estimated motion. Furthermore,
an efficient outlier rejection scheme is presented. It operates
in the model parameter space instead of the data space.
This increases robustness against image noise and allows
removal of large outlier areas. The performance of the
proposed method is evaluated on nine real world datasets
and compared to five state-of-the-art approaches and its
predecessor. KMVO is able to outperform all six methods
used for comparison, while being able to run at 60hz on a
single thread of a mobile CPU.

1Julian Jordan and Andreas Zell are with the Faculty of Science, Dept.
of Computer Science, University of Tuebingen, 72076 Tuebingen, Germany
julian.jordan,andreas.zell@uni-tuebingen.de

The outline of the paper is as follows: Section II gives a
review of related work. In Section III the hardware setup and
the orthogonal projection preprocessing step are described.
Section IV derives the image warping function for the
differential drive model. The image alignment and outlier
rejection are described in Section V. The evaluation method
and evaluation results are presented in Section VI. Finally, a
conclusion is given in Section VII.

The contributions of this paper are:
• A formulation that allows to estimate the motion pa-

rameters of the kinematic model directly from image
data.

• An efficient motion parameter based outlier rejection
scheme.

• Error handling for situations where the kinematic model
cannot describe the actual motion.

• Performance comparison with six existing visual odom-
etry and visual SLAM methods.

a) b)

c) d)
Fig. 1. a) The Bemotec beActive+e electric wheeled walker used in this
work. b) Kobuki Turtlebot. c) Robotnik Summit XL. d) Metralabs Scitos
G5. The proposed method is suitable for all four vehicles, since they are
all based on a differential drive.

II. RELATED WORK

Visual odometry and visual SLAM are important com-
ponents in many mobile robotic applications, from service



robots to autonomous cars. Numerous methods exist employ-
ing different approaches to estimate camera motion. Typi-
cally they can be classified into two categories: feature based
and direct methods. Feature based methods use descriptors
extracted at key points to establish correspondences between
images. This reduction of data to be processed greatly
improves computational performance, but also induces the
loss of potentially useful information. A popular descriptor is
ORB [1], which is used in [2] and [3]. Both methods include
loop closure using Bag-of-Words, pose graph optimization
and RANSAC for outlier rejection. [2] additionally performs
bundle adjustment to refine map point positions. Feature
based methods are especially prone to motion blur: if the
appearance of a key point changes too much, the correspon-
dence fails. If the whole image is affected by motion blur
this may cause loss of tracking.

Direct methods try to minimize the photometric error
between two or more images, mostly employing a Lucas-
Kanade method [4]. Several improvements and extensions
of this method were presented: e.g. [5] or [6]. They can
further be split into sparse methods and dense methods.
Sparse methods select portions of the image, e.g. based on
the amplitude of the gradient as in [7] and [8]. As for feature
based methods, this information selection can discard useful
information, although [8] argues that image data is highly
redundant and the effect of additional pixels decreases fast.
Dense methods like [9] process the whole image, mitigating
the risk of loosing important information, but increasing
computational requirements. For outlier rejection, [7] and
[9] use weights that are based on image residuals. Different
weighting functions are tested: Huber and Tukey in [7]
and t-distribution and Tukey in [9]. Using these weights
for iteratively re-weighted least-squares can decrease the
influence of outliers up to a certain outlier ratio [9].

For wheeled robots it is possible to reduce the degrees
of freedom to three since they should move in an at least
locally planar environment. This constraint allows to perform
scale free monocular odometry [10], [11] and [12]. All
three methods are designed for vehicles with two motion
parameters. But they use a three parameter representation for
image warping. This may lead to image alignment results that
contradict the vehicle’s motion model. While [10] uses non-
holonomic constraints for efficient recalibration, they are not
employed directly in the image alignment process. The non-
holonomic constraints of a wheeled vehicle can be exploited
to improve motion estimates: a feature based approach for
an Ackermann based vehicle is described in [13].

III. SETUP

The locally planar environment in which a wheeled robot
moves in allows to describe the vehicle motion with three
instead of six degrees of freedom. Planarity also allows
the use of a kinematic model of the vehicle, allowing to
decrease the number of parameters required to estimate to
two, if employed on a differential drive vehicle. The vehicle
used in this work is an electric wheeled walker equipped
with additional sensors to make it an intelligent personal

mobility assistant. As such there are limitations in terms of
computational resources, weight and sensor costs. Its main
purpose is to increase the mobility of visual or cognitive
impaired people by helping them avoiding obstacles. This
requires a robust and accurate visual odometry which works
in different environments under challenging conditions.

A. Robotic Platform

The prototype is based on a Bemotec beActive+e electric
wheeled walker shown in Fig. 1. It is further equipped
with a Sick TiM561 LIDAR, a U-Blox GPS Module, a
Razor 9DoF IMU and an Asus Xtion Pro Live, which
is the sensor used for recording the data required by the
proposed method. Although it is a shared control vehicle, its
motion can still be described by the kinematic model of a
differential drive robot with two powered rear wheels and two
caster-like front wheels. The maximum electrically supported
velocity is 0.81m/s, which is the maximum velocity used
for evaluation.

B. Orthogonal Projection

In order to perform 3 degrees of freedom image alignment
the images have to be projected onto the ground plane.
Since the RGB-D sensor provides depth information along
with an RGB image, it is possible to perform an orthogonal
projection of the input data along the z-axis. In addition
to the RGB or intensity image, a mask image is stored
describing which pixels are valid. Invalid pixels are not
included in the optimization process. This allows to perform
visual odometry in environments which are not planar, like
in Fig. 5 b). Only the vehicle motion must follow the
planarity constraint. See [14] for details of this orthogonal
projection. For monocular cameras, the input images can
be projected onto the previously calibrated ground plane
using a homography. However, as described in [11], every
deviation from this ground plane will affect the estimated
result negatively.

Fig. 2. Left: Original RGB image of a low contrast environment, Center:
The orthogonal projection. Right: Mask image.

IV. KINEMATIC MODEL

In general the image alignment process for visual odome-
try consists of three components: (1) an optimization method
for iteratively solving the non-linear problem, commonly
Gauss-Newton or Levenberg-Marquardt are chosen. (2) a
linearisation method e.g. Forward Compositional, Inverse
Compositional or Efficient Second Order Minimization and
(3) a warp parameter representation like se2 for 3DoF or
se3 for 6DoF image alignment. See [5] and [6] for a more



detailed description of different methods for optimization,
linearisation and warping. As a wheeled robot moves in
an at least locally planar environment, the pose can be
described by three parameters: x, y, ✓. Given images de-
picting the ground plane, the visual odometry problem can
be solved by finding the warp that minimizes the sum of
squared differences between these images. Therefore the se2
parametrisation is an obvious choice for describing the image
warp, as shown in [11] and [10]. Many wheeled vehicles are
non-holonomic, like differential drive or Ackermann based
vehicles, allowing to describe their motion by only two
parameters while the robot itself moves in a 3DoF world.
This over-parametrisation creates an ambiguity: Due to the
locally linear character of small angle rotations it can be
confused with a translation and vice versa. This problem
increases with the distance from the image position to the
center of rotation. This, especially in scenes with sub optimal
image quality, can result in a motion estimate that minimizes
the photometric error but describes a motion that is not
feasible for the vehicle. Experiments have shown that for
a differential drive vehicle with a camera mounted in the
front and two powered wheels in the back, as depicted in
Fig. 3, a distance from the rotation center to the sensor of
about 1m is already large enough to observe this effect.

Conversely, if the vehicle performs a motion that cannot
be described by the kinematic model, e.g. due to wheel slip,
the proposed method detects this by comparing the values
of the error functions of the se2 with the kinematic model
alignment. If the error ratio exceeds a given threshold, the
se2 alignment, as described in [14], is used.

A. Overview

The proposed method consists of the following processing
steps:

1) Orthogonal projection of the RGB image and conver-
sion to a gray scale image.

2) Full image alignment with se2.
3) If rotation and lateral motion are below a threshold go

to 7).
4) Full image alignment with kinematic model.
5) Outlier rejection with kinematic model.
6) If kinematic model alignment is successful go to 8).
7) Outlier rejection with se2 parametrisation.
8) Update of the vehicle pose.

The full image alignment with se2 parametrisation is also
used to reduce the number of iterations of the model based
alignment by providing an initial estimate for r and �✓.

B. Differential Drive Model

A vehicle pose in a 2D world at time t is described by
p
t

= (p

xt

, p

yt

, p

✓t

). The differential drive model describes
the vehicle’s motion with two parameters: The distance of the
rear axis center to the center of rotation r and the rotation
angle �✓, see Fig. 3. Since the vehicle body is rigid, all
points on the vehicle perform a rotation around the same
center by the same angle. This includes the position of
the camera and its field of view, allowing to estimate the

parameters m0
= (r,�✓) directly from the image data. After

estimating m0 the robot pose is updated using:

p
t+1 = p

t

+

0

@
r(sin(p
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Fig. 3. Scheme of the differential drive model: B is the base link frame,
R

t

is the center of the rear axis at time t, c is the current center of rotation,
C is the camera frame and I

t

is the current image frame. The position of
the rotation center in image coordinates is described by c

x

and c

y

. o
x

is
the known distance along the x-axis between the current image origin and
the current rear axis center R

t

.

In Fig. 3 two coordinate representations are used: The base
link frame B is described in world coordinates with units
[m] and radians, all other frames are described in image
coordinates with units pixels and radians. Therefore two
conversion functions are required to convert world to image
coordinates q = f

wi

(p) and vice versa p = f

iw

(q). f
wi

is
used for converting the fixed vehicle model parameters to
image coordinates, q = f

wi

(p) is required to convert the
image alignment results back to world coordinates.

C. Image Warp

To directly estimate the vehicle’s motion parameters by
minimizing the photometric error between two images, the
image warp used for the optimization process has to be
parametrised accordingly. Since the robot’s motion is de-
scribed by a rotation around a point on the rear axis, the same
must hold for the images. The warping function is therefore
parametrized with the rotation’s center c

x

= f

wi

(r)�o

x

and
angle ✓ = �✓.

The rotation R
c

around a point c = (c

x

, c

y

) is described
by:
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where T
c

is the translation matrix to the center and R
✓

is the rotation matrix around angle ✓. Since the image
coordinate system’s z-axis is flipped, the rotational part is
transposed. While c

y

is known from the vehicle model, c
x

and the rotation angle ✓ are free parameters. An image can
be interpreted as function I(i) of a point i = (i

x

, i

y

) that
returns an intensity value, warping an image is equivalent to
transforming the point positions by a function !: I(!(i,m))

From [2] the function for warping an image point i by
parameters m = (c

x

, ✓) is:
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0
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Linearisation of !

0
(i,m) around ✓ = 0 using a first order

Taylor expansion gives:
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V. IMAGE ALIGNMENT

Image alignment is done by minimizing the sum of
squared differences between the previous image I

t

and the
current image I

t+1 by finding the optimal warp parameters
m. The error function over all pixels is:

E(m) =

X

i

(I

t+1(i)� I

t

(!(i,m)))

2 (5)

If the photo-consistency assumption holds, there are pa-
rameters m

opt

for which E(m
opt

) = 0. f

iw

(m
opt

) then
describes the movement performed by the vehicle. To find
the warp parameters m that minimize E(m) between two
consecutive images I

t

and I

t+1, an iterative non-linear least
squares method is used, as formulated in [15]:
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where n is the current optimizer iteration, µ

n

is the step
width, J

n

is the current Jacobian, C
D

is the data covariance,
C

M

is the model covariance and m
prior

is the model
prior. The previous image I

t

is transformed with the current
parameter estimate I

0
t

= I

t

(!(i,m
n

)) after each iteration for
updating the pixel-wise image differences I

t+1 � I

0
t

and the
Jacobian J

n

.
Three termination criteria are used for the optimization:

The maximum number of iterations n > n

max

, a mini-
mum error value E(m

n

) < ✏ and a minimum step size
|m

n+1 � m

n

| < �. Whenever one of these criteria is met,
the optimizations stops.

In general the Jacobian J is the derivative of the warped
image with regard to the model parameters, this derivative
can be calculated by using the chain rule:

J =

@I(!(i,m))

@m
=

@I(i)

@i

@!(i,m)

@m
(7)

The proposed method uses Efficient Second order Minimiza-
tion (ESM) like formulation to calculate the Jacobian, see

[16] and [5] for a detailed derivation of the ESM. ESM uses
a Taylor expansion of the error function and the Jacobian
to approximate the Hessian of the cost function, the ESM
based Jacobian is:
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Image gradients can be obtained by using e.g. a Sobel
operator:
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where r
x

I and r
y

I is the gradient in x resp. y direction.
Deriving the warping function (4) with regard to the param-
eters m:
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Plugging (9) and (10) into (8) results in the Jacobian for one
pixel, which is one row of the J

n

matrix:
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The data covariance C
D

in (6) is set to 1, all pixel
intensities are independent and equally likely. The model
covariance C

M

has to be set appropriately to achieve fast
and robust convergence of the optimisation. This is necessary
because the ranges of the two model parameters differ by
orders of magnitude: While c

x

can have huge values, (in
fact for a straight forward driving vehicle it is ± inf , ✓ has a
typical range of [�0.2, 0.2]. During evaluation C

M

was set
to:

C
M

=

✓
10

4
0

0 10

�3

◆
(14)

For the model prior m
prior

the previously performed motion
has shown to be a reasonable choice. If available, estimates
from other sensors like wheel odometry or an IMU could
also be used.

A. Outlier Removal

For visual odometry, outliers are image regions that do
not reflect the actual motion of the camera. These must be
excluded from the optimization process.

A popular way for outlier removal is the use of iteratively
re-weighted least squares, as presented in [9] and [7]. After
each optimizer iteration, a residual image is created and,
based on these pixel wise residuals, a weight for each pixel
is calculated. In the next optimizer iterations, these weights
are multiplied with the corresponding Jacobian row to weight
the pixel’s influence on the optimization.



The proposed method uses an approach which takes into
account the fact that outlier pixels usually have a spatial
relation since effects like overexposure, reflections or moving
objects are unlikely to appear only pixel wise.

The outlier rejection is performed after the alignment of
the whole image terminates. The optimized parameters m

r

are used as the initial estimate for the outlier rejection.
In order to find outlier regions, the image is split into

blocks B of a fixed size, as shown in Fig. 4. For each block
B
k

the Jacobian J
k

and the image difference d
k

= (I

t+1�I

0
t

)

of the contained pixels are calculated. With J
k

and d
k

for
each block a single parameter update step m

k

is estimated
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Each m
k

describes the direction in model space for which
the blocks error E(m

k

) would decrease. Without outliers
and image noise, the values of all m

k

should be similar.
Blocks that contain a significant amount of outliers have a
different gradient direction compared to blocks that correctly
describe the vehicle’s motion. Based on the estimated model
parameters m

k

, a clustering in model space is performed
by comparing the model space position of each block to all
other blocks. For clustering a weighting function W (v, ")

based on the Tukey weighting function [17] is used:
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, ✓ has a separate weighting param-
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. The cluster weight of each block is:
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The parameters of the block with the highest �(m
s

) are
selected as m

f

and used as center for the cluster membership
test. To get the new motion estimate, the weighted sums over
the Jacobians and image differences are given by:
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From J
f

and d
f

a new estimate for m
r

is calculated as
described in (15). The process can be repeated several times.
This might be required if the initial estimate was too far from
the optimum.

VI. EVALUATION

A. Compared Methods

The proposed method was compared against five publicly
available visual odometry or SLAM systems and its prede-
cessor:

1) DoF3OR, the predecessor of the proposed method [14]
without kinematic model constraints.

Fig. 4. Left: Visualization of the blocks used for outlier rejection, the
number is �(m

k

), green dots mark blocks that contribute to the selected
cluster. Right: Residual image after performing the global image alignment.
The white spots in the upper third of the image are pixels that were removed
due to their proximity to invalid pixels.

2) DVO, a dense 6DoF visual odometry [9].
3) EDVO, a semi-dense 6DoF direct visual odometry

method [7].
4) RTAB, a versatile feature-based SLAM system that

includes loop closure and pose graph optimization [3].
The method was used with 3DoF localisation and non-
holonomic constraints for motion estimation.

5) ORBSLAM2, a feature-based 6DoF SLAM system
[2]. Two modes were tested: The full SLAM system
(ORBSLAM) and the visual odometry mode with
mapping disabled (ORBLOC).

6) DEMO, a feature based 6DoF visual odometry [20].

B. Data Acquisition

To compare the performance of the proposed method
with other approaches, nine sequences in different indoor
environments were recorded. Fig. 8 shows one of these
sequences with ground truth trajectory and the resulting
trajectories of all compared visual odometry systems. The
total length of these nine trajectories is 527m and the total
recorded time 17min. They were selected to cover different
surface materials under different lighting conditions, see Fig.
5.

Fig. 5. Three different surface types were recorded: Tiles, wood and PVC
(shown in Fig. 2). The images depict challenging situations the proposed
method can handle: low light conditions and reflections, shadows and non
planar environment.

The ground truth trajectories were created using a Sick
TiM561 LIDAR for data acquisition and the Hector SLAM
system [18] to integrate the LIDAR data into a global
occupancy map with 0.05m resolution used for localisation.
Every ground truth sequence was checked for map and



trajectory inconsistencies and discarded if any were found,
leaving 9 out of 18 originally recorded sequences.

Each tested method was run on all nine sequences, record-
ing the pose estimate after each frame. This yields a set F
of poses for each method and each sequence.

C. Evaluation Method

For performance evaluation, the visual odometry evalu-
ation method described in [19] was used. This evaluation
method extracts sub paths of different lengths and calculates
two error measures individually for each sub path: the
rotation error and the translation error. Each error measure
is normalized by the path length to be able to compare the
results of sub paths of different lengths. The error measures,
as given in [19], are:
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where i and j are the start and end indices of a subset of F
for a given length l

p

, p̂ and p are the estimated resp. ground
truth poses, � is the inverse compositional operator and \
denotes the rotation angle.

The path lengths for evaluation were l

p

=(1m, 2m, 5m,
10m, 15m, 20m, 25m, 30m, 35m, 40m). For each path length,
a sub path was extracted at every tenth ground truth frame.

D. Results

The mean translation error per path length over all se-
quences is shown in Fig. 6, the mean rotation error in Fig. 7.
Table I shows the mean error weighted by the number of sub
paths per path length. One major source of error are rotations,
as seen in Fig. 8. Only the proposed method provides a
proper estimate of all rotations contained in this sequence.
Another problem are reflections, causing most methods to
underestimate the distance travelled. This can be observed
when turning to the right after approximately 16m.

Two methods are not suited to work with the provided
data: DEMO has problems establishing correct feature cor-
respondences. For EDVO the reason is not as clear, it may
be caused by the information selection scheme which selects
data with strongest Jacobians. In environments with low
contrast texture, image noise and reflections tend to give
larger gradients than the floor itself. Regardless, as errors in
setting up theses systems cannot entirely be ruled out these
results should be regarded with care.

ORBSLAM provides good results as long as the tracking
remains intact. In cases where loop closure could be applied,
it outperformed most other methods. When the tracking is
lost, no further pose estimates are provided, causing the
translation and rotation error to rise to maximum for the
remaining trajectory. This happened in four out of nine
sequences e.g. Fig. 8 and was caused either by fast rotation
or heavy motion blur. To be comparable, it was required to
use the visual odometry only version ORBLOC. The results
of ORBSLAM are only shown for completeness.

As shown in Fig. 7, DVO provides reasonable rotation
estimates for most sequences, but tends to underestimate the
travelled distance. Several sequences contain reflections that
cover significant parts of the image. As described in [9], this
high outlier ratio can cause a drift.

RTAB was configured to perform 3DoF SLAM and use
non-holonomic constraints, i.e. not allowing strife motions.
Although the approach is lacking some features of ORB-
SLAM, like local bundle adjustment, the 3DoF SLAM
combined with model based constraints results in better
performance on the given data.

DoF3OR without non-holonomic constraints gives results
comparable to RTAB. The basic structure, performing image
alignment on the orthogonal projection of the sensor data
and performing block-wise outlier rejection, is similar to the
proposed method.

KMVO performs best across all tests, especially rotation
estimation accuracy could be improved compared to its
predecessor and it is over two times better than RTAB, which
also uses 3DoF and model based constraints.

Over all evaluated sequences the average processing time
of the proposed method was 15.2ms per frame on a single
thread of an Intel i5 4300U Mobile CPU with 1.9GHz.
This makes the proposed method suitable for real time
applications on a wide range of mobile robot hardware.
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TABLE I
MEAN TRANSLATION AND ROTATION ERROR OVER ALL SUB PATHS.

Method Trans (%) Rot (�/m)
KMVO 15.48 1.69

DoF3OR 21.44 2.80
DVO 36.00 4.10

EDVO 78.40 15.66
RTab 21.83 3.67

ORBSLAM 71.10 8.97
ORBLOC 49.80 7.20

DEMO 89.39 22.03
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VII. CONCLUSION

This work presented KMVO, a method for estimating
motion parameters of a differential drive vehicle directly
from ground plane images. The reduction from three to
two parameters in the optimization process significantly
improves the localization accuracy, especially with regard to
the rotational part. Furthermore, an outlier rejection scheme
was presented that can handle large outlier areas and is com-
putationally efficient. The complete system was evaluated on
nine real world data sets and compared to six other methods.
In the tested scenarios, it outperformed all six methods it was
compared to. It is also shown that the system is fast enough
to run in real time on a single thread of a mobile CPU. Future
work includes porting the system to monocular cameras and
the inclusion of a pose graph optimization to further improve
the accuracy.

Including the kinematic model into the visual odometry
system is not constrained to differential drive vehicles. It can
be similarly applied to other non-holonomic vehicles with
two degrees of freedom, e.g. Ackermann steered vehicles.
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Abstract—In this paper, we provide details of managing a
fleet of autonomous mobile robots (AMR) using Rapyuta Cloud
Robotics Platform. While the robots are themselves completely
autonomous in its motion and obstacle avoidance capability,
the target destination for each robot is provided by a global
planner which itself may receive goals from an Enterprise
Resource Planning (ERP) system. The global planner and the
ground vehicles (robots) constitute a multi agent system (MAS)
which communicate with each other over a wireless network.
The complexities involved, and the corresponding benefits of
implementing such a cloud based system is explained by com-
paring with two other implementations based on the standard
distributed computing and communication framework of Robot
Operating System (ROS). The working of the complete system
is demonstrated through a real world experiment with physical
robots in a laboratory setting. Through these implementations,
the limitations of the current cloud framework is identified and
critical suggestions are made for its improvement which, in turn,
forms the future direction for this work.

Index Terms—Fleet Management System, Multi-AMR control,
Rapyuta, Cloud Robotics Platform, Robot Operating System,
MAS

I. INTRODUCTION

The industries and warehouses of the future will employ
a fleet of autonomous robots working together to accomplish
a common goal set by enterprise system with least human
intervention. Such collaboration will be enabled by a cloud
robotics platform [1] [2] which will allow the robots to
communicate with other robots and humans over network,
including Internet. A cloud infrastructure allows off-loading
computationally expensive tasks onto a remote server thereby
reducing the on-board power and computing requirements.
This will reduce the cost of robots being deployed thereby
making it possible to launch viable business solutions based on
“Robotics-as-a-Service (RaaS)” framework. In this paper, we
demonstrate one such use-case where a cloud robotics platform
is used to manage a fleet of autonomous mobile robots (AMR)
for carrying goods within a factory or a warehouse premises.
The objective is to understand the underlying challenges of
implementing such a multi-agent system using cloud robotics
platform and suggest ways to address them.

A simplified version of a fleet management system for
autonomous mobile robots (AMRs) is shown in Figure 1.

The authors are with the TCS Research, Tata Consultancy Services, New
Delhi, India 201309.
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Fig. 1. Block diagram of a simplified fleet management system for au-
tonomous vehicles.

It consists of a global planner which receives the target
destination for each robot from an user or an operator or
an ERP system. The planner generates paths from its current
location to its destination using a path planning algorithm.
The individual mobile robots receive the next target location
from the global planner and uses its on-board SLAM algo-
rithm to reach it destination. The autonomy of each robot is
governed by the navigation module that implements SLAM
(Simultaneous localization and mapping) as well as obstacle
avoidance capabilities. The main focus of this paper is to
understand the underlying software framework necessary for
implementing such systems. To be specific, we provide details
of three implementation in this paper. First two make use of the
distributed control and communication framework of Robot
Operating System (ROS) and the last implementation uses
Rapyuta cloud robotics engine [1]. A comparative analysis of
these approaches are carried out through simulation as well as
real experiment which provides an insight into the underlying
challenges, which if addressed, may increase the usability
of the platform. Such an implementation based on ROS and
Rapyuta is a novel contribution which has not been reported
so far. These analyses help us in identifying critical flaws with
existing systems and we suggest methods to overcome them,
which forms the future direction for this work.

The rest of this paper is organized as follows. An overview
of related work is provided in the next section. The three
approaches of implementing fleet management system is de-
scribed in Section II. The comparative performance analysis
of these systems for simulation and actual experiments are



Fig. 2. The figure shows two robots connected to a third system which
is the master running ROSCORE. The master also runs the global planner.
Rectangular boxes show nodes, solid oval shows topics on the machine, and
dashed oval shows topics available for subscription from other machines.

provided in Section III followed by conclusion in Section IV.

II. THE METHODS

In this section, we provide details of our implementation of
a simplified fleet management system as shown in Figure 1.
It primarily consists of four modules: (1) a user, an operator
or an ERP system that provides goals or target destination
for each robot, (2) a global planner that computes the path
to be taken by each robot based on the current state of the
environment (3) Autonomous Mobile Robots (AMR) having
capability for autonomous navigation and obstacle avoidance;
and (4) an environment map which could be updated with the
information of new obstacles detected by the robots. The user
is also free to update the availability of routes for any robot
by creating obstacles in the environment map.

The above fleet management system is implemented using
three methods: (1) single-master system, (2) multi-master
system and (3) Cloud Robotics platform. The first two methods
make use of the distributed computing and communication
architecture of Robot Operating System (ROS) [3] while the
last methods uses Rapyuta cloud robotics framework [1]. The
details of each implementation and their respective pros and
cons are presented next in this section.

A. Single Master System

In a single master system, ROSCORE runs on one machine
which is called the master. Other nodes work in a distributed
fashion on different machines. The nodes can run anywhere
on the network except the driver nodes, which runs on
the system that is directly connected to the hardware. All
the nodes need to connect to the master. They connect via
ROS_MASTER_URI which can be set in .bashrc file of
the respective machines as shown below. All the machines in
the network have a bidirectional connection with each other.
Also, the host IP and the master IP will be same in case of
the master machine.

Some of the common tasks like localization, mapping etc.
runs on every robot resulting in nodes with same name under
ROSCORE. A single launch file cannot be used to launch the
nodes as it will create a conflict and the previous running
node will be overridden with the new instance of the same
name. This problem is resolved by introducing namespace and
tf_prefix tags in the launch file.

The single master system can be set up by the following
the steps: (1) Setup .bashrc in each robot as shown above.
(2) Append suitable namespace and tf_prefix to the nodes
corresponding to each robot. (3) Run roscore on the master.
(4) Launch each individual robot.

A single master system is handy for quick testing of algo-
rithms on a single robot because of its simple setup process. Its
simplicity, however, does not provide much advantage as the
number of robots increase in the environment. A schematic
diagram of a working instance of single master system is
shown in Figure 2. It shows one master running roscore
and two client robots connected to the master over LAN. As
one can see, all the topics from one robot is available for
subscription by the all other robots as well. These topics are
shown as dotted ellipse. The topics generated by the robot is
shown as solid ellipses. Making topics available to everyone
all the time may lead to some security concern as one would
like to have some control over who can access which topics. In
other words, this would require additional overhead to restrict
access to the topics of a given robot by the other. Secondly,
the bandwidth requirement for a single master system with
multiple robots is comparatively higher as all the topics are
available over the network for subscription. Moreover, having
a single master makes the whole system vulnerable because
if roscore dies, service based communication between the
nodes get stopped. Topic based communication can still work
because once a connection between nodes is established via
topics, roscore is no longer needed, but new topics cannot
be created without roscore running. Also, as the number of
robots increase, it becomes increasingly cumbersome to deal
with conflict among similar topics and namespace resolution.

B. Multi Master System

Many of the limitations of a single master system can
be overcome by having multiple masters running their own
independent roscore as shown in Figure 3. This makes
the system robust as the failure of one will not lead to the
failure of the complete system. Since the visibility of topics is
limited to the scope of each roscore environment, there are
no namespace conflict with topics in a multi-master system.
All the nodes and services are local to that robot. However, it
is possible to share a minimum number of topics with other
robots through remapping as and when required. Since only a
limited number of topics are shared, the bandwidth required
in a multi-master system is less compared to that in a single
master system for the same task.

To implement a multi-master System, a package called
multimaster_fkie is needed and can be easily in-
stalled as shown below. This allows two important processes,



Fig. 3. A schematic view of a multi master system. The figure shows multiple
roscores running on different machines. In this configuration, there is no
conflict among the topics with similar names as their visibility is limited to
the machine running its own roscore.

master_discovery and master_sync to run simulta-
neously. The function of master_discovery is to send
multicast messages to the network so that all roscore
environments become aware of each other. It also monitors
the changes in the network and intimates all ROS masters
about these changes. The other process called master_sync
enables us to select which topics can shared between different
roscore. Without master_sync node, no information can
be accessed by other roscores.

It is to be noted that the host and master IPs are same
on each machine. This is unlike the single-master case where
these two IPs could be different for a given machine. The
namespace conflict in multi-master system can be avoided
using a relay node. The use of relay node can be understood
in the context shown in Figure 3. The global planner needs
to access pose data from Robot 1 and 2 for carrying out path
planning. Each of these two robots publish pose data to a
topic called /amcl_pose under their respective roscores.
To avoid conflict, one has to relay the /amcl_pose of Robot
1 to the topic /Robot1/amcl_pose and that of Robot 2 to
/Robot2/amcl_pose respectively.

As shown in the above figure, the global planner can now
access these new topics called /Robot1/amcl_pose and
/Robot2/amcl_pose for obtaining their respective pose
data.

Even though multi-master system saves us from several
problems encountered in a single master system, it still does
not provide solution to some other problems such as scalabil-
ity, load balancing and lower computation power. As number
of robots increase, one needs to reconfigure system files
manually for each robot to enable multi-casting. It does not
make efficient use of the processing power available because,
by default, the processes are not distributed such that load on
each machine is balanced. Bandwidth usage in multi-master
system is still high compared to a cloud-based system due to
the difference in network protocols used by different machines.
In a multi-master system, each machine has a limited on-
board computational hardware which can not be augmented to

accommodate for higher demand in the run time. This limits
the usability of multi-machine system.

C. Cloud Robotics System

Many of the limitations of a multi-master system can be
solved by having a cloud infrastructure to which the robots
can offload computationally heavy tasks. In this paper, Rapyuta
cloud robotics engine [1] [4] is used for implementing the fleet
management system. As discussed earlier, it is a Platform as
a Service (PaaS) framework suitable for developing robotic
applications. It includes four main components: (1) a cloud
server which includes both software as well as hardware
infrastructure; (2) Physical or simulated Robots and their
working environment. (3) an user interface for interacting with
the system and (4) an operator or an ERP system to provide
goals for the system.

The inner working of this cloud-based implemented could
be better understood by studying the Figure 4 that provides
a process level overview of the system showing nodes, top-
ics and interconnection pathways among various modules
of the fleet management system. The figure shows a five
agent system implemented using four physical machines (three
robots and a server). Each robot runs processes for localiza-
tion and autonomous navigation through nodes /amcl and
/move_base respectively. The processes related to Rapyuta
cloud robotics engine runs on the server machine. It also runs
processes for global planner which generates paths for the
robots. In a general scenario, the global planner and all related
optimization algorithms can run on a separate physically
machine on the network. Hence, it is shown as a separate
block in the Figure 4 similar to the blocks corresponding to
robots.

As shown in this figure, the global planner publishes data
into two types of topics. The first topic is /goalNodesList
which provides paths generated by the planner in the form
of an array of grid block numbers. Each robot subscribes
to its corresponding goalNodeList to know the cell lo-
cations that it needs to traverse. The second topic, called
/cancelGoal, is a binary number which indicates whether
the current goal locations received from the global planner is
to be discarded by the robot or not. The binary value for the
topic /cancelGoal for a given robot is set if a cell on its
path is blocked either by an user or by an obstacle detected
by the robot sensors. The grid cells could also be blocked by
an ERP (Enterprise Resource Planning) system indicating non-
traversable regions in the environment. Whenever the value for
/cancelGoal is set, the robot discards previously received
goal locations and uses new values available at the correspond-
ing /goalNodesList topic. These topics are subscribed
by the respective move_client nodes on the cloud which,
in turn, publish necessary topics for use subscription by the
physical robots.

Before going further, a brief understanding of Rapyuta
organization will be useful for understanding the configuration
steps described later. Rapyuta has the following four main
components [1]. (1) Computing environments are the Linux



Fig. 4. The process nodes and topics required for implementing the fleet
management system using Rapyuta cloud robotics engine. The system shows
four agents (three robots and one global planner) interacting with each other
through a cloud server. In this implementation, only a single container is
used to execute all relevant processes. The arrow heads show the direction of
information flow through topics between different nodes.

containers [5] [6] used for running various ROS based robot
applications; (2) Communication protocols: are the standard
protocols used for internal and external communication be-
tween cloud, container and robot processes. (3) Core Task Set:
for managing all process and tasks. They are further divided
into three groups, namely, robot task set, environment task
set and container task set. (4) Command Data Structures: are
the necessary formats used for various system administration
activities.

The setup process for the cloud robotics based fleet man-
agement system involves two main step:

• Create configuration files providing details of interaction
between cloud and robots.

• Launch these files using system commands on server as
well as robot clients.

In the remaining part of this section, we provide the details of
configuration on server as well as the clients.

D. Global Planner

As discussed earlier, the global planner is responsible for
generating paths for robots between their current locations and
the target destinations provided by the operator. It receives the
location information from each of the robots, the destination
information for these robots from the operator and, uses the

(a) (b)

Fig. 5. Paths generated by Global Planner: (a) Paths for three robots obtained
without any obstacles. Circular dots show the location of the robot as it
traverses this path. (b) Shows new paths generated by the global planner
once the user blocks the cell number 26. Grid cells can also be blocked when
a robot detects an obstacle.

latest map to generate necessary paths for the robots. In its
simplified form, it implements a Dijkstra algorithm [7] on a
grid map to find shortest path between two cells as shown
in Figure 5. In this figure, the robots are represented by
filled circles. The start and end destinations of these robots
are represented by the symbol pair {Si, Ei}, i = 1, 2, . . . , N
where N = 3 in this case. The Figure 5a shows the case
when no obstacles are present in the map. As soon as the path
information is transmitted to the robots, they start following
their respective paths as shown by the trail of circular dots on
their paths. The Figure 5b shows the case when an obstacle
is created (or detected) in the cell number 26 at any time
during this motion. This results in generation of new paths
by the global planner. In a simulated environment, the robots
can react instantaneously to this change. However, the robots
may take some in a real world scenario due to factors like
communication delay and inertia of motion as shown in this
figure. The global planner may also include several other
factors such as, battery life of robots, additional on-board
sensor or actuator on robots (in case of a heterogeneous
scenario) and other environmental conditions to solve a multi-
objective optimization problem to generate these paths. Our
purpose in this paper has been to demonstrate the working of
a complete fleet management system which invariably requires
such a centralized planner for task allocation and towards this
end, we pick up the simplest path planner as an example.
Readers are free to explore other planners in the same context.

III. EXPERIMENTS

The details of simulation and real world experiment is
discussed in this section. The simulation is carried out by
spawning mobile robot models into a Gazebo environment.
The Gazebo environment runs on one machine while the
individual robot processes are made to run on other machines
connected to each other over a wireless LAN. In the real
world experiment, the robot models are replaced with actual
Turtlebots in a lab environment as shown in Figure 6. The
map of the environment is created by using Gmapping SLAM
algorithm available with ROS. The map generated is shown in



Figure 6b. Each of the robots run AMCL-based localization
algorithm to locate themselves in the map. Compared to
existing methods that use markers embedded in the envi-
ronment to guide themselves, we are considering a fleet of
fully autonomous systems. It also runs an obstacle avoidance
algorithm that uses on-board Kinect depth range information
to locate obstacles on the path and avoid them. The map is
divided into equispaced 8⇥ 8 grid to match with the grid up
used by the global planner shown in Figure 5. For this lab
experiment, we have selected the server and client machines
with similar configurations with an Intel i7 processor with 8
GB on-board RAM. The complete video of the experiment
[8] as well as the source codes [9] are made available online
for the convenience of users. A more detailed version of this
paper is published on Arxiv [10] for the benefit of readers.

(a) (b)

Fig. 6. (a) The actual experimental setup for fleet management system using
AMRs. (b) Simulation environment showing the map generated using on-
board SLAM algorithm.

A. Performance Analysis

In order to assess the relative performance of each of these
three modes of implementation, the following experiment is
performed. The experiment uses two physical machines in
the network connected to each other through Wireless LAN.
One of these machines publish images onto a topic which is
subscribed by the other machine. The other machine simply
echoes this data on a console. The second machine subscribing
to the image publishing topic is considered as the server as it
either runs a roscore process in the single master mode or a
Rapyuta engine in the cloud robotics mode of operation. The
relative performance of the machines is analyzed and com-
pared in terms of CPU usage and network bandwidth usage
as shown in Figure 7. The network usage is almost same in all
the three cases as all of them use the same publishing rate and
there are no other processes / nodes that generate additional
network traffic. However, there is a difference in the CPU
usage in these implementations. It is highest in Cloud Robotics
mode of operation both on client as well as server side. This
could be attributed to the additional computational overhead
needed for running cloud processes. The multi-master system
has the second highest CPU usage owing to the additional
computation needed for running master_discovery pro-
cesses and master_sync processes. Since none of these
additional processes are there in the single master mode, the
CPU usage is least in this case. These observations are in
sync with our understanding of the systems as explained in
the previous sections.
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Fig. 7. (a) CPU usage and (b) network bandwidth usage for client and server
in each of the three modes of operation.

B. Limitations and Future Work

The single-master and the multi-master ROS systems im-
plement network robotics model based on Robot-to-Robot
(R2R) communication framework. The problem of a single
point of failure present in single-master mode is removed in
the multi-master mode with a slight increase in the CPU and
network usage. Both of these modes of operation suffer from
limitation of resource and communication constraint as the on-
board hardware capabilities can not be easily upgraded once
deployed. They also suffer from scalability constraint as the
performance deteriorates with increasing number of robots
in the fleet. Many of these limitations are overcome in the
cloud based PaaS systems such as Rapyuta, which implements
Robot-to-Cloud (R2C) model. It still has several limitations as
discussed below:

• In its current form, it does not offer high availability [11]
for Rapyuta Master taskset and its failure leads to collapse
of the whole system. This needs remediation by infras-
tructural mechanisms in combination with checkpoint-
restart utilities [12].

• Of the five key characteristics of Cloud Services, the cur-
rent implementation of Rapyuta PaaS lacks one, namely,
the elasticity. It uses a cannibalized approach for all
containers on a host to access compute, storage and
network resources on the host machine and does not offer
ability to allocate and resize these containers in the run-
time to meet the varying workload demands. The utilities
for monitoring the resource consumption are rudimentary
and do not offer advice for migration of containers from
one host to another or resizing.

• In the current implementation of the cloud platform,



there are no provisions for managing communication
bandwidth to cater to different traffic situations. In prac-
tical scenarios for fleet management, having a logical
segregation of communication bandwidth between control
and data signals will improve the responsiveness of the
R2C system. This is a concern when a remote tele-
operation is required for an impaired mobile robot in
a data centric network environment. Ability to leverage
Multi-Path TCP [13] can also improve the transfer rates
with R2C communication as it can make use of multiple
interfaces to compensate for congestion in one of the
channels.

• In a large warehouse of several thousand square feet area,
it is possible that all mobile robots may not always have
access to Cloud through the Cloud Access point. But
with alternate communication modalities like Bluetooth,
Zigbee or Wifi Direct - they may have connectivity to
nearby robots which, in turn, may have access to the
Cloud infrastructure. In such a scenario, a proxy-based
[14] compute topology will be useful where one robot
functions as a group leader to bridge the interaction
between the set of nearby out-of-coverage robots and
the cloud. The current Rapyuta implementation does
not provide this topology and would require extensive
changes to enable this. However, the other topologies
such as clone-based or peer-based models are easier to
implement with the current implementation and may be
used along with ROS single-master or multi-master mode
to simulate proxy-based systems.

• In the current implementation of Rapyuta framework - the
partitioning of data and compute across three options -
onboard compute on robot itself or robotic R2R network
and/or Cloud execution has to be decided upfront and
is usually static. Depending on the task with deadline,
whether it is a SLAM, Navigation or Grasping task in
warehouse, it would be useful to have a framework that
can allocate these tasks to suitable compute resources
(on edge / fog / cloud) in the run-time. Use of energy-
efficient optimization algorithms [15] for task allocation
and subsequent path planning and coordination have to
be added on the top of Rapyuta platform for warehouse
fleet management.

The directions for future work, therefore, include remedia-
tion of these limitations by developing additional layers and
modules to support these functionalities.

IV. CONCLUSION

This paper presents the details of implementation of a
fleet management system for a group of autonomous mobile
robots (AMR) using three configurations: single-master, multi-
master and cloud robotics platform. The mobile robots are
completely autonomous as far as their navigation capabilities
are concerned. These robots are required to traverse paths
provided by a global planner. The global planner implements
a basic path planning algorithm to generate paths between the
current robot locations and the desired goal locations set by

the operator, taking into account the obstacles which could be
created dynamically in run time. The whole system can be
controlled or monitored through a web-based user interface.
The details of implementation for both simulation as well
as actual experiment is provided which will be useful for
students and practicing engineers alike. These details provide
an insight into the working of each of the these modes of
operation allowing us to identify the strengths and weaknesses
of each one of them. These insights are further corroborated by
analyzing parameters such as, network usage and CPU load.
We also identify critical limitations of current cloud robotics
platform and provide suggestions for improving them which
forms the future direction for our work.
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Local Contextual Trajectory Estimation with Demonstration for

Assisting Mobile Robot Teleoperation

Ming Gao and J. Marius Zöllner

Abstract— We focus on assisting mobile robot teleoperation

in a task-appropriate way, where we model the user intention as

an action primitive to perform a contextual task, e.g. doorway

crossing and object inspection, and provide motion assistance

according to the task recognition. This paper contributes to

formulating motion assistance in a data-driven manner. With

the motion clusters obtained in our previous report [1], we apply

a fast online Gaussian Mixture Regression (GMR) approach to

the most probable motion cluster classified during operation,

to estimate the local trajectory the human user intends to

follow in the short term for the corresponding task execution

with the recognized contextual information. To regulate the

estimation accuracy, we compute the Mahalanobis distance

of each estimated trajectory way point. By thresholding the

distance, we can achieve the trajectory estimation within a pre-

defined tolerance bound regarding the regression outliers. The

experimental results from both the qualitative and quantitative

tests using the real data confirmed the effectiveness and real-

time performance of the proposed approach.

I. INTRODUCTION
The goal of our research work is to devise a shared

autonomy system to assist mobile robot teleoperation, such
as remote infrastructure inspection. In our previous work [1],
we argued that the robot is supposed to assist the human
operator in a task-appropriate way, and we proposed to
learn the motion patterns of the human operator performing
various contextual tasks, e.g. doorway crossing and object
inspection, from demonstrations in an unsupervised manner
into motion clusters. During operation, the learned mixture
of motion experts are classified to recognize the motion
behavior of the human user with the contextual information,
i.e. the user inputs and the semantic components of the
environment (e.g. candidate doorways to cross and objects
for inspection).

To step further towards a contextual-task aware shared
autonomy system, this report focuses on formulating motion
assistance based on the motion pattern recognitions achieved
with our previous study. As the major contribution of the
paper, we apply a fast online GMR approach to the most
probable motion cluster classified during operation, to esti-
mate the local trajectory the human user intends to follow
in the short term for the corresponding task execution with
the associated contextual information (i.e. user inputs and the
recognized target doorway or object). In this way, the motion
assistance is formulated in a data-driven manner instead of
being devised manually. To regulate the estimation accuracy,
we compute the Mahalanobis distance of each estimated

Ming Gao (email: gao@fzi.de) and J. Marius Zöllner (email: Zoell-
ner@fzi.de) are with the group of Technical Cognitive System (TKS), FZI
Research Center for Information Technology, 76131 Karlsruhe, Germany.

Fig. 1: In an example scenario, the robot is being operated
to cross a doorway in front (middle), where the target
doorway is recognized with high confidence indicated by
the bar height. The proposed approach does regression on
the classified motion cluster (the red bar) with the user input
and the recognized semantic target to estimate the local
trajectory (in blue) the human operator intends to follow in
the next steps for the corresponding task execution (right).
The estimated trajectory is to be employed by the state-of-
art mobile robot motion controller to generate safe motion
command, which is blended with the user input according
to the classification confidence to achieve an adaptive task-
aware motion assistance.

trajectory way point, since each motion cluster is normally
distributed. By thresholding the distance, we can achieve
the trajectory estimation within a predefined tolerance bound
regarding the regression outliers. The estimated trajectory for
the corresponding contextual task execution is local, because
we model the user intention as an action primitive to perform
a contextual task, aiming to provide immediate efficient
motion assistance to the human operator locally. Moreover,
contextual action primitives are more flexible and meaningful
in describing the human behaviors than reactive actions on
the lower level, which mostly pertains to either obstacle
avoidance or collision stopping. Finally, the estimated local
trajectory is to be provided to the state-of-art mobile robot
motion controller as the reference trajectory to generate
safe motion commands, which are blended with the user
inputs according to the classification confidence, to achieve
proactive motion assistance in a task-appropriate way. Fig.1
briefly illustrates our concept.

A very short version of this work was previously published
in [2] as a two-page abstract. This paper significantly extends
it by presenting the proposed approach and the related
literature more thoroughly, and conducting more comprehen-
sive evaluations including both qualitative and quantitative



experiments to investigate the performance of the proposed
approach.

The remainder of this study is organized as follows. Sec. II
introduces the related work. Sec. III details the methodology
of the proposed approach. The experimental results and
discussions are presented in Sec. IV. Finally, a conclusion
and outlook section closes the report.

II. RELATED WORK
To assist mobile robot teleoperation, it is a major research

topic to employ force/haptic devices to interact with the
human operator [3], yet delicate control models have to be
devised to efficiently merge user and robot motion inputs
during operation. Another important research direction is on
designing novel user interfaces to improve the situational
awareness of the human operator [4]. In contrast, we propose
to recognize the on-going tasks the human operator performs
with the mobile robot using a mechanical joystick in a data-
driven manner, and provide motion assistance to the user in
a task-appropriate way.

Regarding providing task-aware motion assistance, work
done in [5] reports a shared control system to assist the
inspection of vertical infrastructure with a quadrotor. Due
to the on-board sensing and partial autonomy of the robot,
an unskilled user is able to safely operate it in close prox-
imity to target structures. Work done in [6] introduces a
shared autonomy system to actively assist the control of
the flippers of a tracked vehicle based on the continuous
three-dimensional terrain scanning. Both works consider only
single task type for assistance, i.e. inspection of vertical
infrastructure or rough terrain traversal. In contrast, our
approach is able to recognize multiple contextual task types
through learning the human motion patterns for various task
executions from demonstrations. Work done in [7] presents
a task inference and motion planning system to assist the
teleoperation of a 6D robot manipulator using a 2D mouse.
It proposes to employ data-driven approaches to learn and
infer human motion patterns for task execution, which shares
similarity with our approach. However, such work focuses
on recognizing freeform tasks compared with our problem
of estimating contextual tasks, which rely on the semantic
components extracted from the environment.

Learning from demonstration is widely applied to formu-
late assistance for mobile robot operation (in both remote
and local1 situations) [8] [9], due to its intuitiveness and the
availability of the user demonstration data. Work done in
[10] proposes a shared control system to assist wheelchair
driving by inferring the global trajectory the users intend
to track from learning their operations. It assumes a set of
candidate trajectories leading to certain semantic targets in
the environment beforehand, and the inference afterwards is
fixed to these candidates. In contrast, our approach focuses
on estimating the local trajectory the human operator intends
to follow in short terms from the demonstration data with
the contextual information, without making any assumptions
regarding the property of the trajectory a priori.

1Such as works proposed to assist wheelchair driving.

III. METHODOLOGY

This section begins with the introduction of the notations
used in the following sections, which are closely related to
our previous work. Then the proposed approach for local
contextual trajectory estimation will be presented in detail.

A. Notation

p = (x, y, ✓) denotes the localized pose of the robot in
the involved scenario, which also describes the state of the
robot, since we focus on the ground mobile robot operated
in indoor scenarios.

To utilize data-driven approach to learn human motion
patterns for various task executions, we introduce task feature
(denoted as q) to describe a contextual task. q is computed
with environmental information and user input u. We use
a mechanical joystick to issue u to control a ground holo-
nomic mobile robot. Hence u is in the form of translational
velocities along x and y axes, and rotational velocity around
z axis in the local coordinate frame of the robot: u =
(v

x

, v

y

,!). The environmental information is encoded with
the intentional target point s, which is extracted from the
semantic components of the environment, and computed in
the coordinate frame fixed on the robot center.

During demonstration, we obtain a set of task features Q =
{q

n

} computed from the groundtruth semantic components
of the scenario as the training data. The motion patterns are
then learned into a set of motion clusters {Q

c

|c = 1, ...,M},
where Q

c

= {q

c

n

|n = 1, ..., N
c

} represents that the c-th
motion cluster consists of N

c

training task features, and M

is the number of the clusters.
During operation, we classify each query task feature2 to

the learned motion clusters. By taking the maximal predictive
probability across all clusters and query task features, we
obtain both the classification result (i.e. the assigned most
probable motion cluster cmax) and the associated semantic
component. We use p

cmax to denote the classification confi-
dence3.

The next part will detail the proposed data-driven algo-
rithm for local contextual trajectory estimation to formulate
the motion assistance.

B. Local Contextual Trajectory Estimation with Fast Online
GMR

The fast online GMR approach was initially presented
in our previous work [11], but it was aimed for contextual
task recognition in a supervised learning framework instead
of trajectory estimation by regression. In this report, we
apply the approach to estimate the local trajectory the
human operator intends to follow in the short term for
corresponding task execution by regression with associated
contextual information. Moreover, we extend the approach
by considering the regulation of the estimation accuracy to
suit our application.

2Each query task feature is computed with each candidate semantic
component of the environment.

3Bold characters denote a vector, while un-bold ones represent a scalar.



For the purpose of presentational completeness, the fast
online GMR approach is briefly summarized as follows.
Given the learned training dataset D and the query value of
the regressors x

t

at time t, the state-of-art Fast Approximate
Nearest Neighbor (FANN) algorithm is firstly applied to D

with r

t

to obtain a small and local database D(r
t

) consisting
of the k points closest to r

t

. D(r
t

) is then employed by
the Expectation-Maximization (EM) algorithm to train a
Gaussian Mixture Model (GMM) with a very few number
of the mixture components (denoted as h, which is usually 2
or 3). Finally, an online GMR model is derived accordingly
from the trained GMM to predict the value of the dependent
variables y

t

. The approach is listed in Alg. 1.

Algorithm 1 Fast Online GMR Algorithm
1: Given learned trained dataset D

2: Given query value of the regressors x

t

at time t

3: D(r
t

) by applying FANN algorithm to D with x

t

4: GMM
rt  by applying EM algorithm to D(r

t

)
5: GMR

rt  GMM
rt

6: y

t

 GMR
rt(rt)

With the fast online GMR approach, the proposed local
trajectory estimation algorithm is listed in Alg. 2. In each
iteration of the estimation, we firstly compute the query
intentional target point s⇤ with the associated semantic
component and the robot pose. Then we apply the fast online
GMR approach to Q

cmax
with s⇤, to obtain the predictive

motion command for the robot (i.e. the user input u⇤). The
next way point the human operator intends to drive the robot
to reach is computed by applying the robot kinematic model
(RKM) with u⇤, the simulation time �

t

and the current pose
of the robot.

Although such estimation procedure can be iterated for-
ever, to achieve certain prediction accuracy, we ought to
terminate it reasonably. At each iteration, the corresponding
task feature qestimated is computed with the query intentional
target point s⇤ and the estimated user input u⇤. Since each
motion cluster is assumed to be normally distributed, its
mean vector and covariance matrix can be easily computed
beforehand. Thus we can obtain the Mahalanobis distance for
qestimated with respect to the assigned motion cluster Q

cmax
at

each iteration. We use q̄

cmax
and ⌃

cmax to denote the mean
vector and the covariance matrix of the assigned motion
cluster Q

cmax
respectively, the Mahalanobis distance dmh for

qestimated is computed according to its definition as:

dmh =
q
(qestimated � q̄

cmax
)T ·⌃�1

cmax
· (qestimated � q̄

cmax
).
(1)

Mahalanobis distance [12] is a measure of the distance
between a query point and a distribution. It is unitless and
scale-invariant, and takes into account the correlations of
the data set. It is a usual measurement to detect outliers in
regressions. Hence by thresholding dmh, we can terminate the
trajectory prediction iteration within a predefined tolerance
bound regarding the regression outliers. The choice of the

fast online GMR approach for regression is advantageous
because of its outstanding performance over the batch GMR
algorithm (will be evaluated in the experimental section) and
simplicity for hyper-parameters (k and h) tuning.

Algorithm 2 Local Trajectory Estimation with Associated
Contextual Information

1: Given the classified motion cluster with the highest
confidence Q

cmax

2: Given the semantic component associated with the most
probable query task feature

3: Given the current robot pose p

r

4: Given the RKM(v
t

,�
t

, p

t

)
5: initialize pest  p

r

6: initialize Traj Pred {}
7: initialize dmh  0
8: while dmh < dmh thres do

9: s⇤  with the associated semantic component and pest
10: u⇤ = (v⇤

x

, v

⇤
y

, v

⇤
!

) by applying the fast online GMR
approach (Alg. 1) to Q

cmax
with s⇤

11: qestimated  s⇤ and u⇤
12: dmh  Eq. 1 with qestimated
13: p

t

 pest
14: pest  RKM(u⇤,�t

, p

t

)
15: Traj Pred Traj Pred [ {pest}
16: end while

17: return Traj Pred

We aim to provide the estimated trajectory to the state-of-
art mobile robot motion controller (e.g. work done in [13])
as the reference trajectory, to obtain safe motion commands
(denoted as g

t

) towards task execution. g

t

is blended with
u

t

according to the classification confidence p

cmax to achieve
proactive motion assistance:

v

t

= (1� p

cmax)ut

+ p

cmax g

t

. (2)

Consequently, the level of autonomy is seamlessly
switched between manual control (when p

cmax is extremely
low) and autonomous control (when it is tremendously high)
in a task-appropriate way during operation, realizing an
adaptive contextual-task aware shared autonomy system for
assisting mobile robot teleoperation.

IV. EXPERIMENTAL RESULTS

A. Test Configuration and Datasets

In this section, the evaluation focus is the performance
of the proposed approach on estimating local trajectories
with demonstrations and associated contextual information.
Regarding the investigation of the effect of motion assistance
in mobile robot teleoperation, we set it as our future work.

We employed the same sensor-equipped holonomic mobile
robot as in [1] to evaluate our approach in indoor scenarios.
It uses a 2D laser scanner to perceive the environment. We
adopted a Logitech F710 wireless gamepad to control the
robot. The data sampling rate was 20Hz, which was the



sampling rate of the joystick. The average speed of the robot
during the evaluations was approximately 0.3m/s.

For the convenience of providing demonstrations and data
analysis (e.g. to label the groundtruth semantic targets),
without the loss of generality of the proposed approach,
we built the maps of the involved scenarios using a state-
of-art SLAM implementation within ROS framework, and
processed them to extract the required semantic components
beforehand employing the works presented in [14], includ-
ing: the center points of the candidate doorways, and the
surface points of the candidate object and wall segments,
respectively.

We employed the motion clusters obtained in [1], and
trained the classifier to classify the motion clusters and
recognize the associated semantic components along the test
trajectories according to [1]. There were three sources to
obtain the test trajectories, and all the test trajectories were
recorded from test participants manually driving the robot
for certain predefined (yet unknown to the robot) contextual
tasks with random initial poses.

The first source was the nine trajectories collected from
the human operator sequentially performing three contextual
tasks for nine times: firstly following the wall segment, then
inspecting an object, finally crossing a doorway. Such source
contained the four contextual task types used for clustering,
i.e. Doorway Crossing, Object Inspection, Wall Following
and Object Bypass, and it was sampled from the evaluations
made in [11]. The second source was the six trajectories
collected from the human operator performing each of the
three contextual tasks: Wall Inspection, Robot Docking and
Gap Crossing, for two times, and it was sampled from the
evaluations made in [1]. These three task types were not
demonstrated for clustering, but they share motion similarity
with the learned ones. Hence the aim of this source was
to evaluate the generalizability of the proposed approach.
The last source was the five trajectories collected in the
same scenario as that used in the second source. They were
recorded from two volunteers manually driving the robot4
to execute a set of contextual tasks along the way in the
cluttered scenario, e.g. crossing a narrow gap, inspecting an
object or a wall segment, bypassing an object and docking
into a table, with the aim of comprehensively evaluating the
proposed algorithm.

Totally, there were twenty test trajectories, consisting of
15575 way points obtained from different human operators
controlling the robot to perform seven contextual task types5

in different scenarios. Especially, they contained the samples
collected from executing certain task types in alternative
ways, e.g. object inspection (in either clockwise or counter-
clockwise direction regarding the target object during inspec-
tion), wall following (to follow the wall segment on either
side of the robot), and object bypass (to pass the target object
by either side of the robot). Thus these twenty trajectories

4Two test trajectories were obtained from one volunteer, while the rest
three were collected from the other one.

5Doorway Crossing, Object Inspection, Wall Following, Object Bypass,
Robot Docking, Wall Inspection and Gap Crossing

are the appropriate test datasets to evaluate the scalability
and effectiveness of the proposed approach.

Regarding the parameters of the proposed approach,
throughout the following evaluations, the simulation time
for extrapolation was set �

t

= 0.05s (i.e. 20Hz) to be the
same as the sampling period of the dataset, and the threshold
of the Mahalanobis distance of each estimated way point
was set dmh thres = 3.0 empirically. The fast online GMR
approach used h = 2 Gaussian components for regression,
and employed diagonal covariance matrix for each Gaussian
component to simplify computation. Its training data size
was k = 10.

To comprehensively evaluate the proposed local contex-
tual trajectory estimation approach, the following tests are
grouped into two parts: the qualitative evaluations and the
quantitative ones.

B. Qualitative Evaluations
In the qualitative evaluations, we apply the proposed

approach to certain way points of several test trajectories, to
estimate local trajectories originating from them. We draw to-
gether the estimated and the groundtruth trajectory segments
starting from the same poses and possessing approximately
the same length6, aiming to provide the visual comparisons
between the estimations and the groundtruth results. In the
following comparison figures, apart from the two trajectory
segments with different colors, a bar is put on the most
probable semantic target recognized by the classifier at the
applied way point, with its height indicating the classification
confidence. The footprint of the robot is also denoted with
a pink polygon in these figures.

Firstly, we show the performance of the proposed ap-
proach on estimating the four motion patterns (including
their possible variations) used for training. Fig. 2 illustrates
the four groundtruth trajectories adopted for these qualitative
evaluations.

For Doorway Crossing, Fig. 3 depicts the comparison done
at one way point of the trajectory in Fig. 2(a). As can be
noticed, the estimated trajectory matches the groundtruth
one quite well, and the correct semantic target is also
recognized with high confidence, demonstrating qualitatively
the performance of the proposed approach in estimating this
motion pattern.

For Object Inspection, after approaching the target object,
there are two operational directions to inspect it, i.e. in either
clockwise or counter-clockwise direction regarding the target
object. Fig. 4(a) compares the groundtruth trajectory segment
(from the trajectory in Fig. 2(a)) with the one estimated at the
way point where the human operator was driving the robot
to approach the target object. Since the motion pattern of
approaching object has been learned from demonstrations,
the execution of it can be captured with high confidence and
accuracy. With respect to the inspection phase, Fig. 4(b) and
Fig. 4(c) draw the comparisons done at the two way points

6The length of a trajectory is obtained by accumulating the Euclidean
distances (computed with x and y coordinates) between its ordered pairs of
way points.



(a) (b) (c) (d)

Fig. 2: The groundtruth trajectories for qualitatively evaluating the proposed approach on estimating the four motion patterns
used for training, where the robot was manually operated to execute various contextual tasks in cluttered scenarios. The black
arrows denote the manually labeled split points of the sequentially performed tasks (when applicable), while the green ones
indicate the movement directions of the robot. (a) A sequence of tasks were executed: the robot followed wall segment on
its right side at first, then inspected target object in counter-clockwise direction, finally crossed target doorway. (b) Similarly,
the robot followed wall segment on its right side at first, then inspected target object in clockwise direction, finally crossed
target doorway. (c) The robot moved among obstacles at first, then inspected wall segment in one direction, finally docked
into a table. (d) The robot moved among obstacles to reach the other side.

Fig. 3: The estimated trajectory (blue) is compared with
the groundtruth segment (red), where the robot was being
operated to cross doorway. The pink polygon represents the
footprint of the robot. A bar is put on the most probable
semantic target estimated by the classifier at this way point,
with its height indicating the estimation confidence.

(a) (b) (c)

Fig. 4: The estimated trajectories are compared with the
groundtruth segments, where the human operator was driving
the robot to execute object inspection task. The color coding
is the same as Fig. 3.

(from the trajectories in Fig. 2(a) and Fig. 2(b)) where the
robot was moving along the target object while facing it
in counter-clockwise and clockwise directions respectively.
In both situations, the human motion patterns are correctly
interpreted and estimated with high confidence, despite the
jitters of the recorded groundtruth way points resulting from
the strong motion drifts of the robot when moving sideways
on the uneven floors of the scenarios.

Regarding Wall Following, the robot can follow the target
wall segment on either right or left side of it. Fig. 5(b)

(a) (b) (c)

Fig. 5: The estimated trajectories are compared with the
groundtruth segments, where the human operator was driving
the robot to perform wall following task. The color coding
is the same as Fig. 3.

and Fig. 5(c) depict the comparisons done at the two way
points (from the trajectories in Fig. 2(a) and Fig. 2(b)) where
the robot was following the target wall segment on its right
and left sides respectively. As displayed in both figures, the
results of the semantic target recognition and the local tra-
jectory estimation qualitatively demonstrate that, the human
motion intentions are correctly interpreted and predicted with
high confidence in both situations. When executing Wall
Following, the human operator usually controls the robot to
approach the target wall segment while aligning the robot
with its surface, especially when the robot is noticed to be
not close enough to the wall. Such motion pattern is learned
in the motion clusters from the demonstrations. Hence its
execution can be correctly recognized during operation, and
the corresponding local trajectory is estimated with high
accuracy, as displayed in Fig. 5(a).

Regarding Object Bypass, the human operator can execute
it in alternative directions, i.e. to pass the target object by
either left or right side of the robot. Fig. 6(a) illustrates the
comparison (applied to the trajectory in Fig. 2(c)) where the
robot was avoiding the object on its right side, while Fig. 6(b)
depicts the comparison (applied to the trajectory in Fig. 2(d))
where the robot was bypassing the object on its left side.
As can be viewed, the task motions of the human operator
in both situations are correctly interpreted and predicted



with high accuracy. Interestingly, at some way points when
performing Object Bypass, the estimated trajectories are
noticed to aim to guide the robot further away from the
nearby obstacle then the groundtruth trajectory segments, as
shown in Fig. 6(c) and Fig. 6(d), respectively. We deduce
that, by learning from demonstrations, the proposed approach
interprets such situations more conservatively than the human
operator actually executing this movement from the perspec-
tive of robot safety. How such action deviation between
human and robot will influence the human-robot interaction
within a shared autonomy system in reality remains an
attractive point for further investigation.

The above qualitative evaluation results comprehensively
confirm the performance of the proposed approach on es-
timating the motion patterns (including their possible varia-
tions) used for training. The following qualitative evaluations
are focused on investigating the performance of the proposed
approach on estimating the motion patterns (including their
possible variations) not employed for training, yet sharing
motion similarity with the learned ones. Fig. 7 depicts the
four groundtruth trajectories used for the following qualita-
tive evaluations.

For Gap Crossing, Fig. 8(a) draws the comparison (applied
to the trajectory in Fig. 7(a)) where the robot was being
controlled to cross a gap between two obstacles. As can be
seen, at this way point, the classifier correctly recognizes the
semantic target with high confidence, and the estimated local
trajectory matches the groundtruth one quite well. Fig. 8(b)
illustrates another comparison applied to the same trajectory.
Although the recognized semantic target is incorrect, the
estimated trajectory still matches the groundtruth one quite
well. We further examine the motion cluster assigned to
the starting way point, and find that it consists of the
demonstrations from Wall Following and Object Bypass,
hence we deduce that the proposed approach interpreted the
motion pattern at this way point as to bypass the target object,
which is reasonable for this situation.

For Robot Docking, Fig. 9 depicts the comparison (applied
to the trajectory in Fig. 7(b)) where the robot was dock-
ing into a table in front. The semantic target is correctly
recognized with high confidence, and the local trajectory is
estimated with high accuracy. Moreover, after checking the
motion cluster assigned to the starting way point, we find
that it mainly consists of the demonstrations from Doorway
Crossing. Therefore, we posit that the proposed approach
interprets the motion pattern at this way point by generalizing
from the learned motion pattern of Doorway Crossing.

Regarding Wall Inspection, it can be executed in alternative
directions after the robot approaching the target wall seg-
ment. The comparisons depicted in Fig. 10(b) (applied to the
trajectory in Fig. 7(d)) and Fig. 10(c) (applied to the trajec-
tory7 in Fig. 7(c)) verify the very accurate estimation results
of the proposed approach in both situations. Meanwhile, the
human motion pattern of driving the robot to approach the

7Please notice the jitters of the recorded way points in this trajectory
due to the strong motion drifts of the robot when moving sideways on the
uneven floor of the scenario.

target wall segment is also estimated with high confidence
and accuracy, as displayed in Fig. 10(a).

The above qualitative evaluation results prove the per-
formance of the proposed approach in generalizing to the
task types (including their possible variations) not used for
training. In summary, the overall qualitative results in this
subsection verify the scalability and effectiveness of not
only the proposed local trajectory estimation approach, but
also the obtained motion clusters and classifier. The next
subsection will present the quantitative evaluation results
with the baseline approaches.

C. Quantitative Evaluations

To further quantitatively evaluate the performance of
the proposed approach, we employ the batch GMR and
the Locally Weighted Projection Regression (LWPR) algo-
rithm [15] as the baseline regression approaches. LWPR is
a popular machine learning algorithm seeking to provide
incremental, real-time inference and prediction for high-
dimensional input-output function approximation. Sharing
the similar aim, it is poised to compete with the fast online
GMR approach. We use the library proposed in [16] for its
implementation, and tune its (hyper-)parameters according to
the suggestions introduced in [17].

The batch GMR model uses full covariance matrix, and
it is trained by the EM method with up to ten components
on each learned motion cluster beforehand. For each motion
cluster, the optimal model is selected among the candidate
ones based on the Bayesian Information Criterion (BIC).
The LWPR model is also trained for each motion cluster
in advance, and during training, !gen = 0.2, an initial setting
of d⇤ = 2.0 and blending is enabled. The estimations made
by both algorithms are also thresholded with dmh thres = 3.0.

The three approaches are applied to estimate the local tra-
jectory at each way point of all test trajectories respectively.
To characterize the estimation error in a straightforward
manner8, at each way point for examination, we compute the
pairwise Euclidean distance between the estimated trajectory
and its corresponding groundtruth one having the same
number of way points9. Finally, the means and the standard
deviations of such error measurement are obtained for the
three approaches over all test trajectories respectively. They
are shown in Fig. 11. The results indicates that the fast online
GMR approach outperforms the baseline approaches in this
test.

In addition to the estimation accuracy, the estimation
speed of the proposed approach is also our concern, since it
performs the learning and estimation online during operation.
In the application of this study, the required process speed10

corresponds to ⇠ 30Hz. Because in real applications, the
estimation is made after the motion cluster classification

8For more information regarding trajectory similarity comparison, please
refer to [18].

9The distance between two way points is computed with p = (x, y, ✓)
10At least, it should be higher than the data sampling period which is

20Hz



(a) (b) (c) (d)

Fig. 6: The estimated trajectories are compared with the groundtruth segments, where the human operator was controlling
the robot to perform object bypass task. The color coding is the same as Fig. 3.

(a) (b) (c) (d)

Fig. 7: The groundtruth trajectories for qualitatively evaluating the proposed approach on estimating the three motion patterns
not demonstrated during training. The color coding is the same as Fig. 2. (a) The robot was crossing a gap between objects.
(b) The robot was docking into a table. (c) The robot approached wall segment at first, then inspected it in one direction.
(d) The robot inspected wall segment in another direction after approaching it.

(a) (b)

Fig. 8: The trajectories estimated at two way points are
compared with the groundtruth segments, where the robot
was being operated to cross a gap between obstacles. The
color coding is the same as Fig. 3.

and semantic target recognition, it is meaningful to eval-
uate the process speed of the whole pipeline (i.e. motion
cluster classification, semantic target recognition and local
trajectory estimation). Towards this aim, the three regression
approaches combined with the classifier are applied to each
way point of all test trajectories respectively.

At each way point for evaluation, the process time of
each combination consists of the time for motion cluster
classification and semantic target recognition by the classifier
and the time for trajectory estimation by the corresponding
regression approach11. Such process time of each combina-
tion is then recorded at each test way point respectively. In
the end, we obtain the means and the standard deviations
of the process time of the three combinations per way point

11The classifier, the batch GMR model and the LWPR model are trained
off-line on each motion cluster, thus the training time of them is not
considered in the process time.

Fig. 9: The estimated trajectory is compared with the
groundtruth segment, where the robot was being controlled
to dock into a table. The color coding is the same as Fig. 3.

over all test trajectories respectively, as shown in Fig. 12.
The results denote that the combination using the proposed
online GMR approach achieves the fastest process speed
(approximately 55Hz). Though it is not considerably faster
than the baseline approaches, no pre-training is needed to
employ the proposed online GMR approach. Such results
further verify that the winning combination satisfies the real-
time requirement of the considered application.

In summary, the above quantitative evaluation results
confirm the performance of the proposed approach in local
trajectory estimation, especially its real-time property in data
processing to efficiently learn and make predictions with high
accuracy.

V. CONCLUSIONS

This paper reported a novel approach to estimate the local
trajectory the human operator intends to follow in the short
term for certain contextual task execution, with the aim of
assisting mobile robot teleoperation by sharing autonomy in



(a) (b) (c)

Fig. 10: The estimated trajectories are compared with the
groundtruth segments, where the human operator was driving
the robot to execute wall inspection task. The color coding
is the same as Fig. 3.

Fig. 11: The means and the standard deviations of the tra-
jectory estimation errors for the three regression approaches.

a task-appropriate way. We proposed to apply a fast online
GMR approach to the most probable motion cluster classified
during operation, to estimate the trajectory way points by
regression with the recognized contextual information. In this
way, the motion assistance is formulated in a data-driven
manner instead of being devised manually. To calculate
and threshold the Mahalanobis distance computed with each
estimated way point, it is able to achieve the trajectory
estimation within a predefined tolerance bound regarding the
regression outliers. The experimental results from both the
qualitative and quantitative tests using the real data confirmed
the effectiveness and real-time performance of the proposed
approach.

The estimated trajectory is to be used by the state-of-art
mobile robot motion controller as the reference trajectory to
generate safe motion commands, which are blended with the
user inputs based on the motion classification confidence to
realize a contextual-task aware shared autonomy framework.
This is the ultimate goal of our research work. Therefore,
a comprehensive user study to investigate the overall per-

Fig. 12: The means and the standard deviations of the process
time of the three prediction combinations at each test way
point.

formance of such framework is our significant future work
afterwards.
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Task Learning and Recognition for Sharing Autonomy to Assist
Mobile Robot Teleoperation,” in Informatics in Control, Automation
and Robotics (INCO), 2016 13th International Conference on, 2016.

[2] M. Gao, R. Kohlhaas, and J. M. Zöllner, “Contextual learning and
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Controllers Design for Differential Drive Mobile Robots based on
Extended Kinematic Modeling

Julio C. Montesdeoca Contreras1, 2, D. Herrera 2, J.M. Toibero2, R. Carelli2

Abstract—This paper presents the simulation results of the
controllers design for differential-drive mobile robot (DDMR)
using a novel modeling method, which is based on the inclusion
of the sideway velocity into the kinematic modeling, in order to
obtain a holonomic-like model. Next, non-holonomic constraint is
introduced assuming that the sideway slipping is measurable. The
controller design considers a variable position for the point of
interest and takes into account also the robot constrained inputs.
The obtained inverse kinematics controller is differentiable, time
invariant and naturally incorporates the sideway slipping which
is considered measurable. Moreover, the proposed controller
can be used for both: trajectory tracking and path following
by setting appropriate desired values at the planning stage.
The Lyapunov theory is used to prove the stability of the
control system. Simulator includes a robot dynamics module that
supports physics engines. Obtained simulations results show a
high performance for both tasks.

I. INTRODUCTION

Nowadays, the non-holonomic wheeled mobile robots
(WMRs) have an important role in applications such as, res-
cue, agriculture, exploring, healthy care, indoor simultaneous
localization and mapping. A non-holonomic system means
that the controllable variables number are less than the states
of system number [1] [2]. Differential-drive mobile robots
(DDMRs) have two independient drivable wheels mounted
along a common axle. As it is well known, the classical model
of DDMR is based on the non-holonomic constraints of pure
rolling and non-slipping [3] [4].

In this context, the bibliographic review presents sev-
eral DDMR kinematic controllers using this classical non-
holonomic model. For instance, Lafferriere and Sussmann
[5] present a general solution for motion planning based
on the Lie algebra and considering a chained-form system.
Samson and Ait-Abderrahim [6] present the trajectory tracking
solution with controller restrictions when the reference model
is motionless. Kanayama et. al [7] propose using a reference
model to generate the desired control inputs actions for the
trajectory tracking problem; they provide a Lyapunov based
stability proof. On the other hand, Jiang and Nijmeijer [8]
and Chwa [9] present a stable time-variant backstepping based
controller considering a reference model. Moreover, Chwa
includes constrained control inputs into the controller design.
In all the aforementioned works, the point of interest is located
at the robot center of mass (CoM) in the middle point of the
wheels axle.
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Next, Diaz and Kelly [10] present the classical kinematic
model but considering the point of interest displacement
from the CoM into the robot’s body. The obtained controller
addresses the trajectory tracking problem including the associ-
ated stability analysis proving its asymptotic stability based on
linear system theory. This work, however, does not consider
constrained control inputs.

None of the aforementioned works present a generalized
time-invariant controller with a variant position of the point of
interest, that solve both, the following path and the trajectory
tracking problem; neither the constrained control inputs are
taking into account, using the same controller.

Therefore, this paper proposes a novel controller for the
non-holonomic DDMR using the extended kinematic model
(EKM). Hence, the objective of the EKM is to obtain a
holonomic-like model for the non-holonomic DDMR, which
will be useful to propose a differentiable, time-invariant and
easy to implement controller based on inverse-kinematics.
Since real WMRs have constrained control inputs, continuous
saturation functions are included in the auxiliary control law
to get the appropriate control inputs for the DDMR. Another
important characteristic of this proposal relays in the fact that
naturally includes the sideway slipping into the controller.
In this way, the obtained controllers can be used for both
trajectory tracking or path following by selecting appropriate
desired references at the planning stage. At present, many
DDMR applications require that the point of interest (ip) has
a desired position, not necessary at the robot CoM, taking
this into account, this work presents the EKM considering the
point of interest in an arbitrary position, due to a mathematical
indetermination appears when the desired position of the point
of interest is over the sideway axle, another EKM is proposed
to solve this special case. Finally, the asymptotic stability proof
is reported by considering Lyapunov theory.

This document is structured as follows: Section II presents
the extended kinematic modeling of differential-drive mobile
robot considering the point of interest ip in an arbitrary
position. Section III describes the design of an auxiliary
control law. Next, section IV describes the obtained closed-
loop system and the associated Lyapunov based stability proof.
Section V presents the methodology to propose the desired
values in order to have a trajectory tracking behavior or a
path following behavior. Section VI presents simulation results
using the virtual robot experimentation platform (v-rep) [11],
the section VII proposes future work and finally, discussions
and conclusions are stated in section VIII.



II. EXTENDED KINEMATIC MODELING

The extended model includes the sideway velocity into of
kinematic model, wherewith it be obtaining an holonomic-
like model for the DDMR. Please notice that the sideway
slipping velocity is bounded and measurable variable in order
to guarantee the non-holonomic constraint. Considering this,
the sideway slipping velocity is included into the EKM as a
virtual control input.

A. Point of interest at an arbitrary position
Figure 1 shows the structure of DDMR used to propose the

extended kinematic modeling, where (x

w

, y

w

) specifies the
fixed 2D cartesian world’s frame; d is the distance between
wheels, the point of interest is at (x, y) and can be represented
by a and ↵. Robot’s orientation with respect to x

w positive
axis is given by �. The generalized coordinates of DDMR are
given by q =

⇥
x y �

⇤
T .
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Fig. 1. DDMR with point of interest located at ip = (x, y)

Then, the EKM of a DDMR with point of interest at an
arbitrary position (a > 0, ↵ > 0) is given by
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In (1), u and v are the translational and sideway veloci-

ties respectively, whereas !

�

is the robot rotational velocity.
Considering (1), it can be expressed on its compact form as
q̇ = A (q)u, where q̇ are the robot generalized velocities.
Note that A (q) is invertible. Next, (1) can be inverted as
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A convenient way to express (2) is u = A (q)�1 q̇. Now,
based on inverse kinematics structure, the controller is defined
as u

c

= A (q)�1 ⌘, where u
c
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u
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pseudo control inputs vector and ⌘ =
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the auxiliary control law vector. Notice that virtual and real
control inputs may be written as
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where the real control inputs are: u

c

, the driving velocity
control input and !

�c , the angular velocity control input and
the virtual control input is v, the sideway slipping velocity.
Since v in (4) is a measurable variable, then it is possible to
solve for ⌘

�

, leading to
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Here, a mathematical indetermination appears when a = 0

(the point of interest is on the axis between wheels) or when
↵ = 90

o (the point of interest is over the sideway axis). The
following subsection addresses these two situations in order
to complete the kinematic model.

B. Point of interest on the sideway axis (↵ = 90

o)
If the desired position of the point of interest is over the

sideway velocity axis with a > 0, the EKM is given by
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with a compact representation given by q̇ = A (q)u, where
A (q) is also an invertible matrix. Therefore, by solving for
the control inputs
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where, (8) it is possible to express as u = A (q)�1 q̇;
then, the controller is proposed as u

c

= A (q)�1 ⌘, where
its expanded representation is given by

u
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where the sideway velocity v in (10) is a measurable
variable; hence, solving for � results
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Notice that for this new EKM, the controller does not
have any math indetermination. It is even possible to use this
controller when the point of interest is located at CoM (a = 0).
This case is reported in the bibliographic widely and it is
solved with complex techniques.



III. AUXILIARY CONTROL LAW

According to the previous notation, the desired generalized
coordinates q

d

=

⇥
x

d

y

d
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d

⇤
T and the desired gener-

alized velocities q̇
d
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ẋ

d

ẏ

d

˙

�

d
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T

are denoted, which
are differentiable, smooth and bounded. Next, the generalized
coordinates error are defined as q̃ = (q

d

� q), allowing to
properly define the control objective as

lim

t!1
q̃ = 0.

Figure 2 shows the system block diagram. The controller
mode is established at the process planning stage according to
desired values (see section V).
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Fig. 2. Closed-loop system block diagram representation

Selection of auxiliary control laws depends on the point of
interest position. Next, these cases are separately addressed.
Furthermore, adequate smooth saturation functions are aggre-
gated in order to deal with the physically constrained character
of each physical control input.

A. Point of interest at an arbitrary position
Here, ⌘

�

is obtained directly from (6), whereas ⌘
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and ⌘
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are designed according to
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d

+ l

x

tanh

�
k

x

l

�1
x

x̃

�
(13)

⌘

y

= ẏ
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where, l

x

> 0 and l

y

> 0 correspond to the saturation
constrains of kinematic control inputs, these values depend on
the WMR actuator saturation; and k

x

> 0, k
y

> 0 are design
parameters. Errors are defined as follows x̃ = x

d

� x and
ỹ = y

d

� y.

B. Point of interest on the sideway axis
When the point of interest is located on the sideway axis,

control laws (13) and (14) for ⌘

x

and ⌘

y

respectively remain
the same. However, in this case it is now necessary to design
⌘
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according to
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where l

�

> 0 is the angular velocity saturation value, k
�

> 0

is a design parameter. On the other hand, the angular error is
defined by ˜

� = �

d

��, where �

d

is obtained from (12). Notice
that, this auxiliary control law and the proposed controller
above have no mathematical singularities.

IV. STABILITY PROOF

It is first considered the closed-loop system, which varies
depending on the point of interest position. Next, once the
equilibrium are defined, the system stability is analyzed ac-
cording to Lyapunov theory.

A. Closed-Loop System
If it is considered a perfect velocity tracking: u = u

c

, the
compact representation of closed-loop systems results

q̇ = A (q)A (q)�1 ⌘ = ⌘. (16)

By following the procedure the closed-loop system is pro-
posed for both cases to the point of interest positions, as
follows.

1) Point of interest at an arbitrary position: In corre-
spondence with (16), and taking into account that ⌘

�

is not
computed by the controller, the closed-loop equations are cited
below:
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2) Interest Point on the sideway axis: in this case, (15) must
be considered in order to complete the closed-loop equations.
This way the third equation looks like
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Additionally, in order to simplify the notation the closed-
loop system is expressed as q̇ = q̇

d

+ L tanh

�
KL�1q̃

�
,

being L = diag (l

x

, l

y

, l

�

) the saturation constraints matrix
and K = diag (k

x

, k

y

, k

�

) the associated design parameters
matrix. By introducing ˙̃q = q̇

d

� q̇, the closed-loop equation
for the point of interest over the sideway axis is

˙̃q = �L tanh

�
KL�1q̃

�
. (20)

B. Stability Proofs
For stability proof, firstly the equilibrium are defined, then

the system stability of both cases aforementioned are analyzed
according to Lyapunov theory.

1) Point of interest at an arbitrary position: In this case
the equilibrium point is composed by the states x̃ and ỹ only:
1 =

⇥
x̃ ỹ

⇤
T

=
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T . The Lyapunov Function

Candidate (LFC) is proposed as follows:
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Then, considering its time-derivative of the LFC in (21)
along the system trajectories, this leads to:
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next, by replacing the closed-loop equations (17) and (18)
into (22), it results
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In other words, x̃ ! 0 and ỹ ! 0 when t ! 1, in
consequence, the asymptotic stability of the equilibrium point
is proved. Moreover, from (13) and (14) it can be concluded
also that ⌘

x

! ẋ

d

and ⌘

y

! ẏ

d

when t ! 1 respectively.
There is not information about ˙

�, but taking into consideration
these last results and replacing them on ˙
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�

it is obtained
the following equation
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d

sin�� v) .

It can be seen that ˙
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are all bounded. The other control action, the linear velocity
u
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, after the same considerations is given by

u

c

= ẋ
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which is also bounded.
2) Point of interest on the sideway axis: In this case, the

equilibrium point is given by the compact form by q̃ = 0

including the three states of the DDMR. Then the LFC is
proposed in (24)

V2 =
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⌘
. (24)

Next, the time-derivative of (24) along system trajectories is
given by (25)

˙

V2 = q̃T ˙̃q,

by replacing the closed loop equation (20) it is possible to
conclude about the equilibrium point asymptotic stability

˙

V2 = �q̃TL tanh

�
KL�1q̃

�
< 0.

In other words, q̃ (t) ! 0 when t ! 1; therefore, the
asymptotic stability of the equilibrium point is proved.

V. CONTROLLER MODES

This section describes how to define the desired parameters
in order to set the controller behavior i.e. trajectory tracking
or to path following.

A. Trajectory Tracking Mode

In order to obtain a trajectory tracking behavior, the desired
values are defined in cartesian coordinates at the planning
stage. The references are defined as differentiable, smooth and
bounded time-variant parametric functions
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Considering their time-derivatives, the desired cartesian veloc-
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(t) are obtained. In consequence the desired
angular velocity is given by
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B. Path Following Mode
The path following mode requires a geometric path. If this

path is s-parametrized in meters [m], the desired cartesian
position for each axis is a differentiable and smooth function
given by x

d

= x

d

(s) and by y

d

= y

d

(s). The angle over the
desired path is given by
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According to notation in section III, the desired angular
velocity is given by ˙

�

d

⇠ d

ds

�
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(s), the desired cartesian
velocities over the path now is given by ẋ
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VI. SIMULATION RESULTS

According to auxiliary control law detailed in section III-A
and section III-B, different parameters are considered in sim-
ulation results for each case.

A. Trajectory Tracking Mode
Figure 3 shows the DDMR simulation with the point of

interest located at CoM. The parameters are setting as follows:
l

x

= l

y

= l

�

= 0.8, k
x

= k

y

= 0.8, k
�

= 1.5, the initial
generalized position is given by q (0) =

⇥
2 0 0

⇤
T .

Fig. 3. Trajectory tracking of DDMR when ip located at CoM

Figure 4 shows the driving velocity and angular velocity
applied to DDMR based on Fig. 3 statements, in this case the
sideway slipping velocity is v = 0, according to nonholonomic
constraint and the cartesian position errors

The figure 5 shows the DDMR simulation considering
following parameters a = 0.4 and ↵ = 30

o, k
x

= k

y

= 0.7,
l

x

= l

y

= l

�

= 0.8, and k

�

= 1.5, the initial generalized
position is given by q (0) =

⇥
1.5 0 0

⇤
T .

Figure 6 shows the control inputs applied to DDMR con-
sidering Fig. 5 statements, the sideway slipping velocity is
v = 0 according to nonholonomic constraint and the cartesian
error in euclidean norm, in this case the point of interest is in
a = 0.4 and ↵ = 30

o.



Fig. 4. Trajectory tracking control inputs with ip located at CoM

Fig. 5. Trajectory tracking of DDMR with a = 0.4 and ↵ = 30o

Fig. 6. Trajectory tracking control inputs with a = 0.4 and ↵ = 30o

B. Path Following Mode

Figure 7 shows the simulation results when the controller is
used in path following mode. The point of interest is located
at CoM. According to the notation of section V-B the desired
velocity required over he path is v

d

= 0.3. The parameters
are setting as follows: k

x

= k

y

= 0.8 and k

�

= 6, l
x

= l

y
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l

�

= 0.8, the initial state of generalized coordinates are given
by q (0) =
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⇤
T .

Fig. 7. Path following simulation with the point of interest located at CoM.

Figure 8 shows the control inputs applied to DDMR based
on Fig. 7 statements, the cartesian error is expressed in
euclidean norm and sideway slipping velocity is v = 0.

Fig. 8. Results of path following with the point of interest located at CoM.

Figure 9 shows the simulation results with a desired velocity
over he path of v

d

= 0.25. The parameters are setting as
follows: k

x

= k

y

= 0.8 and k

�

= 6, l
x

= l

y

= l

�

= 0.8,
a = 0.4, ↵ = �30

o, the initial state of generalized coordinates
are given by q (0) =

⇥
�0.5 �0.5 0

⇤
T .



In this case the sideway slipping velocity is different to zero;
in this context, it is included with a value of v = 0.15 m/s

in a time interval.

Fig. 9. Path following simulation of DDMR with a = 0.25, ↵ = �30o and
including the sideway slipping velocity.

Figure 10 shows the control inputs according to Fig. 9
statements. Notice that the sideway slipping velocity changes
but the cartesian errors tend to zero, the cartesian errors are
expressed in euclidean norm, also notice that that both driving
velocity and angular velocity are according to sideway slipping
velocity inclusion.

Fig. 10. Results of path following mode including the sideway slipping
velocity.

VII. FUTURE WORK

It is now being studied the extended kinematic model
applied to car-like mobile robots, and experiments are being
conducted for both kind of mobile robots.

VIII. DISCUSSION AND CONCLUSIONS

Using the EKM to model the non-holonomic WMR a
differentiable, time-invariant controller is obtained for both
tasks path following and trajectory tracking, where the point
of interest position is defined by a and ↵.

Based on the Lyapunov stability proof, it is concluded that
when the point of interest is located at CoM the desired
generalized coordinates of WMR are guaranteed, but when
the point of interest is located at an arbitrary position only the
cartesian position (x, y) of ip is guaranteed.

Notice that, the sideway slipping velocity could be any
measurable and bounded value, including the zero value (if
this is not verified, v is set to zero value in the design) without
lose generality in the controller structure.
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A QR-code Localization System for Mobile Robots:

Application to Smart Wheelchairs
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Gianluca Ippoliti1, Andrea Monteriù1 and Federica Verdini1

Abstract— A Smart Wheelchair (SW) is an electric powered

wheelchair, equipped with sensors and computational capabili-

ties, with the general aim of both enhancing independence and

improving perceived quality of life of the impaired people using

it. SWs belong to the class of semi-autonomous mobile robots,

designed to carry the user from one location to another of

his/her choice. For such systems, the localization aspect is of

utmost concern, since GPS signal is not available indoors and

alternative sensor sets are required. This paper proposes a low-

cost artificial landmark-based localization system for mobile

robots operating indoor. It is based on Quick Response (QR)

codes, which contain the absolute position of the landmark:

a vision system recognizes the codes, estimates the relative

position of the robot (i.e., displacement and orientation) w.r.t.

the codes and, finally, calculates the absolute position of the

robot by exploiting the information contained in the codes. The

system has been experimentally validated for self-localization

of a smart wheelchair, and experimental results confirm that

navigation is possible when considering an high QR-code

density, while QR-code low density conditions permit to reset

the cumulative odometry error.

Index Terms— Smart wheelchair, Localization, Mobile

robots, Assistive robotics

I. INTRODUCTION

Traditional wheelchairs are among the most common
assistive devices, and represent one of the first solution to
the problem of mobility for impaired users [1]. Recently they
have been turned into Smart Wheelchairs (SWs) through the
integration of sensors and computational capabilities [2]. At
the moment the market offers SWs with several functional-
ities, i.e., autonomous behaviours, interaction with domestic
environment and parameters measurements [3], [4] and self
learning functionalities [5] for users affected by severe
disabilities reducing their interaction possibility.

Despite of the attractive additional features, the main task
of a SW is the autonomous navigation. Several solutions have
been proposed over the years, using different approaches
and exploiting several sensors, but autonomous navigation
still needs research efforts [6], [7]. The requirements can
dramatically change according to the structure of the en-
vironment, to the available computational power and, most
of all, according to the user needs, and often a trade-off is
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needed as the approaches have complementary strengths and
weaknesses [8], [9].

As a fundamental part of navigation, localization of SWs
plays a key role, especially since GPS is not available
indoors and alternative sensor sets are required. Commonly
used solutions based on proprioceptive sensors which can
be employed indoors in conjunction with well known lo-
calization techniques, e.g., Least Mean Square or Dead
Reckoning, have been demonstrated to be poor in resolution,
accuracy and applicability, at least when no other sensors are
involved [10]. Due to this problem, in this work, the authors
focus their attention on the development of a vision system
for indoor localization of mobile robots based on artificial
landmarks. This kind of system can be classified in the
category of Visual Servoing (VS), namely indicating those
techniques which control mobile robots by using feedback
information extracted from a visual sensor [11]. Several
modern algorithms are based on VS platforms, which include
both elementary tasks and several visual features; different
features can be combined together to obtain tracking of visual
cues at video rate [12]. In this paper, the authors propose
a landmark-based approach which is computationally cheap
and reliable avoiding the need of additional measurements.

Although natural landmarks have been successfully ex-
plored in the literature [13], the authors have considered
artificial landmarks since they grant better image recognition
performances, which are necessary to obtain an accurate and
precise localization, as required by SW systems. About this,
in [14] simple colored artificial landmark patterns have been
used, whereas in [15] the color’s information are supported
also by depth analysis: these approaches require a powerful
visual sensor, even catadioptric. Among the artificial land-
marks, Quick Response (QR) codes are easy to detect indoors
and several efficient libraries already exist for their interpre-
tation [16], which require simple camera sensors. In addition,
the power of QR-codes consist in the possibility to embed
coded information. The problem of mobile robot localization
using QR-codes has been tackled only by few researchers in
the literature, and obtained results do not allow to evaluate
the real effort introduced by different approaches [17], [18],
[19], [20], [21] to the study of localization and navigation
problems.

In this paper, the authors exploit QR-codes as artificial
landmarks, and focus their attention on the localization
problem. The authors provide a detailed description of the
localization system, and present qualitative and quantitative
results on the localization error which should be expected



when using a QR-code based localization algorithm. The al-
gorithm has been tested with a commercial electric powered
wheelchair, equipped with a cheap webcam. The software
structure has been realized using the Robotic Operating
System (ROS) framework [23]. The good performance of
the developed localization system have been confirmed by
experimental tests, in which a stereophotogrammetric system
characterized by six high-resolution infrared-sensitive cam-
eras has been adopted as the pose estimation ground truth.
This last system is usually adopted to measure body segments
movements where the required accuracy is low (under 1 cm)
[24]. An additional test regarding the orientation estimation
of the vehicle has been performed: in this case the results
have been compared with those provided by a high perfor-
mance IMU.

Although the results have confirmed that the method is
accurate and precise, and can be used as the only path
planning support, it can be seen as the base for more
powerful Simultaneous Localization and Mapping (SLAM)
algorithms [25]. The validation here reported also confirms
the usefulness of QR-codes as a low cost solution for
providing exteroceptive auxiliary measurements in GPS-
denied environments, as already qualitatively stated in [26],
therefore resulting a viable solution for indoor navigation of
service robots.

The paper is organized as follows. Section II details the
localization strategy which is at the base of the proposed
system, whereas Section III describes the hardware structure
and the software system architecture. In Section IV the
experimental results are provided. Finally Section V provides
a brief critical analysis of the proposed system.

II. THE LOCALIZATION ALGORITHM

The main core of the proposed localization algorithm is
based on the ViSP middleware, a C++ library for the design
of visual tracking and visual servoing algorithms [26], [27].
The tool has been recently used in different application fields,
from structural properties monitoring to robot pose control
[28], [29]. The aim of vision-based control schemes is to
minimize the matching error, defined as

e(t) = s(m(t),a)� s⇤ (1)

where the vector m(t) is a set of image measurements
(e.g., the coordinates of interest points or the coordinates
of the object’s centroid). These measurements are used to
compute a vector of k visual features s(m(t),a) in which
a is a set of parameters that represent potential additional
knowledge about the system (e.g., coarse camera intrinsic
parameters or 3-D models of objects). The vector s⇤ contains
the desired values of the features. The degree of freedom
of the servoing scheme is the design of visual features.
The proposed approach is based on the ViSP KLT (Kanade
– Lucas -Tomasi) point tracker algorithm [30]. The KLT
algorithm is based on the gradient method, used to compare
a template with an acquired image, also in case of very
different images dimension. To estimate the displacement
of the tracked object w.r.t. the template image, the tracking

method monitors the position of significant points in different
sequential images. The tracking is realized by minimizing the
image dissimilarity, defined as

X

x

[I(W (x,p))� T (x)]
2 (2)

where
• x is the column vector containing the image coordinates

[x y]
T ;

• T (x) is the template (reference) image;
• W (x,p) is the set of available warps, which for trans-

lations becomes W (x,p) = [x+ p1 y + p2]
T ;

• p is the displacement;
• I(W (x,p)) is the input (acquired) image;

The objective is then to find p which minimizes the image
dissimilarity, which can be expressed as:

X

x

[I(W (x,p� T (x)]
2 (3)

With ViSP it is also possible to track an object by using its
model, which is useful in the case of artificial landmarks such
as QR-codes. The model-based variant of the KLT tracker
can be used alone, or in combination with the model-based
edges tracker. This hybrid approach, which is the one used
in the proposed system, is especially appropriate to track
textured objects with visible edges [31].

Once the QR-code has been detected and tracked, it is
possible to estimate the robot position. In detail, let us
consider the pose P of the QR-code with respect to the
reference frame of the camera

P =

⇥
P
x

P
y

P
z

⇤
T (4)

and the quaternion of its orientation

O =

⇥
O

x

O
y

O
z

O
w

⇤
T

=

⇥
a b c d

⇤
T (5)

then the rotation matrix to obtain the position of the camera
P 0 (and consequently of the vehicle) with respect to the
landmark such that

P 0
=

⇥
P 0
x

P 0
y

P 0
z

⇤
T

= M
⇥
P
x

P
y

P
z

⇤
T (6)

is

M =
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4
1� 2c2 � 2d2 2bc+ 2ad 2bd� 2ac
2bc� 2ad 1� 2b2 � 2d2 2cd+ 2ba
2bd+ 2ac 2cd� 2ba a� 2b2 � 2c2

3

5 . (7)

Finally, the global position of the vehicle ¯P
0 respect to

the global reference frame is calculated by considering the
encoded global position ¯P of the QR-code, i.e.,

¯P 0
x

=

¯P
x

+ P 0
x

(8)
¯P 0
x

=

¯P
y

+ P 0
y

(9)
¯P 0
z

= K (10)

where K is a fixed quantity. The flowchart of the algorithm
is reported in Figure 1.



QR-code

detection

Robot pose

estimation from

QR-code center

Absolute QR-

code position

reading

Transformation

to global

reference frame

Absolute

robot pose

Fig. 1. Flowchart of the localization algorithm: starting from the QR-code detection, the absolute position embedded within the code is read, corrected
by the robot pose estimation, and finally transformed into the global reference frame coordinates

III. HARDWARE AND SOFTWARE SYSTEM SETUP

The developed system is composed by a simple hardware
configuration, consisting in an USB Logitech HD Web-
cam C525, a Sunrise Quickie Salsa R2 electric powered
wheelchair, a set of QR codes and a laptop with Linux
Ubuntu 12.04 OS running ROS framework. The vision sensor
is cheap and characterized by a maximum resolution of
1280x720 pixels. The lower resolution of 640x480 pixels was
selected, in order to reduce the amount of data to transmit and
obtain a more efficient communication. The wheelchair is
characterized by two driving rear wheels and two free castor
wheels. The vision sensor is mounted behind the user seat, at
the middle of the rear wheelbase, to eliminate rotation axis.
With the described hardware setup, real-time elaboration is
achieved for video sampling frequencies up to 10 Hz

QR-codes are placed on the ceiling, with a standard
orientation respect a global fixed orientation frame (see
Figure 2). This characteristic makes it suitable to domestic
and civil environments and also non-domestic environments,
like hospitals, care facilities, etc. In this work, we assume that
the distance between the camera and the ceiling is fixed: this
reasonable assumption can improve the pose estimation. In
the developed system, each QR code contains the coordinates
of the landmark in the working environment, structured as a
string with the format:

#xx.xx#yy.yy#zz.zz#rr

where the variables #xx.xx, #yy.yy and #zz.zz indicate the
coordinates in the global reference frame, expressed in
meters. The variable #rr could be used to indicate the room
where the landmark is located, or a particular room area in
case of larger spaces.

The developed system is based on the ROS framework, so
the software structure is organized by the ROS architecture
philosophy, in nodes (algorithms) and topics (communica-
tion channels) [23]. The software structure is organized in
three modules, each one representing a data elaboration
process. The first module, called /usb cam, consists in
the camera driver. It acquires image data from the sensor
and sends them to the /ViSP auto tracker module.
The communication channels are the topics /usb cam/

camera info, containing information about the camera
data format, and /usb cam/image raw, containing the
data information from the camera. The second module,
called ViSP auto tracker, realizes the QR code data
conversion, producing a decoded data string indicating the
landmark position coordinates. The last module, the node
/evaluate, represents the localization algorithm providing
the robot pose estimation respect to the position of the QR

(a) Frontside view picture (b) Topside view picture

(c) backside view picture

Fig. 2. Smart wheelchair test setup

code inside the sensor’s cone of vision.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

A stereophotogrammetric system characterised by six
high-resolution infrared-sensitive cameras is adopted as
ground truth. The cameras are positioned and calibrated to
cover a measurement volume of 2.5 m (length) x 3.5 m
(depth) x 2 m (height). The movement of the vehicle is
measured by placing 12 markers reflectors in key points (see
Figure 3) of the vehicle, i.e., 2 on the back (markers 1�2), 2
on each arm (markers 3�6), 2 on the rear (markers 7�8), 1
on each longitudinal frontal bar (markers 9� 10) and finally
2 on the footrest (markers 11 � 12). The trajectory of the
markers is recorded by the acquisition system with respect to
the laboratory reference system, oriented as shown in Figure
3 (red: x axis, green: y axis, blue: z axis). Each QR-code is
42 ⇥ 42 cm and it is placed at an height of 3 m from the
floor (z axis) and 1.5 m far from the others.



(a) Test environment and QR-codes setup

(b) Smart wheelchair and positions of the
markers reflectors

Fig. 3. The test environment and the smartwheelchair with marker points

B. Experimental tests

The proposed localization system has been evaluated on
two standard trajectories: a circle path and an 8-shape path.
In Figure 4, the two trajectories are shown together with
the position of the QR-codes in the test environment. The
graphical results of the two test trajectories are collected
in Figures 5 and 6, respectively, showing the comparison
of the measurements provided by the stereophotogrammetric
system, which can be taken as the actual path covered by
the vehicle, and the estimation provided by the proposed
algorithm. In both cases, the SW has been guided by a user,
thus the actual trajectories are slightly different with respect
to the reference trajectories provided in Figure 4.

In Table I, the experimental results are numerically evalu-
ated in terms of mean error and standard deviation from the
reference vision system along the whole path: in this way the
proposed visual system can be easily compared with similar
systems in the literature, as long as they provide the error
measurements w.r.t a ground truth on a curvilinear trajectory.
In the proposed case, the visual localization system performs

Fig. 4. Test trajectories with QR-codes positions

TABLE I
EXPERIMENTAL RESULTS OF POSITION AND ORIENTATION ESTIMATION:

ERROR MEAN VALUE AND STANDARD DEVIATION

Test E(e) �e

Circular Path 0.2101 m 0.0095 m
8-Shape Path 0.14085 m 0.0089 m

Orientation Test 0.267 rad 0.0120 rad

well and the position of the vehicle is estimated within an
acceptable absolute error.

At the best of the authors knowledge, the only work in
the literature which clearly validates a localization system
based on QR-codes is [22]: in their work the authors employ
a smartphone-based mobile robot with Android, rather than
a ROS-based system for assistive scenarios; moreover they
provide results for a single trajectory made of four linear
segments, while we provide the results for two trajectories
based on curvilinear segments. The results are similar, and
also in line with the other works already mentioned in
Section I, namely [17], [18], [19], [20], [21], which however
do not provide enough details on how the errors were
computed and on which trajectories.

In indoor navigation for impaired people, a major impor-
tance is assumed also by the orientation at the target point,
as often it represents a place where the user has to perform
a task. For this reason, a test for the orientation accuracy has
also been performed. In a structured environment, like user’s
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Fig. 5. Circle path test results: in red the path measured by the camera
system, in blue the path estimated by the proposed system

home, the target points are well known and in the design
phase a good rule of thumb to follow is to place a QR-code in
proximity of these target points to maximize the accuracy. As
several particular situations could happen, the authors have
performed a test in proximity of a QR landmark but in a
not centered position to consider the worst case performance.
The benchmark consists in a series of estimations placing the
SW in different orientations. For these tests, a Microstrain
3DM-GX3-25 IIMU has been employed as ground truth. The
adopted sensor is an high precision IMU, characterized by a
gyroscope with a low drift ( < 12·10�3 deg/s). The algorithm
estimation has been compared to the IMU acquisitions and
the heading error has been evaluated in Table I in terms of
mean error and variance. As well as for the pose estimation,
the orientation test has proved the suitability of the proposed
approach and the results are comparable with those in the
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Fig. 6. 8-shape path test results

recent literature [22].
It is worth noticing that the proposed approach has been

employed as the only pose estimation source, without the
fusion of other systems, commonly used in literature. The
provided results can be achieved whenever the QR code
density is high (typically > 1 QR-code/m2): in this reduced
framework the results are encouraging and comparable with
those found in the literature. Worse results should be ex-
pected for lower densities, however when high density can
not be achieved, it is possible to employ the proposed method
for providing auxiliary measurements, crucial for resetting
the cumulative and unavoidable error generated by inertial
systems.

V. CONCLUSION

The lack of a mature technology for indoor navigation
has moved the interest into developing low-cost pose es-



timation systems, applicable in general for mobile robots.
In particular, a landmark-based visual localization system
for a smart wheelchair has been proposed in this work.
The approach relies on QR-codes landmarks, detected by
a webcam oriented to the ceiling. The cost of the system
is very low due to the nature of the landmarks, which are
cheap and permit the use of a low resolution camera to
be detected. In fact, the particular pattern avoid the false
detection of similar objects in indoor environments and,
additionally, the information about the absolute position in
the global reference frame can be encoded in the QR-
code. The entire algorithm has been implemented in ROS
environment, exploiting ViSP middleware. In order to eval-
uate the performance of the approach, an high resolution
stereophotogrammetric system and a high performance IMU
have been used as reference gold standards. The results
are good and encouraging, both in different path following
scenarios and in orientation estimation, and show that QR-
codes can be used as the only mean of localization in case
of high density. Whenever this is not possible, i.e. in case of
low QR-codes density, the proposed method can be used to
provide auxiliary measurements to limit the drift caused by
inertial systems.
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(2014) “SLAM- based Autonomous Wheelchair Navigation System
for AAL Scenarios”. In: Proceedings of the IEEE/ASME 10th In-
ternational Conference on Mechatronic and Embedded Systems and
Applications (MESA), Senigallia (Italy), Sep. 2014, pp. 1–6.

[26] G. Cimini, F. Ferracuti, A. Freddi, S. Iarlori and A. Monteriù
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Fast Autonomous Landing on a Moving Target at MBZIRC

Marius Beul, Sebastian Houben, Matthias Nieuwenhuisen, and Sven Behnke

Abstract— The ability to identify, follow, approach, and
intercept a non-stationary target is a desirable capability
of autonomous micro aerial vehicles (MAV) and puts high
demands on reliable target perception, fast trajectory planning,
and stable control. We present a fully autonomous MAV that
lands on a planar platform mounted on a ground vehicle,
relying only on onboard sensing and computing.

We evaluate our system in simulation as well as with
real robot experiments. Its resilience was demonstrated at
the Mohamed Bin Zayed International Robotics Challenge
(MBZIRC) where it worked under competition conditions. Our
team NimbRo ranked third in the MBZIRC Challenge 1 and –
in combination with two other tasks – won the MBZIRC Grand
Challenge.

I. INTRODUCTION

Fast autonomous landing of micro aerial vehicles (MAV)
on moving platforms is challenging. One of the three tasks
during the Mohamed Bin Zayed International Robotics Chal-
lenge (MBZIRC) 2017 consisted of landing a flying robot
on an artificial pattern on top of a golf cart, moving with
15 km h�1 on a figure eight course (cf. Fig. 1). The arena for
this task had a size of 90m ⇥ 60m. The entire competition
was executed under challenging outdoor conditions with
temperatures of up to 38 �C and strong gusts of wind.
Although the vehicle would slow down after a given amount
of time, a team had to land the robot in the first minutes,
autonomously, and without any damage in order to receive
a high score for its run. In fact, the teams ranked highest
were able to complete the task in less than 30 s after takeoff,
including the time needed to search for the moving target.

The MBZIRC task may seem like a toy example with no
immediate application, but landing on a moving platform is
an important step towards operating MAVs in more complex
dynamical environments in the future. Not only does the task
require precise state estimation but also low-latency, accurate
detection and prediction of the target and MAV movements.
In this paper, we present our integrated MAV system de-
signed for landing on a moving platform, including

• tailored hardware design,
• robust perception and fast tracking of a landing pattern,
• state estimation for the moving target, and
• fast, analytical trajectory generation for interception.

We evaluate our approach in both simulated and robot exper-
iments, and report results from the MBZIRC competition.

This work has been supported by a grant of the Mohamed Bin Zayed
International Robotics Challenge (MBZIRC), and grants BE 2556/7-2 and
BE 2556/8-2 of the German Research Foundation (DFG).

The authors are with the Autonomous Intelligent Systems
Group, Computer Science VI, University of Bonn, Germany
mbeul@ais.uni-bonn.de

Fig. 1. Final approach only seconds before a successful landing on a
moving vehicle at the MBZIRC Grand Challenge.

II. RELATED WORK

For reasons of brevity, in this overview, we cover lines of
research performing the landing without cooperation between
the robot and the ground vehicle. Lee et al. [1] demonstrated
the viability of the task by using visual servoing in order
to maneuver above the moving pattern, and relying on
a motion-capture system for external state estimation. A
similar system was demonstrated by Serra et al. [2] who also
use visual servoing but do not rely on a vision-based distance
estimation to the target. In comparison to our system, both
approaches are evaluated with a slow or even static target.
Borowczyk et al. [3] use a system of two cameras and
filter the detections together with an IMU and GPS receiver
mounted at the target. They report landing velocities of up
to 50 km h�1. Landing indoors on an inclined plane was
achieved by Vlantis et al. [4] who designed an adapted
model-predictive controller to optimize the local trajectory
in real time. However, due to the computational demand,
optimization was done on an external base station and, thus,
required a stable network connection.

Fast real-time trajectory planning and control is an ac-
tive area of research. Ezair et al. [5] compare polynomial
trajectory generation algorithms regarding the order, state
constraints, and constraints on initial and final conditions.
In their works [6] and [7], Mueller et al. present a trajectory
generator similar to our work. It is also capable of approach-
ing the full target state (position, velocity, and acceleration)
and is real-time capable. Analogue to our approach, they use
jerk (respectively the rotational velocity !) as system input,
but the convex optimization problem is solved numerically.
Generated trajectories are not time-optimal.

From other MBZIRC participants, we want to cite the
early work by the team of the Korea Advanced Institute
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Fig. 2. Design of our MAV equipped with two cameras, magnetic feet,
and a lightweight but fast onboard PC (shielding removed for better view).

of Science and Technology [8] where landing on a larger
platform at a velocity of 0.75m s�1 was demonstrated, but
the visual detection was still simplified by a marker reflecting
infrared light.

In contrast to prior works, the setup of the MBZIRC chal-
lenge required most of the processing (i.e., state estimation,
control, sensor processing, mission- and trajectory planning)
to take place onboard the system. With the exception of a
ground station for GPS where a reference positioning signal
is provided over WiFi if and when a connection is available,
no external resources are used in our system.

III. SYSTEM SETUP

Our MAV, shown in Fig. 2, is based on the DJI Matrice 100
platform. It is equipped with a small but fast Gigabyte GB-
BSi7T-6500 onboard PC with an Intel® Core™ i7-6500U
CPU running at 2.5/3.1GHz and 16GB of RAM. The
landing pattern is perceived by two Point Grey BFLY-U3-
23S6M-C greyscale cameras with 2.3 MP. The first camera—
equipped with a wide-angle lens with an apex angle of
195° ⇥ 195°—points downwards. To facilitate the detection
of a far-away pattern and to keep it in the field of view (FoV)
during descent on a glide path, the second camera—with an
apex angle of 69° ⇥ 85°— points 30° into forward direction.
Both cameras capture 40 frames per second, resulting in 80
frames per second in total.

We replaced the landing feet of the MAV with strong
magnets with a total rated force of 860N to keep it in
place on the moving target with ferromagnetic surface after
landing. A successful landing is detected by eight micro
switches attached to the landing feet. The switches are
individually connected to an Arduino Nano v3.0 that serves
as bridge to our onboard computer.

For allocentric localization and state estimation, we em-
ploy the filter onboard the DJI flight control that incorporates
GNSS (global navigation satellite system) and IMU data. To
avoid electromagnetic interference between components—
in particular USB 3.0 and GPS—the core of our MAV
is wrapped in electromagnetic shielding material. This in-
creases the system stability significantly. Fig. 3 gives an
overview of the information flow in our system. We use the
robot operating system (ROS) as middleware on the MAV
and the ground control station. We communicate over WiFi

2x Cameras 2x Pattern Detection Filter

State Machine

Trajectory Generation

Operator

Switches

MAV
GNSS

IMU

2x40Hz

Image

2x40Hz
3D Position

50Hz

3D Position
3D Velocity

50Hz
3D Position
3D Velocity
Yaw

50Hz

Roll
Pitch
Climbrate
Yawrate

100Hz

3D Position
3D Velocity
3D Acceleration
Yaw

Onboard Computer

DJI Matrice 100

Fig. 3. Structure of our method. Green boxes represent external inputs like
sensors, blue boxes represent software modules, and the red box indicates
the MAV hardware. All software components use ROS as middleware.
Position, Velocity, Acceleration and Yaw are allocentric.

with a robust UDP protocol, developed for connections with
low-bandwidth and high-latency [9].

IV. LANDING PATTERN PERCEPTION

When detecting the pattern with a camera, one must
consider two main objectives:

• the detection process itself should be low-latency and
yield accurate results and

• the detection range should be as large as possible.

A. Landing Pattern Detection

We developed a multi-stage detection pipeline (cf. Fig. 4):
The camera image is transformed to a bird’s eye represen-
tation (cf. Fig. 4 (c))1, a segmentation step detects line-like
structures within the image (cf. Fig. 4 (d)) that are processed
via a circular Hough transform in order to generate a number
of hypotheses and their respective confidence.

Let r be the radius of the landing pattern in meters. In
order to maximize the detection range the MAV’s flying

1Please note that a) the camera setup is not aligned to the ground
plane and b) the camera may have an arbitrary orientation during rapid
manoeuvres, thus, a prior image transform is necessary.

(a) Camera image (b) Region with sufficient resolution

(c) Undistortion / homography
(d) Presegment via 
gradient symmetry

(e) Generate hypothesis

(f) Compute
confidence

91%

Fig. 4. Landing pattern detection from the front camera during the
competition: (a) original camera image, (b) image regions with sufficient
resolution for pattern detection (green), insufficient resolution (yellow), and
regions above the ground plane (red), (c) bird’s eye representation from
a region with (mostly) sufficient resolution, (d) results from symmetry
segmentation shown dilated for better visibility, (e) initial hypothesis in
green, (f) confidence computation via pattern-detection overlay: green and
blue denote correct pixels, red incorrect ones.



height h, obtained by relative barometric measurements, and
its attitude, represented by the IMU gravitational vector r̂

z

within camera coordinates, is taken into account. Then the
rotation matrix

R̂ := (r̂
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describes the rotation from the camera frame into a camera
frame where the image plane is aligned with the ground
plane, i.e., the matrix

M := K

g

R̂K

�1
c

with accordingly chosen camera matrices K
g

,K

c

describes a
pixel coordinate transform into a bird’s eye representation via
homogeneous coordinates. Finally, taking the lens distortion
into account, we arrive at
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with an invertible radial-tangential lens undistortion function
f operating on the image coordinates (u, v). K

c

is given by
the camera intrinsics, K

g

is set to
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h
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where ⇢ is the desired resolution of the pattern (for ⇢ we
choose 60 pixels or lower, depending on the maximum
possible resolution of the pattern in the original camera
image). It remains to compute those image regions that yield
at least the resolution ⇢

min

required for detection (chosen as
20 pixels) when transformed by M . To this end, a point
grid with a fixed stride of k pixels in the original image
is mapped via M and the distance between neighboring
points is computed. If this distance is below 2rk

⇢

min

, the
resolution of the the corresponding image patch is too low
for detection. The maximum rectangular region in the camera
image containing all grid points with sufficient resolution
after mapping (i.e., the maximum rectangle enclosing only
green points in Fig. 4 (b)) is computed via a heuristic
approach and the resulting region of the camera image is
subsequently transformed. In order to efficiently execute this
transform, please note that f is static such that a pixel-
wise lookup table can be precomputed. The second part of
the mapping in Equation (1) is linear-projective and can be
computed very efficiently, in particular on rectangular regions
when not the entire image has to be traversed.

For segmentation, fast symmetry detection is performed.
Local pairs of pixels with approximately converse gradients
are identified and their center is segmented if their distance
matches the expected line width of the pattern (10 cm). The
procedure is detailed in [10]. A circular Hough transform—
the approximate diameter of the circle in image dimensions
is known—provides a fixed number of hypothesis that are
subsequently confirmed if two lines with a central perpen-
dicular intersection are detected within. Finally, a confidence
measure is computed by thresholding the potential region of

the intensity image with the expected quantile of dark versus
white pixels and computing the ratio of the correct pixels
with an artificial overlay (cf. Fig. 4 (f)).

In order to meet the required latency, after a sufficiently
confident detection only a rectangular image region around
the previous position is considered in the following iterations,
reducing the algorithm to steps (c) – (f) from Fig. 4. In order
to follow the pattern as long as possible, the requirement on
minimum image resolution of the pattern is ignored during
this tracking phase.

B. Landing Pattern Tracking

To predict the movement of the landing target in a world
frame, we use a simpler version of our onboard state esti-
mation filter presented in previous work [11]. We estimate
position and velocity of the target in an allocentric frame
with a constant velocity assumption in the prediction step.
We consider detections from both cameras as independent
observations and the filter merges them to a coherent world
view. The pose of the MAV and the projection of the landing
target perceptions into the allocentric frame are subject to the
same localization error. Thus, the allocentric estimate of the
target is consistent with the egocentric control of the MAV.
Since we do not make any assumptions about the path of the
landing target, e.g., moving in an eight pattern, our method
is applicable to arbitrary pattern motions and independent
from exact absolute MAV localization.

V. LANDING CONTROL

Since the total time to land during the challenge is crucial,
we employ our time-optimal trajectory generation method
described in [12] with the extensions from [13].

A. MAV Model

We assume the MAV to follow rigid body dynamics and
simplify it as a point mass with jerk j as system input.
Following Newton’s second law, the system is a triple in-
tegrator in each dimension (x, y, z) with position p, velocity
v, acceleration a, and jerk j:

ṗ = v, v̇ = a, ȧ = j. (2)

Thus, the three-dimensional allocentric state of the MAV
x can be expressed by

x =

0
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We assume jerk j to be the direct control input to the linear
system. Without loss of generality, we define the z-axis to
be collinear to the gravity vector. Furthermore, we define the
origin to be the middle of the arena and the xy-plane equal
with the ground plane. We do not model

• moment of inertia,
• drag,
• yaw dynamics, and
• coupling of the axes that occurs in non-hover conditions,
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Fig. 5. This time-optimal trajectory was generated with our method.
Starting from state (p

x

= 0m, v
x

= 0m s�1, a
x

= 0m s�2), it brings the
MAV to the target state (p

x

= 2.08m, v
x

= 0.5m s�1, a
x

= 0m s�2).
The trajectory satisfies constraints v

max

= 1m s�1, a
max

= 0.5m s�2,
and j

max

= 1m s�3. The calculated switching times are t1 = 0.5 s,
t2 = 0.82 s, t3 = 0.5 s, t4 = 1.55 s, t5 = 0.4 s, t6 = 0.0 s, and
t7 = 0.4 s. The trajectory corresponds to the x-axis in Fig. 7. It is
suboptimal (maximum velocity not reached), since this axis is slowed down
to synchronize with the slower y-axis.

but rely on fast replanning to account for model uncertainties
and unmodeled effects instead. Since our model is parame-
terless, our approach generalizes to all multicopters and no
cumbersome parameter tuning is required.

B. Time-optimal Control

Based on the simple triple integrator model, our method
analytically generates third-order time-optimal trajectories
that satisfy input (j

min

 j  j

max

) and state constraints
(a

min

 a  a

max

, v

min

 v  v

max

). The planned
trajectory consists of up to seven phases of constant jerk
(j = j

max

_ j = 0 _ j = j

min

), resulting in a third-order
bang-zero-bang trajectory.

Fig. 5 shows a 1-dimensional trajectory. We synchronize
all axes to arrive at the target at the same time. By doing so,
the MAV flies on a straight glide path towards the landing
position.

Furthermore, we use the ability of our trajectory genera-
tion method to calculate an optimal interception point, based
on the current velocity of the target. We predict the target
motion and do not fly to the current target location, but
to the position, the MAV can intercept the target assuming
a constant velocity motion and respecting the MAVs con-
straints. Although the assumption of constant velocity may
not be justified in the curved parts of the figure eight since
the acceleration is relatively large (|a

target

| ⇡ 1m s�2), we
found the error to be compensable by fast replanning.

C. MPC Application

We use the above mentioned trajectory generation method
as an MPC (Model Predictive Controller), running in a closed
loop with 50Hz. Our hardware does not support directly
sending jerk commands. We therefore assume pitch and roll
to directly relate to ✓ = atan2(a

x

, g) and � = atan2(a
y

, g).

TABLE I
PARAMETERS USED AT MBZIRC

Param Axis Value Param Axis Value

v
max

x,y 8.33m s�1 v
max

z 1.00m s�1

a
max

x,y 4.73m s�2 a
max

z 10.0m s�2

j
max

x,y 5.00m s�3 j
max

z 50.0m s�3

�t
setp

x,y 0.15 s �t
setp

z 0.50 s

So, instead, we send smooth pitch ✓ and roll � commands
for horizontal movement and smooth climb rates v

z

in z
direction. Due to the linearization, the acceleration constraint
relates to an attitude constraint with ✓

max

= atan2(a
max

, g).
Our method plans the whole trajectory to the target instead

of relying on a small constant lookahead commonly found in
MPCs. Since the whole future trajectory is known at every
replanning time step, one can choose from which future
time �t

setp

to send the commands to the system. If the
value is small (e.g., �t

setp

= 0 s), the system will react
slowly. This is because small lookahead values will render
the setpoint changes from the current state to be small and
thus the underlying control loops slow. If the lookahead value
is too large, the system can become unstable or perform sub-
optimal. Also communication delay has negative impact on
the system and is compensated by choosing an appropriate
lookahead. We experimentally determined that the values
found in Tab. I offer good performance.

In Sec. V-A we report that we model the MAV in three
orthogonal axes with the z-axis collinear to the gravity vector.
The rotation about the z-axis ↵ however is not defined.
We define the rotation to be the allocentric angle of the
current position to the target position ↵ = atan2(p

y

wayp

�
p

y

, p

x

wayp

� p

x

). By doing so, we project the per-axis
velocity constraint to lie in the axis of the dominant motion.
Otherwise, the global horizontal velocity constraint would
result in being v

max

=
q

v

2
max

x

+ v

2
max

y

and thus violating
the maximum allowed velocity at the MBZIRC of 30 km h�1.

D. Yaw Control

Although an arbitrary number of axes can be synchronized,
we do not consider the yaw-axis to be synchronized with the
x, y and z-axis. For simplicity, we use proportional control
for the yaw-axis  . The yaw rate setpoint  ̇

setp

= K

p

·
( 

setp

� ) is sent to the MAV. A couple of different yaw
behaviors can be selected by the state machine described in
Sec. VI, depending on the current situational requirement.
The MAV can point towards

• a defined allocentric yaw angle,
• the current target,
• the optimal interception point,
• forward direction (current MAV horizontal velocity vec-

tor), and
• direction of target motion (current target horizontal

velocity vector).

VI. MISSION CONTROL STATE MACHINE

The behavior of the MAV is controlled by a state machine
that serves as a generator for position, velocity, and yaw
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Fig. 6. The flowchart of our state machine. Besides the basic behavioral
control, it features strategies to recover from failed landing approaches.

setpoints for the lower layers. Fig. 6 shows a flowchart of our
state machine. After takeoff, the MAV flies with maximum
velocity to a search point 8m above the field, already explor-
ing the arena through rotations. When the landing pattern is
first detected, we rotate the front camera approximately into
pattern direction before starting the descent.

We restrict the descent rate based on the distance to the
target to ensure good perceivability of the pattern in the
cameras. The state machine transfers the yaw authority to
the low-level trajectory generation during pattern following.
Depending on the distance to the target, the MAV yaws
towards the target or into flight direction, to ensure that the
pattern is visible in either the bottom camera or—in stable
forward flight without fast rotations—the front camera.

The final landing decision is based on relative orientation,
distance and relative height to the pattern, and visibility in
the cameras. If the landing decision has been taken, the MAV
descents until ground contact is detected by the switches at
its feet. This is necessary as the pattern cannot be reliably
tracked during the landing due to its proximity to the MAV.

To prevent unstable behavior while manoeuvring in the
vicinity of the fast moving landing pattern or in corner cases
for the perception, the descent is completely aborted and the
landing procedure restarts from the initial search point above
the field when the pattern is lost during following. For safety,
we also detect premature landings in the pattern following
state and turn off the rotors. Since the state machine is the
only subsystem which the operator interfaces with during
flight, we built a distinct GUI for situational awareness of
the operator.

VII. EVALUATION

We evaluate our system in simulation as well as with a
real MAV. Videos of our evaluation can be found on our
website2.

A. Evaluation in Simulation

Landing on a target moving at relatively high speed
imposes a risk for the MAV and persons who move the target.
Thus, we tested all individual software components and the
integrated software system in simulation.

Fig. 7 shows our Matlab simulation for the optimal inter-
ception of a moving landing pattern. We model the MAV as
pictured in Sec. V-A. It can be seen that the MAV lunges to
eliminate any velocity difference to the target when arriving
at the interception point.

2
http://www.ais.uni-bonn.de/videos/ECMR_2017_Beul

Fig. 7. Landing simulation in Matlab and Gazebo. We first simulate the
interception of the target with a simplified linear model. The MAV is marked
with a green dot. The target is marked with an solid red dot. The predicted
target trajectory is marked with a dashed line, ending in the interception
point (red ring). Subsequently, we modeled the MBZIRC arena including the
moving target in Gazebo. The MAV can be simulated with HIL, employing
a complex motion model and challenging environmental conditions.

To achieve a high level of realism, we also modeled the
MBZIRC arena and the moving target in the RotorS simu-
lator [14]. In addition to the physics-based MAV simulation
of RotorS, we implemented a hardware in the loop (HIL)
bridge, employing the DJI simulator. Here, the flight control
is connected to the DJI Assistant 2 software via USB. Instead
of controlling the motors of the real MAV, the flight control
firmware sends control commands to the simulator, where
MAV dynamics and sensors like IMU and GPS are simulated
and sent back to the flight control. Thus, for our ROS
middleware it is undeterminable if the real or the simulated
MAV is used.

B. Real-robot Evaluation at MBZIRC

Our system was used to compete in the MBZIRC. We were
able to place third in Challenge 1 and – in combination with
two other tasks – first in the Grand Challenge of the total
24 resp. 14 competitors. During the first run in Challenge 1,
we first experienced a hardware problem with the USB 3.0
connection of the front camera and were forced to restart.
After fixing this issue, we were able to successfully land in
34 s—measured from spinning up the rotors to landing on
the pattern. In total, the time from the start of the challenge
to landing—including fixing the MAV—was 112 s, resulting
in the third place in the final ranking. In order to fix the
connection, we attached more shielding for the second trial.
Unfortunately, this shielding negatively affected the compass
of the MAV so that it went into failsafe mode directly after
the start. We canceled the second trial since we could not
fix this issue fast enough to improve our time from the first
challenge run.

In the first trial of the Grand Challenge, we were able to
land in 42 s. Fig. 8 shows the trajectory and detections of
this trial. After reaching the center of the field, the MAV
searched for another 11.9 s for the target because the cart
was in a disadvantageous position. In the second trial, we
could not improve our landing time and canceled this trial
after 42 s.
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Fig. 8. Landing in MBZIRC Grand Challenge. First, the MAV starts in the middle of the left circle and flies straight up to a height of 1.5m to not collide
with near objects. Next, it flies to the center of the field with a height of 8m to search for the landing target. The total ascent takes 8.5 s. After 20.4 s, the
landing target is first detected in the bottom camera. Immediately, the MAV begins to descent while tracking the target in both cameras. The descent only
takes 11.6 s, resulting in a total completion time of 32 s. Due to the fast motion of the target, the MAV cannot descent fast enough to reach the target on
the straight segment and has to land in the curved segment of the figure eight. The challenge completion time from start signal to landing is 42 s. Colored
markers are placed every 250ms on the trajectory. Every 20th of all 585 detections is indicated with the corresponding viewpoint on the trajectory.

VIII. CONCLUSION

We have provided detailed insight into our robust MAV
setup for quickly landing on a fast moving target. The
viability of this approach has been demonstrated in an
outside scenario with minimum preparation time during the
MBZIRC where the MAV consistently performed the landing
as one of the fastest among all competitors.

In particular the adaptive and fast trajectory replanning
combined with a high-frequency pattern detection turned out
to reliably match direction and velocity with the moving
target. Furthermore, the use of two cameras in combination
with an adaptive yawing strategy enabled us to track the
target pattern under fast manoeuvres and in close proximity.

We believe that our contribution, but in general all expe-
rience from the MBZIRC landing challenge, will facilitate
new ideas of how to operate flying robots in dynamic—and
hence real-world—environments.
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Path tracking of a four-wheel steering mobile robot:

A robust off-road parallel steering strategy

Mathieu Deremetz1, Roland Lenain1, Adrian Couvent1, Christophe Cariou1 and Benoit Thuilot2,3

Abstract— In this paper, the problem associated with accu-

rate control of a four-wheel steering mobile robot following a

path, while keeping different desired absolute orientations and

ensuring different desired lateral deviations, is addressed thanks

to a backstepping control strategy. In particular, the control

of each steering angle is investigated through a new parallel

steering approach based on an extended kinematic model of a

bicycle-model robot assuming that the two front steering angles

are equal and likewise for the two rear ones. Two control laws

are then proposed to ensure a suitable path following according

to orientation and position conditions. In order to balance the

lateral effects, notably the sideslip angles, an observer has been

used to estimate the sliding. This estimation permits to feed

the proposed control laws appropriately, enabling an accurate

path tracking and orientation keeping along the trajectory. This

new point of view permits to achieve difficult manoeuvres in

narrow environments such as a parallel parking or sharp turns.

Previous approaches have focused on the control of four-wheel

steering mobile robots with respect to the trajectory but do not

combine path following with independent heading angle control

and slippery conditions.

I. INTRODUCTION

Initiated by W. Grey Walter thanks to Elmer and Elsie
robots in [5], mobile robotics constitutes today a major
economic and scientific topic. One of the best examples is the
progress achieved on autonomous vehicles, notably cars [11]
which are now close to the market. The transport sector is
not the only field that benefits from mobile robotics. Indeed,
since the beginning of the twenty-first century, research has
focused its interest on the automation of high-speed vehicles
in off-road context. Thus, sectors such as agriculture [2] or
even defence and space [15] are considering autonomous
ground vehicles in order to achieve painful tasks, submitted
to very harsh and variable conditions.

Over the last few years, it can be noticed that mobile
robotics developments are not only linked to automated
manned vehicles but also to totally autonomous adaptable
robots [12] that have more and non-standard mobility to
be piloted. Concerning guidance, firstly based on the front-
steering model used for cars, these mobility levels have
indeed evolved through adding a rear steering axle, skid-
steering configuration or using holonomic wheels. Another
option, investigated in this paper, is the use of four inde-
pendent steering wheels. Because of its high mobility, this
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configuration, compared to the latest, is well appropriate for
performing tricky moves on road or in off-road contexts.
Such a robot, equipped with four steering wheels, is then
appropriate to achieved path tracking requiring suitable con-
trol of both heading and orientation.

Several approaches have been proposed in the framework
of path following. Firstly developed for front-steering [13] or
skid-steering [4], [8] mobile robots, classical approaches are
designed using pure rolling without sliding assumption, as
developed by [13] or [16]. Nevertheless, if the robot has to
follow a trajectory at medium speed (beyond 2 � 3m/s)
the accuracy of the tracking may be seriously damaged,
especially in off-road context. Then, sliding has to be taken
into account to preserve the accuracy of the path tracking.
This approach is well demonstrated for front-steering mobile
robots in [9]. However, this approach only ensures the control
of the lateral deviation of the robot w.r.t. the trajectory.
Indeed, a crab angle between the orientation of the robot
and the tangent to the path appears when the robot moves
on a slope. To avoid this phenomena another control strategy
has been proposed in [3] for four-wheel steering mobile
robots in order to take advantage of both front and rear
steering actuations to control both the lateral deviation and
the angular deviation of the robot w.r.t. the trajectory during
the path tracking. This latter approach is notably designed for
autonomous vehicles with limited steering angles because of
Ackermann steering geometry. Moreover, the orientation of
the robot is controlled w.r.t. the trajectory. Another method
in [17] proposed a parallel steering with equal front and rear
steering angles but did not suggest a robust method to avoid
the skid and the deviation from the desired path when grip
conditions are poor.

With the raise of unmanned adaptable robots equipped
with four independent steering wheels having a huge range
of movement (beyond ⇡

2 or even ⇡ radians) such as the
Thorvald platform [6] or the agricultural robot proposed
in [7], new kinds of movement during path tracking can
be achieved. Indeed, if there is no passenger, the angular
error of the robot w.r.t. the trajectory does not have to reach
zero anymore. From this point of view, one can then imagine
controlling a robot with a desired absolute orientation during
the path tracking, which permits to substantially reduce the
manoeuverability space.

In this paper, the autonomous following of a path with a
desired absolute angle by a four-wheel steering mobile robot
is investigated. More precisely, a backstepping approach has
been developed in order to compute the front steering angles
and the rear steering angles based on an extended kinematic



model. To compensate for the effects of the grip conditions,
an absolute observer, based on prior work [10], estimates the
sideslip angles and feeds the proposed control laws in terms
of sliding.

This paper is decomposed as follows. First, the extended
kinematic model is recalled. The second part details the
observer used to estimate the grip conditions of the robot
wheels, while the third section describes the proposed control
laws based on a backstepping strategy. Finally, simulations
are conducted to demonstrate the results and the efficiency
of the proposed approach and are illustrated through a few
agricultural contexts.

II. MODELING

A. Mobile robot modeling

The objective of the proposed application is to allow for
a four-wheel steering mobile robot to follow a previously
defined trajectory (i.e., computed, previously learned or com-
ing from a structure to follow). This trajectory may include
turns and ground variations which may lead to sliding and
then create grip condition modifications. To ensure accurate
tracking by using an observer and a control algorithm, it
is appropriate to use models that take into account the
kinematics of the robot.

Fig. 1: Extended kinematic model of the robot with respect
to the reference trajectory � and in the absolute frame defined
by the X and Y coordinates.

In this paper, a four-wheel steered and drive robot is
considered. As is commonly assumed, the robot is viewed
as a bicycle, with an equivalent front steering angle �

F

, an
equivalent rear steering angle �

R

and a wheelbase L (Fig. 1).
The robot’s speed is defined thanks to the speed of the front
axle v

F

and the speed of the rear axle v
R

. The bicycle
model is commonly used in the field of mobile robotics,
but it is generally supposed that the rolling without sliding
condition is satisfied. In an off-road context or at high speed,
however, this assumption cannot be satisfied and leads to
a lateral deviation of the robot during the tracking when

control based on such a model is implemented, as pointed out
in [1]. To overcome this phenomenon and take into account
the non-ideal grip conditions, two additional variables, �

F

and �
R

, are added. These variables, called sideslip angles,
denote the front and rear angles, respectively, between the
tire orientation and the current speed vector orientation at
the contact points F and R.

Thus, to follow the previously defined trajectory � and
estimate the grip conditions �

F

and �
R

, state variables of
the robot are defined as follows:

⇧ s, the robot curvilinear abscissa. It is the curvilinear
distance along � of point M , the point on � that is the
closest to R. The curvature of � at point M is denoted
c(s),

⇧ y, the robot tracking error or lateral deviation. It is the
algebraic distance between R and M ,

⇧ X , the abscissa value of the center of the robot rear
axle R in the absolute frame,

⇧ Y , the ordinate value of the center of the robot rear
axle R in the absolute frame,

⇧ ✓̃, the robot angular error or angular deviation. It is the
angle between the absolute robot heading, denoted ✓
and the orientation of the tangent to the trajectory at
point M , denoted ✓

tan

.

In this paper, additional notations will be added in the next
sections to define the desired offsets applied to the robot
moves when tracking. Thus, in the following, y

d

denotes
the desired lateral deviation of the robot w.r.t. the trajectory
while ✓

d

denotes the desired absolute orientation of the robot
in the absolute frame.

B. Motion model in the absolute frame

According to classical kinematic analyses, such as those
presented in [14], derivatives of the robot kinematic state
variables (1) in the absolute frame can be written as follows:

8
>>>>><

>>>>>:

˙X = v
R

cos (✓ + �
R

+ �
R

)

˙Y = v
R

sin (✓ + �
R

+ �
R

)

˙✓ =

v
F

sin (�
F

+ �
F

)� v
R

sin (�
R

+ �
R

)

L

. (1)

The derivative of the state variable ✓̇ is highly recom-
mended in its given form which has no singularity and allows
the continuity of the algorithms. This formula is used both in
Secs. III and IV to define the evolution model of the proposed
observer and the second part of the control algorithm.



C. Motion equations with respect to a reference trajectory

According to classical kinematic analyses, such as those
presented in [9], derivatives of the robot kinematic state
variables (2) w.r.t. the reference trajectory can be written as
follows:
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>>>>>>>>>>>>:

ṡ = v
R
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R

+ �
R

)

1� c(s) y

ẏ = v
R

sin (

˜✓ + �
R

+ �
R

)

˙
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v
F

sin (�
F

+ �
F

)� v
R

sin (�
R

+ �
R

)

L

�v
R

c(s) cos (

˜✓ + �
R

+ �
R

)

1� c(s) y

. (2)

This model is defined if the 1 � c(s) y 6= 0 condition is
true. This means that the center of curvature A should not be
superimposed with the center of the rear axle R. However, if
the robot is properly initialized, such a case is never reached
in practice.

III. ESTIMATION OF SIDESLIP ANGLES

To ensure a suitable convergence of the tracking and
angular errors along the trajectory when facing poor grip
conditions, it is compulsory to know accurately the values
of the sideslip angles. Because there is no direct perception
system allowing to measure such variables, it has been shown
in [10] that an observer may be built to estimate the two
sideslip angles with a satisfying accuracy. To achieve this
estimation, the robot must be equipped with on-board sensors
that permit to measure the position, the orientation and the
velocity of the robot at a given point, here R. Moreover,
according to the model (1), defined above, the velocity of
the robot at F , has to be measured.

A. Observer state

In this paper, the proposed observer in [10] built for a
two-wheel steering mobile robot is extended to a four-wheel
steering one, according to the equations of the model (1).
Because this approach is a version close to [10], only a short
presentation is proposed in this section.

Hereafter, ⇠ should be consider as an effectively measured
variable, while ⇠̂ should be considered as an observed or
estimated variable. ⇠̃ is defined as the observation error
⇠̃ = ⇠ � ⇠̂.

To achieve the indirect estimation of the sideslip angles,
let us consider the state space ⇠ defined as follows:

⇠ =


⇠
pos

⇠
�i

�
, (3)

where ⇠ is split into two sub-states:
⇧ ⇠

pos

= [X Y ✓]T , which constitutes the pose (position
and orientation) of the robot in the absolute frame,

⇧ ⇠
�i = [�

F

�
R

]T , which is composed of the sideslip
angles, to be estimated.

Its evolution model is based on (1), and may be written
as follows:

⇠̇ =


⇠̇
pos

⇠̇
�i

�
=


f(⇠

pos

, ⇠
�i , vF , vR, �F , �R)
02⇥1

�
,

(4)

where f(⇠
pos

, ⇠
�i , vF , vR, �F , �R) is directly deduced from

the three equations of model (1).

B. Observer equations

Equations for the observer are as follows:

˙
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˙

ˆ⇠
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�i

3

75 =

2

4
f(⇠

pos

, ˆ⇠
�i
, v

F

, v
R

, �
F

, �
R

) + . . .
. . .↵

pos

(
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)
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(5)

where ↵
pos

(⇠̃
pos

) and ↵
�i(⇠̃pos) are functions of the observa-

tion error attached to the pose part of the state ⇠, and defined
as follows:
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(6)

where:

⇧ K
pos

is 3⇥ 3 positive diagonal matrice,
⇧ K

�

is a positive scalar.

As shown in [10] and extended to a four-wheel steering
mobile robot, the observer defined by (5) and (6) allows the
convergence of the whole observed state ⇠̂ to the actual one
⇠. As a consequence, the values for the sideslip angles, �̂

F

and �̂
R

are obtained and can feed a control law appropriately
in order to follow a path while keeping the same absolute
orientation.

IV. CONTROL ALGORITHMS

A. Proposed strategy

Previous approaches about parallel steering assume that
the front and the rear steering are equal (�

F

= �
R

) such as
in [17]. However, if the grip conditions are not sufficient the
vehicle will skid and deviate from the desired path.

Such a control strategy for each steering angle is not
sufficient to ensure a suitable parallel steering. Indeed, even
if the grip conditions are taken into account the robot will
skid because its number of mobility degree is lower than the
number of mobility required to ensure the tracking and the
absolute orientation. In this paper, the strategy proposes to
add a degree of mobility by independently controlling the
rear and the front angles. The rear steering will ensure the
convergence of the robot to the desired trajectory while the
front steering will ensure in addition the convergence of the
robot orientation to the desired one. This additional mobility



will allow to correct the absolute orientation preventing
the skid while following the path. Following subsections
detail the backstepping strategy for each axle to reach this
objective.

B. Control algorithm for the rear steering angles

The objective of this first step is to find a mathematical
expression for �

R

that ensures the convergence of the rear
lateral deviation y to a desired lateral deviation y

d

.
It has been chosen to set a convergence distance instead

of a settling time to design a control strategy independent
from time and the speed of the robot for the convergence
of the lateral deviation. To obtain this kind of convergence
it is compulsory to use derivatives of the state vector w.r.t.
the curvilinear abscissa. Hereafter, x0 should be consider as
the derivative of x w.r.t. the curvilinear abscissa s, such that
x0 = d x

d s

.
Then from the product of the first equation of the

model (2) with the inverse of the second one, the derivative
of y w.r.t. the curvilinear abscissa, denoted y0, can be written
as follows:

y0 = tan (✓̃ + �
R

+ �̂
R

) (1� c(s) y) . (7)

By denoting the error on the lateral deviation such that
e
y

= y � y
d

, a way to ensure the convergence of this
error to zero is to use a differential equation such that:

e0
y

= y0 � y0
d

= k
y

e
y

, (8)

with k
y

a negative scalar defining the convergence distance
for the exponential convergence of y to y

d

imposed by (8).

By injecting in this condition the expression of y0 in-
troduced in (7), one can then reformulate the previous
conditions and obtain the following equation for each rear
steering angle �

R

:

�
R

= arctan
⇣

ky(y�yd)+y

0
d

1�c(s) y

⌘
� ✓̃ � �̂

R

. (9)

This expression allows to ensure the differential Eq. (8) on
lateral deviation y, implying its convergence to y

d

. Limits for
this expression are similar as those defined for expression (2).

C. Control algorithm for the front steering angles

The objective of this second step is to find a mathematical
expression for �

F

that ensures both the convergence of the
lateral deviation of the robot y towards its desired value y

d

and the convergence of the absolute orientation of the robot
✓ towards its desired value ✓

d

.
By denoting the error on the absolute angular deviation

such that e
✓

= ✓ � ✓
d

, a way to ensure the convergence of
this error to zero is to use a differential equation such that:

ė
✓

= ✓̇ � ✓̇
d

= k
✓

e
✓

, (10)

with k
✓

a negative scalar defining the settling time for the
exponential convergence of ✓ to ✓

d

imposed by (10).

By injecting in this condition the expression of ✓̇ in-
troduced in (1), one can then reformulate the previous
conditions and obtain the following equation for each front
steering angle �

F

:

�
F

= arcsin
⇣

L (k✓(✓�✓d)+✓̇d)+vR sin (�R+�̂R)
vF

⌘
� �̂

F

.

(11)

After injecting in (11) the expression for �
R

(9) previously
introduced, one can finally obtain the following equation for
each front steering angle �

F

:

�
F

= arcsin

 
L (k✓(✓�✓d)+✓̇d)

vF

+
vR sin

✓
arctan

✓
ky(y�yd)+y0

d
1�c(s) y

◆
�✓̃

◆

vF

!
� �̂

F

,

(12)

provided that v
F

6= 0 and limits similar as those defined
for expression (9). In practice, the velocity is always
positive when path tracking and consequently non null. This
expression allows then to ensure the differential Eq. (8)
on lateral deviation y, implying its convergence to y

d

. In
addition, this expression also ensures the convergence of
the absolute orientation ✓ to its desired value ✓

d

.

Finally, by using expressions (9) and (12) for the rear
and the front angles coming from the proposed backstepping
strategy and by settling the desired lateral deviation and
orientation, y

d

and ✓
d

, the objective introduced by this paper
(i.e. control the absolute orientation of the robot and its
lateral position w.r.t. the trajectory) is achieved.

D. Predictive curvature servoing

To anticipate trajectory overshoots due to the actuator
settling time, a predictive curvature servoing has been im-
plemented. Only a few details about these control algorithms
are given in this section. Nevertheless, it follows the same
methodology as the one detailed in [3].

Knowing the evolution of the reference path (i.e. computed
or previously learned), the reference path curvature can be
anticipated. To achieve this, the future curvature of the
reference path is computed w.r.t. a prediction time denoted
t
pred

. This future curvature is then injected in the steering
laws to ensure the equality between the trajectory and vehicle
curvature.

V. SIMULATION RESULTS

Making use of the proposed strategy based on the observer,
detailed in Sec. III, and the control laws, detailed above,



algorithms have been tested on a MATLAB/ADAMS co-
simulator with the simulated vehicle depicted in Fig. 2. This
vehicle is four-wheel drive and has four independent steering
wheels without steering range. Its features are described in
Table I. These simulations are realistic w.r.t. technologies met
in current industries. Indeed, the vehicle is equipped with a
simulated IMU and a simulated RTK-GPS. The sampling
rate for these trials has been set at 10Hz as in common
real-time mobile robotic applications.

Fig. 2: 4WS mobile robot simulator.

TABLE I: Vehicle features.

Weight 900 kg
Wheelbase (L) 2m

Trackbase 1.2m
Steering angle response time 0.24s

For the following simulations, the values of the gains
have been chosen as follows: k

y

= �0.55 and k
✓

= �0.8.
The robot speed has been set at 2m/s according to the
work speeds usually used in many agricultural contexts.

Successive robot positions (seen from above: ) have
been added in the following tracking figures to illustrate the
motion of the robot when tracking.

A. Straight line tracking

The objective of this trial is the verification of the
proposed control strategy for parallel steering during
straight line tracking when the robot is given different
desired lateral deviations and absolute orientations. For this
we have imposed to the vehicle the reference path depicted
in black in Fig. 3 and Fig. 4.

As illustrated in Fig. 3, the vehicle is first located at an
initial distance to the trajectory y

init

equal to 0.5m (¿). At
the beginning (t = 0 s), the robot is given a desired lateral
deviation equal to zero (y

d

= 0m) and a desired absolute
orientation equal to zero (✓

d

= 0 degrees) (¡). Then, at
t = 10 s, the lateral deviation is set at 0.3m (¬) and then
set, at t = 15s, at zero again (y

d

= 0m) (√). At t = 20 s,

the robot is given a desired absolute orientation equal to
25 degrees ⇡ 0.436 radians (ƒ). Then, the desired lateral
deviation is set at several values while keeping this absolute
orientation. Then, at t = 30 s, the desired lateral deviation
is set at 0.4m (≈), then, at t = 40 s, the desired lateral
deviation is set at �0.2m (∆) and finally, at t = 45 s, the
desired lateral deviation is set to zero (y

d

= 0m) («).

Fig. 3: Reference path (black), expected path (red) and
successive robot positions ( ).

Fig. 4: Reference path (black) and tracking (blue and red).

The results for the lateral deviation y and the absolute
orientation ✓ of the robot are depicted in Figs. 5 and 6.

Fig. 5: Lateral deviation results.

Fig. 6: Absolute orientation results.

It is apparent in Fig. 5 that the proposed parallel steering
strategy ensures the convergence of the robot towards dif-
ferent desired lateral deviations during straight line tracking
whatever the absolute orientation of the robot. Moreover,
as depicted in Fig. 6 the proposed strategy ensures the
convergence of the absolute orientation of the robot to
different desired orientations while ensuring the convergence
of the lateral deviation.



B. Curve tracking

The objective of this trial is the verification of the
proposed control strategy for parallel steering during curve
tracking when the robot is given different desired lateral
deviations and absolute orientations. For this we have
imposed to the vehicle the trajectory depicted in black in
Fig. 7.

Fig. 7: Reference path (black), tracking (blue and red) and
successive robot positions ( ).

Fig. 8: Lateral deviation results.

Fig. 9: Absolute orientation results.

As illustrated in Fig. 7, the vehicle is first located at an
initial distance to the trajectory y

init

equal to 0.5m (¿).
At the beginning (t = 0 s), the robot is given a desired
lateral deviation equal to zero (y

d

= 0m) and a desired
absolute orientation equal to zero (✓

d

= 0 degrees) (¡). After
a short straight line, the robot is asked to follow a curved
trajectory (¬). Then, while tracking this curve, the desired

lateral deviation is firstly set to 0.5m at t = 15 s (√), then
to 0m at t = 20 s (ƒ). At t = 22.5 s the desired absolute
orientation is set to 15 degrees ⇡ 0.262 radians (≈). Then,
the desired lateral deviation is set to �0.5m at t = 27.5 s (∆)
and finally to zero at t = 32.5 s («). When the curve stops,
the trajectory becomes again a straight line (»).

The results for the lateral deviation y and the absolute
orientation ✓ of the robot are depicted in Figs. 8 and 9.

It is apparent in Fig. 8 that the proposed parallel steering
strategy ensures the convergence of the robot towards differ-
ent desired lateral deviations during curve tracking whatever
the absolute orientation of the robot. Moreover, as depicted
in Fig. 9 the proposed strategy ensures the convergence of
the absolute orientation of the robot to different desired
orientations while ensuring the convergence of the lateral
deviation.

C. Manoeuvres applied to agricultural robotics

From previous simulations, one can see that the proposed
parallel steering strategy is suitable for achieving accurate
path tracking in off-road conditions. It is then possible
to imagine several scenarios with this kind of control in
different agricultural contexts where manoeuvres are tricky
because of the lack of space. It is the case for instance when
facing narrow parking places or doing U-turns between vine
rows. We have chosen to illustrate these situations with the
relevant simulations depicted in Figs. 10 and 11 that show
the achievements and the accuracy of using the proposed
parallel steering strategy in such situations.

Fig. 10: Reference path (black), tracking (blue and red) and
successive robot positions ( ) when parking.

Fig. 11: Reference path (black), tracking (blue and red) and
successive robot positions ( ) between vine rows (green).



VI. CONCLUSION

This paper proposes a parallel steering strategy dedicated
to a four-wheel steering mobile robot in off-road contexts.
Because of poor grip conditions and imposing an equal angle
to the front and the rear axles, previous parallel steering
approaches cannot ensure an accurate tracking because of
the skid and the deviation from the desired path. Here, the
grip conditions are considered by using an observer based
on the extended kinematic model of the robot. This observer,
derived from previous work, allows suitable estimations for
the sideslip angles of a four-wheel steering mobile robot.
These estimations then feed the proposed control laws based
on a backstepping strategy ensuring both the convergence of
the robot towards a desired lateral deviation and a desired
absolute orientation. This new point of view allows to avoid
possible skids while guaranteeing the accuracy of the track-
ing. As shown in the simulation section, the combination
of the observer with the proposed control laws leads to high
accurate path tracking and can be used for tricky manoeuvres
in agricultural contexts for instance. Future work will be
focused on the design and the implementation of an observer
dedicated to each wheel of the robot to estimate more
precisely sideslip angles to further increase the accuracy of
the path tracking.
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Towards Autonomous Landing on a Moving Vessel
through Fiducial Markers

Riccardo Polvara1 Sanjay Sharma1 Jian Wan1 Andrew Manning1 Robert Sutton1

Abstract— This paper propose an autonomous landing
method for unmanned aerial vehicles (UAVs), aiming to address
those situations in which the landing pad is the deck of a ship.
Fiducial marker are used to obtain the six-degrees of freedom
(DOF) relative-pose of the UAV to the landing pad. In order
to compensate interruptions of the video stream, an extended
Kalman filter (EKF) is used to estimate the ship’s current
position with reference to its last known one, just using the
odometry and the inertial data. Due to the difficulty of testing
the proposed algorithm in the real world, synthetic simulations
have been performed on a robotic test-bed comprising the AR
Drone 2.0 and the Husky A200. The results show the EKF
performs well enough in providing accurate information to
direct the UAV in proximity of the other vehicle such that
the marker becomes visible again. Due to the use of inertial
measurements only in the data fusion process, this solution
can be adopted in indoor navigation scenarios, when a global
positioning system is not available.

I. INTRODUCTION
In the last few years, unmanned aerial vehicles (UAVs)

attracted a lot of interest from the research and the military
community, in particular those able of vertical take-off and
landing (VTOL) [1].

The capability of autonomously landing, especially on the
deck of a ship, is still an open research area. Given the marine
conditions, characterised by adverse wind and sea currents,
the estimation of the ship movements can be affected in such
a way that landing is not always possible. Cameras have been
identified as a solution in order to increase the estimation’s
accuracy; this can be further improved by the adoption of
fiducial marker on the ship’s deck (as depicted in Fig. 1). In
the situation in which the marker tracking is interrupted, the
6-DOF ship’s pose can be calculated with a state estimation
filter. The choice of using an extended Kalman filter (EKF) to
fuse only the odometry and inertial measurement unit (IMU)
data of the moving vessel allows to successfully accomplish
the task without relying on the global positioning system
(GPS) signal. In this way, the algorithm can be used also in
cluttered or GPS-denied environments.

In terms of the paper organisation, Section II presents the
existing literature about autonomous landing for UAVs, while
Section III formalise the solution proposed in this paper. In
Section IV two kind of experiments, with a static landing
platform and with a moving one, respectively, are presented
and discussed. Finally, conclusions and future works are
given in Section V.

1Riccardo Polvara and the other authors are with the Autono-
mous Marine System Research Group, School of Engineering, Ply-
mouth University, Drake Circus, Plymouth PL4 8AA, United Kingdom
riccardo.polvara@plymouth.ac.uk

Fig. 1: An UAV landing on a fiducial marker located on the
deck of an unmanned surface vehicle.

II. STATE OF THE ART

Autonomous landing is one of the most dangerous chal-
lenges for UAVs. Despite a historical large use of Inertial
Navigation Systems (INS) and Global Navigation Satellite
System (GNSS), vision-based solutions are becoming attrac-
tive because passive and not requiring any special equipment
other than a camera and a processing unit [2], [3]. In [4]
and [5] a IR-LED helipad is adopted for robust tracking
and landing, while a T-shaped and an H-shaped helipad are
respectively used in [6] and [7]. Here, the UAV’s pose is
calculated combining the projection of the pad with IMU
measurements. In [8], the manoeuvre has been achieved after
estimating the UAV’s 3D relative position to a novel landing
pad consisting of concentric circles, and assuming the vehicle
is always parallel to the ground. Multiple circles of different
sizes are also used in [9] with the scope of extending the
detection range. In [12], multiple view geometry is used
to hover after computing the relative position to a known
target. In [13] authors, following the same approach, were
also able to adjust the UAV’s orientation. Other some bio-
inspired works try to maintain a constant optic flow while
descending [10], [11].

Fewer works address autonomous landing on a moving
target. A first example is offered by [14], in which the authors
landed on a slowly moving H-shaped marker (0.1 m/s). In
[15] four light sources constitute a pattern identifiable up to
0.25m; unfortunately, this solution is not feasible when direct
light interferes with the vision system. Differently, optical
flow is used in [16] while an IR camera in [17].

III. METHODS

This section illustrates how autonomous landing has been
achieved in this work.
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Fig. 2: The image processing algorithm estimates the 6-DOF
UAV’s relative-pose wrt the visual marker. Here, only the
distances are reported for clarity.

A. Quad-copter model

To the scope of this paper, the Parrot AR Drone 2.0, widely
used in research because affordable and integrating a com-
plete sensor suite, has been chosen as testing platform. The
Robot Operating System (ROS) [18] is used for interfacing
the vehicle, using in particular the ardrone-autonomy and the
the tum-ardrone packages [19]. The specification of the UAV
are as follow:

• Dimensions: 53 cm x 52 cm (hull included);
• Weight: 420 g;
• IMU including gyroscope, accelerometer, magnetome-

ter, altimeter and pressure sensor and producing data at
200 Hz;

• Front-camera with a High-definition (HD) resolution
(1280x720), a field of view (FOV) of 73.5 x 58.5 and
video streamed at 30 frame per second (fps);

• Bottom-camera with a Quarted Video Graphics Array
(QVGA) resolution (320x240), a FOV of 47.5 x 36.5
and video streamed at 60 fps (mainly used for visual
odometry);

• Central processing unit running an embedded version
of Linux operating system;

The on-board controller (closed-source) is used to act on
the roll � and pitch ⇥, the yaw rotational speed  and
the vertical velocity of the platform ż. Control commands
u = (�, ⇥, , ż) 2 [-1,1] are sent to the quad-copter at a
frequency of 100Hz.

B. Augmented Reality

In this work, high-contrast 2D augmented reality (AR)
markers are adopted for identifying the landing platform.
The identification and tracking have been realised with the
ar pose ROS package, a wrapper for the ARToolkit human-
computer interaction library[20].

The package subscribes to the camera’s topic and the
candidate marker is searched for within a database. Using the
camera’s calibration file and the actual size of the marker of

interest, the 6-DOF relative-pose of the marker’s with respect
to the UAV is estimated at a frequency of 1 Hz and shown
in Fig. 2. The time stamp and the transformation for the
current and the last marker’s observation are stored to actuate
a compensatory behaviour when the marker is lost.

C. Controller

Within the tum ardrone package, a single PID controller
is employed for three degrees of freedom (roll, pitch and
yaw) and for the vertical velocity. Combined, they steer the
quad-copter toward a desired goal pose p = (x̂, ŷ, ẑ,  ̂) 2 R4

in a global coordinate system sending commands at 100Hz.
In order to simplify the tuning process, the four PID

controllers have been replaced by a single damped spring
one. In the implementation used, two parameters, K direct

and K rp, are responsible for modifying the spring strength
of the directly controlled dimensions (yaw and z) and
the leaning ones (x and y). An additional parameter,
xy damping factor, takes account of external disturbances
such as air resistance and the wind.

In this way, instead of controlling nine independent pa-
rameters (three for the yaw, three for the vertical speed and
three for the pair roll-pitch ) the control problem is reduced
only to the three described above.

D. Pose estimation

An EKF has been adopted for estimating the position of
the landing platform and offering more reliability when the
marker is lost. For this purpose, data from the wheels and
the IMU are fused in order to compensate the error affecting
the odometry readings [21]. The filter predicts the actual
position of the ship that is then forwarded to the controller.
The EKF’s estimate is used as follow:

• the platform’s pose is estimated at 50Hz and saved in
a hash table;

• when the tracking is interrupted, the table is accessed
for retrieving the most recent estimation together with
the last recorded observation;

• the deck’s current relative-pose to the old known one is
calculated;

• this information is forwarded to the controller and new
commands are generated;

This procedure is iterated until the UAV is located above the
marker and can newly perceive it.

E. Discussion

The quad-copter flies autonomously mainly using its fixed
frontal camera, approaching the landing platform identified
by a fiducial marker. Despite the EKF can compensate
interruption in observation, it is required that the marker is
perceived among all the landing manoeuvre. The ar pose

library computes the 6-DOF relative-pose between the UAV
and the landing platform. This information is used by the
controller to make the quad-copter approaching the marker
with the right orientation.

Due to the hardware limitation of the UAV chosen, in
particular the presence of two fixed non-tilting cameras, a
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autonomous landing.

switching system has been adopted to guarantee maximum
continuity while observing and tracking the landing pad.
In fact, it happens that the UAV lose the tracking while
descending and using the frontal camera. To overcome this
problem, the video stream starts to be acquired from the
downward-looking camera located at the bottom of the UAV.
The quad-rotor can then try to land while centring the marker
in the camera’s FOV. Otherwise, the EKF estimates the actual
position of the landing base and the drone is there redirected
increasing its altitude. In this way, it is guaranteed to perceive
the marker soon. When an user-specified distance from the
marker is met, the drone shuts down its motors and land on it.
A graphical representation of the overall system is depicted
in Fig. 3.

It is important to remark that visual marker permits the
estimation of the full 6-DOF relative-pose, meaning that
pitch and roll of the deck are considered. Nevertheless, the
algorithm does not directly take care of these movements
since they can be easily addressed mounting a pan-tilt unit
under the landing platform in order to stabilise it whatever
weather conditions. For this reason, it is possible to claim
that the method developed is theoretically applicable to
every landing scenario, especially when involving UGVs not
subject to significant rolling and pitching behaviours.

IV. RESULTS

The proposed algorithm has been tested in simulation
within a modified version of the tum simulator package,
a 3D environment built on Gazebo 2.2.X and offering a 3D
model of the AR Drone 2.0. Given the absence of maritime
robot models and marine scenario, the Husky A200 has been
chosen as landing base. Here, a square fiducial marker having
a side length of 0.31 meter was placed. Due to the paper’s
length limitation, three experiments are now reported. In the
first, the Husky remains in the same position for all the
length of the flight. In the second experiment, the platform
is moving in a straight line at constant speed. This is a
common scenario when deploying manned/unmanned vessel

TABLE I: Controller parameters for the static landing plat-
form experiment.

Parameter Value Parameter Value
K direct 5.0 K rp 0.3
xy damping factor 0.65 max gaz drop (m/s) 0.1
max yaw (rad/s) 1.0 – –
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Fig. 4: Quad-copter trajectory in three-dimensional space
during the experiment with a static platform.

that spends most of their time traversing keeping a fixed
heading angle. As last, the UGV is also rotating.

A. Static Platform

The aim of this experiment is to test the alignment of the
UAV with a visual marker. In Table I the controller setting is
reported. The K rp parameter, responsible for roll and pitch,
is set to a small value to guarantee smooth movements while
translating. In the same way, max gaz drop is reduced to
a value of 0.1 for slowing down the descending manoeuvre.
On the other hand, the max yaw parameter, controlling the
yaw rotational speed, is maximised because the alignment
must be realised in the shortest amount of time possible.

Fig. 4 illustrates the UAV’s trajectory for this experiment.
The fiducial marker has been successfully recognised at
around 2 meters in front of the UAV, and at 1.2 meter on its
left. The displacement on the z�axis, used as the reference

(a) t = 0s. (b) t = 10s. (c) t = 19s.

(d) t = 20s. (e) t = 54s. (f) t = 57s.

Fig. 5: Landing maneuvre of a VTOL UAV on a static
platform.
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Fig. 6: Controller commands and visual offsets in the exper-
iment with static landing platform.

for the altitude, was around 0.7 meter instead. The initial
situation is illustrated in Fig. 5a. The UAV has been able to
complete the landing in 50 seconds.

During the flight, the quad-copter approaches the pad
keeping the marker at the centre of its camera’s FOV. An
interval of confidence of 10 degrees is defined and the UAV
rotates accordingly when the marker is out of it. While
descending, the UAV’s low altitude prevents the frontal
camera from perceiving the marker. This is basically what
happens at t = 10s and depicted in Fig. 5b. At this point, the
video stream is switched to the downward-looking camera.
The UAV is instructed to move towards the marker’s last
known position while increasing its altitude for increasing the
area covered by the camera. When the UAV is located exactly
above the marker (more precisely at t = 19s as in Fig. 5c),
it can complete the landing finding first the right orientation
(t = 20s) and then descending keeping the marker centred,
as shown in Fig. 5d. At t = 54s the quad-copter reaches a
user-defined altitude (set to 0.75m): it can now shut down
its motors and land on the platform (Fig. 5f).

In Fig. 6 the controller commands are plotted against the
marker’s observation. For most of the time, the two curves
overlap, meaning the marker’s observations are directly for-
warded to the controller. The only portion in which they
do not is between t = 8s and t = 25s, when the marker is
lost twice. Therefore, the compensatory behaviour is adopted,
sending the UAV to the marker’s last known position while
keeping its orientation constant. In this way, the pitch, roll
and yaw commands do not change meanwhile the UAV’s
altitude increases. A dedicated analysis is reserved for the

TABLE II: Controller parameters for the moving landing
platform experiment.

Parameter Value Parameter Value
K direct 5.0 K rp 1.0
xy damping factor 0.65 max gaz drop (m/s) -0.15
max yaw (rad/s) 1.0 – –
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Fig. 7: Quad-copter trajectory in three-dimensional space
and top view during the experiment with a moving platform
proceeding in straight line.

altitude in the interval t = [1, 5]s and t = [40, 50]s, and
the yaw in t = [1, 5]s and after t = 18s. Here, the offsets
are below a user-defined threshold and a respective command
equal to 0 is sent instead. The threshold is introduced because
it was noticed that fixed-parameters controllers, like the PID
or the one used, offer limited performances in a scenario
like the one studied, in which high accuracy is required. An
adaptive solution is planned as future work.

B. Moving Platform

In this subsection, the UAV is tested against landing on
a moving platform. Due to the small size of the deck and
the limitations posed by fixed non-tilting cameras, a stopping
command is sent to the UGV once the quad-copter is located
exactly above it. This decision was also forced by the trade-
off posed by the dimension of the visual marker: a smaller
one could be perceived from shortest distances because
occupying a smaller portion in the camera’s FOV; on the
other hand, it would be more difficult to perceive it from far.

The controller setting is reported in Table II . Differently,
from the previous experiment, the K rp parameter assumes
now a bigger value to make the UAV to translate faster. To
allow the UAV descending at high speed while maintaining
the tracking, the value of the max gax drop parameter
is decreased. Lastly, max yaw is kept at its maximum
value to minimise the alignment time with the landing base.
Regarding the UGV, a constant velocity command is sent to
make it move in a straight line.

The flight trajectory is reported in Fig. 7. The quad-copter
performed an autonomous landing in around 40 seconds.

The initial scenario is reported in Fig. 9a. At t = 16s,
as seen in Fig. 9b, the UAV reaches an altitude such that it
is impossible to continue to perceive the marker. The video
stream is therefore acquired from the bottom camera and
the UGV’s estimated position is sent to the controller while
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Fig. 8: Controller commands and visual offsets in the exper-
iment with a mobile platform moving in straight line.

increasing the drone’s altitude. Doing so, at t = 23s the UAV
is located exactly above the UGV and it rotates accordingly
until the proper orientation is reached (Fig. 9d). Because the
landing base is at the centre of the camera’s FOV, a null
velocity command is sent to stop the UGV. Fig. 9e and 9f
show the UAV descending slowly on the marker and landing
on it.

Further analysis can be done with the results reported in
Fig. 8. As in the first experiment, the curve of the controller’s
commands and the offsets one overlap for most of the time.
The difference with the previous case is given by the EKF’s
contribution. It is possible to have an example looking at the
plot in t = [10, 23]s. Here, the marker has been lost twice
and the curves differ: if, on one hand, the offsets are constant
because no new observations have been done, on the other
hand, the commands slightly change. In t = [16, 23]s, while
the yaw commands assume a constant value of 0 because the
UAV is properly oriented, the pitch does not change because
the UGV is moving only in a straight line, not deviating from
the lateral direction. For the same reason, the roll command
is updated to account every instant of the new relative-pose
(changing the longitudinal direction) of the UGV. In the last
part of the graph, the difference between the two curves for
the roll (in t = [35, 40]s), the altitude (in t = [5, 10]s) and the
yaw (from t = 25s till the end) is justified by the adoption
of a threshold to speed up the completion of the landing
manoeuvre. To conclude, the two yaw’s curves deserve a
deeper analysis. As already discussed, while using the frontal
camera, the UAV keeps the marker at the centre of the FOV.
If the UAV rotated to align, it would most probably lose the

(a) t = 0s. (b) t = 16s. (c) t = 23s.

(d) t = 24s. (e) t = 39s. (f) t = 40s.

Fig. 9: Landing manoeuvre of a VTOL UAV on a mobile
platform moving in straight line.
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Fig. 10: Quad-copter trajectory in three-dimensional space
and top view during the experiment with a moving platform
that also rotate.

tracking. To avoid this situation, the rotation is performed
only ten degrees per time and only if the marker is located
at the edge of the camera’s frame. Doing so, the alignment
is slowed down but a continuous tracking is guaranteed.

A last experiment has been done with a moving platform
that proceeds not only in straight line but rotates changing
its heading angle. Note that the UGV is able only to move
in straight line or rotate on the spot at the same time.
The goal of this simulation is to show how the EKF can
compensate the lack of the vision technique in predicting
where the UAV has to move to perceive the visual marker
again. The controller parameters used are the same of the
previous experiment and they are shown in Table II. Results
are reported in Fig. 10, where the UAV’s trajectory is drawn.
In Fig. 11 is shown the comparison between the offsets
obtained through the vision algorithm and the commands
sent to the controller. Here, it is possible to see that, as in
the previous scenarios, the plot of the offsets and the one
related to the commands overlap for most of the time. All
the analysis made before still hold, but it is interesting to
notice how the algorithm is able to react properly when the
visual marker is lost, redirecting the UAV above it despite
changes in position.
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Fig. 11: Controller commands and visual offsets in the
experiment with a mobile platform that also rotate.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, autonomous landing on a ship’s deck is
studied and tested in a 3D simulator. Due to unavailability
of marine robot and scenarios model, simulations have been
performed to a ground unmanned vehicle. The solution
proposed resides only on the UAV’s on-board sensors and
on the adoption of a visual marker on the landing platform
to easily calculate its 6-DOF pose. In this way, despite not
tested yet, the algorithm is supposed to be robust also when
adverse marine conditions affect the rolling and pitching
dimension of the vehicle on which the UAV must land on.
The adoption of EKF allows overcoming issues with fixed
non-tilting cameras. Not involving GPS signals makes this
solution feasible also in indoor scenarios or adverse weather
conditions.
Three experiments, against a static and a moving base,
were performed to validate the approach. In all the cases,
successful results have been obtained. An adaptive controller,
based on an intelligent solution such as artificial neural
networks or fuzzy logic, is identified as future research to
compensate the limits of a fixed-parameters controller such
as the one used in this work.
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A Probabilistic Framework for Global Localization

with Segmented Planes

Jan Wietrzykowski and Piotr Skrzypczyński

Abstract— This paper proposes a novel approach to global

localization using high-level features. The new probabilistic

framework enables to incorporate uncertain localization cues

into a probability distribution that describes the likelihood of

the current robot pose. We use multiple triplets of planes

segmented from RGB-D data to generate this probability

distribution and to find the robot pose with respect to a global

map of planar segments. The algorithm can be used for global

localization with a known map or for closing loops with RGB-

D data. The approach is validated in experiments using the

publicly available NYUv2 RGB-D dataset and our new dataset

prepared for testing localization on plane-rich scenes.

I. INTRODUCTION

Solutions to the Simultaneous Localization and Mapping
(SLAM) problem in 3-D [1], [2], [3] usually assume incre-
mental localization, relying on the robot/sensor pose prior
for matching the current perception to the map. However, if
a reliable prior is unavailable, the robot has to find the pose
with respect to the already learned or a priori known map
by means of a global localization method.

Consider exemplary indoor scene views depicted in Fig.
1a. Are those the same scenes observed from different
viewpoints or are they just similar? A human can tell that
easily (Fig. 1b) using the semantic context, but a robot has to
rely on numerical computations on the basis of some scene
representation. The abstraction level of scene representation
is perhaps the most important problem in developing robust
global localization methods. Point features are most common
in 3-D SLAM [1], [3], but if we exploit higher-level features
[4], the local environment geometry can resolve ambiguities
stemming from an abundance of repetitive or similar visual
patterns [5]. As recovering the geometry from passive vision
data requires intensive computations we focus on active
RGB-D sensors, which are cheap, compact, and provide a
rich description of the scene.

Therefore, we propose a novel approach to the problem
of global localization using higher-level features. Unlike
many 3-D SLAM solutions that focus on accurate mapping
of small areas, our localization system1 works on larger
indoor scenes, with loopy sensor trajectories of extended
duration. We contribute: (i) a new probabilistic localization
framework utilizing Gaussian kernel approximation; (ii) a
localization solution using this framework and segmented

*This work was funded by the PUT DSMK/0172 and DSPB/0162 grants
Jan Wietrzykowski and Piotr Skrzypczyński are with the In-

stitute of Control and Information Engineering, Poznań University
of Technology, 60-965 Poznań, Poland {jan.wietrzykowski;
piotr.skrzypczynski}@put.poznan.pl

1Available at https://github.com/LRMPUT/PlaneLoc

Fig. 1. Example of place recognition in a 3-D environment: perceived
local views (a), and the global map view (b)

planes as features; (iii) RGB-D dataset suitable for evaluation
of the proposed method.

II. RELATED WORK
In keyframe-based 3-D SLAM systems, large loop clo-

sures are detected using appearance-based place recognition
techniques [6]. One of the most widely used algorithms from
this group is FAB-MAP [7]. In ORB-SLAM/ORB-SLAM2
[3] such a technique, based on the fast to compute ORB
features is used also for relocalization [8]. Although Williams
et al. [9] demonstrated that appearance-based methods scale
better than map-based SLAM algorithms for large environ-
ments, these methods do not provide accurate estimates of
the robot pose with respect to the map. SLAM systems that
do explicit map reconstruction usually need to have a reason-
able guess of the sensor pose before they attempt to match
the local perception to the map [1]. The recent ElasticFusion
system [10] that maintains a dense environment model ap-
plies an appearance-based approach for location recognition,
but the database of locations contains predicted views of the
dense map. If the global map is feature-based, synthesizing
frame views becomes infeasible. Among the feature-based
approaches, Heredia et al. [11] proposed a two-stage point-
feature matching algorithm that facilitates global localization.
Higher-level geometric features, that provide more local-
ization constraints than points have been employed in a
number of systems. An early attempt to use plane features
was the 3-D EKF-SLAM by Weingarten and Siegwart [12].
More recently, an optimization-based approach to SLAM
exploiting both, point and plane features was presented [13].
Optimization-based approaches to SLAM with infinite planes

https://github.com/LRMPUT/PlaneLoc


as features are described in [14] and [4], whereas [2] explores
plane segments in dense visual SLAM. Those approaches
tackle, however, the incremental SLAM problem. Pathak et

al. [15] proposed a fast method for registration of noisy
planes. Although the Minimally Uncertain Maximal Con-
sensus algorithm was demonstrated in [15] assuming limited
translations and rotations between consecutive views, this
method can solve unknown correspondences between planes,
hence it has a potential for application in global localization.
Similarly, Cupec et al. demonstrated in [16] that their earlier
planar surface segments registration algorithm can be used
for global localization employing a multi-hypothesis EKF
to handle correspondence outliers. The solution of [17] is
similar in spirit to our approach, but it addresses the place
recognition problem by matching subgraphs representing the
local topology of neighboring planar patches in a plane-
based global map. Hence, although it uses a geometric rather
than appearance-based approach, it is unable to produce an
accurate estimate of the global robot pose.

III. PROBLEM STATEMENT AND SOLUTION
Consider two scenes visible in Fig. 2a, where the same

place in a global map was shown from two different views
using planes. These planes can be matched in a number of
ways (Fig. 2b), but, if the views present the same place,
only one association is valid. However, as examining all
possible combinations is intractable, we build a probability
distribution of the robot pose using cues from small subsets
of planes.

Fig. 2. Schematic illustration of generating the global robot pose PDF by
matching sets of planes

At least three non-parallel pairs of matching planes are
required to obtain an SE(3) transformation. Unfortunately,
we don’t know the associations between plane segments. We
can try to discover them employing appearance (e.g. color),

size and global location. However, using such criteria is in-
sufficient, and there is a need to examine constraints imposed
by the geometric transformations between the potentially
matching features. Unfortunately, even using multiple above-
mentioned criteria for matching we sometimes obtain wrong
associations that act as strong outliers in typical estimation
procedures, e.g. involving Kalman filtering [16]. A common
solution to this problem is to embed the estimation into a
RANSAC procedure, which however spawns other issues,
such as extensive hypothesis evaluation and setting proper
thresholds for outlier rejection. Therefore, our novel idea is
to use multiple triplets of potentially corresponding planes to
generate a kernel-based global probability density function
(PDF) that describes the likelihood of the robot/sensor pose.

The triplets consist of three pairs of associated plane
features (cf. Fig. 2b). Each triplet is evaluated if it induces
a plausible transformation by projecting planes from the
coordinate frame of the current sensor view into the co-
ordinate frame of the global map (Fig. 2c). But even the
plausible triplets should not contribute equally to the final
pose hypothesis, as some triplets contain better matches than
others. Therefore the contribution has to be weighted, which
is illustrated in a simplified form in Fig. 2d. Inspired by
[18], where a probability distribution was constructed from
samples to find a feasible grasping sequence, we construct
a PDF to find the transformation that best explains the
observed triplets of segmented planes. A triplet supports the
transformation by introducing a weighted Gaussian kernel
that adds to the PDF. The kernels are placed in the location
space, i.e. each point in that space corresponds to a possible
transformation between the sensor view and the map. Hence,
if many kernels are placed in some area, the probability
density in that area is high. During localization, we seek
the maximum of the PDF and finally test it for being the
correct transformation.

IV. TRIPLETS OF PLANES

This section describes data processing steps used in gen-
eration and evaluation of triplets. The process begins with
plane segmentation that isolates planar surfaces from a point
cloud. The extracted planes are then matched to a set of
planes in a global map and outcome pairs are used to form
triplets of pairs representing possible transformations. Each
transformation is evaluated to test if it is plausible and then
passed to the probabilistic framework.

A. Extracting planes

We extract planar surfaces from a point cloud representing
the observed scene using a simple method based on seg-
mentation and segment merging by flood fill. The method is
designed for the presented system because none of the off-
the-shelf algorithms (e.g. [19]) satisfied our requirements.
The point cloud is segmented by means of supervoxel
clustering (Fig. 3a) and each segment with a low curvature
is considered as a seed. The algorithm, using supervoxel
adjacency list, recursively merges all segments connected to a
seed that are sufficiently flat, their normals are approximately



parallel to the normals of the seed, and there are no steps
between them. Merged segments are tested to have at least
minimal size to avoid adding many small segments. The
last operation is to compute plane equations using all points
belonging to the generated segments (Fig. 3b).

Fig. 3. Segmentation of planar surfaces with visualized normals (white
lines): supervoxels (a), and merged segments (b)

B. Selecting triplets

Having the current view and the global map represented as
planes, we pick pairs of planes, one plane from the current
view, and another one from the map. Those pairs are potential
matches, and each of them may be either correct if the two
planes indeed represent the same planar surface, or incorrect
if they don’t. To limit the number of pairs only planes that
are visually similar are considered. The appearance of each
plane is represented as a histogram of the Hue and Saturation
components of the HSV color model and is embedded into
a vector h

s

i

for the i-th plane from the current view, and
into a vector h

m

j

for the j-th plane from the map. Planes i
and j are considered similar if the difference between their
histograms doesn’t exceed the predefined threshold:

h(i,j) = |hs

i

� h

m

j

| < ⌧
h

. (1)

As three pairs allow to compute an SE(3) transformation, we
form triplets of pairs that represent a valid transformation
if all three matches are correct. Again, to limit the size
of the search space, each triplet has to fulfill the following
conditions:

• Each plane i and j has to appear in at most one of three
pairs, as the same plane segment cannot be matched
more than once.

• The map planes must not be further than ⌧
d

each from
the other. The map can be large in comparison to the
current view, therefore if two planes are far from each
other, they won’t be visible in the same view.

C. Computing transformations

To evaluate correctness of the established triplets it is nec-
essary to calculate an alleged SE(3) transformations between
the frames of reference of the local view and the global map
induced by those triplets. We use a general method that takes
as input n � 3 pairs of planes and outputs a transformation
given by the translation vector t = [t

x

t
y

t
z

]

T and the
rotation quaternion r = [r

x

r
y

r
z

r
w

]

T . The method
consists of two steps. At first it calculates the rotation using

normal vectors of the planes ns

i

and n

m

j

, then the translation
is obtained using distances from origins ds

i

and dm
j

also. The
normal vector and distance from the origin are parameters
of the plane, and can be used to form an equation satisfied
by every point q belonging to that plane: n · q � d = 0.
A derivation of the rotation calculation algorithm is based
upon the method of Walker et al. [20]. The algorithm tries to
minimize the differences between the views’s plane normal
vectors and the transformed map’s plane normal vectors:

e(i,j) = |W(r)

T

Q(r)n
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j
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= 2
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)r

⇤

. (2)

The total energy to minimize is given by equation:

E =

X

(i,j)
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⇥
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Cr+ const.,

(3)
where: C = �2

P

(i,j) Q(n
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)

T

W(n

m

j

). Taking a derivative
of (3) with respect to r and using a Lagrangian multiplier
we obtain equation:

�1

2

(C+C

T

)

| {z }

D

r = �r (4)

where the solution r

⇤ is given by the eigenvector of matrix
D that corresponds to the largest eigenvalue. The computed
rotation is an unambiguous solution to (4) if the largest
eigenvalue is unique as well. The planes are considered to be
one-sided, and the normal vectors point in direction opposite
to the direction which a plane was observed from. The one-
side assumption is justified by the fact that we want to use
planar surfaces of objects that have some volume.

Computing the translation between frames of references
is done by minimizing square error between the sensor
view’s plane distance, and the transformed global map’s
plane distance [21]:

S =

X

(i,j)

(ds
i

� dm
j

� (n

m

j

)

T

t)

2
= |A�Bt|2, (5)

where:
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, (6)

B =
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⇤

T

. (7)

The solution is given by the pseudo-inverse method:

t

⇤
= (B

T

B)

�1
B

T

A. (8)

D. Evaluating transformations

Unfortunately, as the transformation computation is only
minimizing the errors, the solution may actually be implau-
sible in case of planes mismatch. To verify this, we use plane
parametrization represented as a unit quaternion [14]:

p =

1p
1 + d2

[n
x

, n
y

, n
z

,�d]T , (9)

and the transformation from map’s frame of reference to the
local view’s frame of reference as a homogeneous matrix



T

m,s

. If the transformation is valid, for each pair of planes
a representation of map’s plane transformed to the view’s
frame should be approximately equal to the representation
of the view’s plane. The difference between those represen-
tations is computed using the logarithm map of quaternions:

f(i,j) = log

n

⇥

T

T

m,s

p

m

j

⇤�1
p

s

i

o

. (10)

Note that using a homogeneous matrix to transform quater-
nions is different than when transforming points:

p

s

= T

�T

s,m

p

m

= T

T

m,s

p

m, (11)

and the result has to be normalized afterwards. Finally, the
criterion has a form |f(i,j)| < ⌧

f

, i.e. a norm of the logarithm
map difference has to be below a certain threshold ⌧

f

.
Planes are infinite and the computed transformation can

be implausible, because the solution can point to a dis-
tant location, far away from the investigated environment.
Therefore, it is also necessary to check if the transformation
is justified by the available observations. In this work we
assume the solution to be plausible when the convex hulls
of the points belonging to the map planes, denoted by
chull(P

m

j

), after transformation to the current view frame
of reference, overlap with the convex hulls of the points
belonging to the current view planes, denoted by chull(P

s

i

):

G(i,j) =
⇥

T

�1
m,s

chull(P

m

j

)

⇤

\ chull(P

s

i

). (12)

In other words, we check if for each pair of planes the
same segment of the plane is observed and represented in the
global map and the current scene (Fig. 4). The area of the co-
observed part has to have a certain size: area(G(i,j)) > ⌧

g

.

Fig. 4. Transformed point cloud of the map and point cloud of the current
view (a), and intersection of convex hulls (b)

V. PROBABILISTIC FRAMEWORK
The set of triplets T generated in previous processing

steps is next included in the probabilistic framework. Each
triplet is scored and the computed scores are treated as
weighting factors used to build a PDF. The final outcome
of the method is the SE(3) transformation, which is most
probable according to the supporting evidence.

A. Assigning weights

The triplet weight takes into consideration the appearance
difference h(i,j) (1) and the area of the convex hulls inter-
section area(G(i,j)) (12). Moreover, the weight depends on
how frequently the respective plane segment was employed,
as the same plane can be a part of multiple triplets, and

therefore can introduce a bias to the PDF. We handle it by
calculating an occurrence factor for each triplet a and each
pair (i, j) 2 S

a

within the triplet. The more triplets including
the same plane in a vicinity of induced transformation, the
lesser the weight:

w
a,(i,j) =

2

4

X

b2T

X

(k,l)2Sb

I
i=k

exp(�y(a,b))

3

5

�1

, (13)

where I
i=k

is an indicator function equal to 1 whenever i = k
and 0 otherwise, and y(a,b) is a norm of a SE(3) logarithm
map of a difference between transformations v for the triplets
a and b:

y(a,b) =
�

�

log(v

�1
a

v

b

)

�

� . (14)

Note that, in opposition to Section IV, transformations are
parametrized as 6-D vectors v that contain 3 translation
variables t

x

, t
y

, t
z

and 3 rotation variables r
x

, r
y

, r
z

(the
r
w

can be always restored assuming that is non-negative and
the quaternion is a unit quaternion). The overall weight for
the triplet a is expressed by the equation:

w
a

=

X

(i,j)2Sa

area(G(i,j))wa,(i,j) exp(�h(i,j)). (15)

B. Constructing localization distribution

The SE(3) transformations induced by triplets are rep-
resented as points in a 6-D space with 3 variables for
the position, and 3 for the rotation. The strength of the
contribution is controlled by a weight given by (15), and
we convert this contribution to the probabilistic language by
placing a weighted Gaussian kernel in each transformation
point. The final PDF is therefore a sum of all kernels:

p(x) =
1

Z
p̃(x) =

1

Z

X

a2T
K

a

(x), (16)

where Z is a normalizing constant, and the kernel is:

K
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� log(v
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log(v
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. (17)

The distance between kernel’s center v

a

and the transfor-
mation v

x

represented by the point x is computed using
logarithm map, and is embedded in the square form of
multidimensional Gaussian distribution with the information
matrix I

a

.
Having a probability distribution, we seek for the point

with the highest probability. Inference in general distributions
can be complicated and to avoid this, we exploit the fact that
we already have a list of possible solutions. For each triplet,
we evaluate the transformation induced by this candidate, and
choose the one with the highest probability, denoted further
as x1. Additionally, we search for the second-best solution
x2 that is properly distant from the best one. To decide that
the transformation x1 is correct, its probability has to exceed
a certain threshold:

p̃(x1) > ⌧
p

(18)

and has to be significantly greater than for the second-best
maximum:

p̃(x1)� p̃(x2) > ⌧
pd

. (19)



The last test is the fitness score test. It refers back to
point clouds and assesses if the current view’s point cloud
transformed to the map’s frame of reference is aligned with
the map’s point cloud. This test involves computation of the
sum of squared distances from each point of the transformed
views’s point cloud P

s to the nearest neighbor in the map’s
point cloud P

m, and has to be below the threshold:
X

qs
l2Ps

(q

s

l

� ˆ

q

m

l

)

2 < ⌧
fs

, (20)

where ˆ

q

m

l

is the nearest neighbor in map’s point cloud.
It’s worth noting that the fitness score test examines only
points belonging to plane segments, and is much faster than
ICP, as (20) is equivalent to a single iteration of ICP on
a reduced size point cloud. If the transformation fulfills all
three conditions, it is assumed to be the correct one.

VI. EXPERIMENTAL EVALUATION

We evaluated the proposed algorithm in the global local-
ization task with a known map, as the software is not yet
integrated within a SLAM system. For global localization,
the algorithm requires a point cloud representing the current
view (local scene), and a global map composed of plane
segments. As we are not aware of any experimental RGB-
D dataset for which a map of plane features is available,
we built a “global” point cloud using the ElasticFusion
software [10], with the dataset’s ground truth trajectory used
for registration to avoid drift. The fused point cloud was
then segmented into plane features, as described in Section
IV. Our approach needs also the local point cloud to extract
planes in the current view. Using a single RGB-D frame for
that purpose is not enough because a sufficient number of
planes has to be detected. Hence, to widen the local view
context, we used again ElasticFusion to fuse together point
clouds from the last 100 RGB-D frames. Considering the
Kinect frame rate this short sequence takes few seconds, and
in most cases does not accumulate significant drift. For the
local perception, the ElasticFusion’s trajectory estimates are
used in the presented experiments.

The main dataset used is the PUT RGB-D/Workshop (PUT
RGB-D/W)2, which consists of 10 sequences (seq1 to seq10)
acquired in a 8⇥8 metres robotic workshop. The ground
truth data was captured using the OptiTrack motion capture
system. Three non-overlapping sequences seq5, seq6 and
seq7 were used to build the global map that contains 56
segments. Moreover, we used a sequence from the publicly
available NYUv2 dataset [22] acquired in a typical household
environment. Unfortunately, in NYUv2 no ground truth data
for the sensor trajectory is provided. Thus, we had to use the
poses computed by ElasticFusion as ground truth.

The localization performance was measured by counting
the locations that were correctly recognized, and those that
were recognized incorrectly (if any). For the performance
tests, we applied the algorithm to every 10-th pose of the
recorded sequence, attempting to localize the sensor with

2Available at http://lrm.put.poznan.pl/rgbdw/

Fig. 5. Global localization results for the PUT RGB-D/W dataset seq2 for
⌧p = 1.1, ⌧pd = 0.2, and ⌧s = 0.07. Test trajectories are marked with
red lines, recognized places with blue dots, whereas green lines connect
recognized locations to their respective ground truth poses

respect to the global map. We treated as correct the sensor
poses that were distant at most 0.11 from the respective
ground truth pose, using the metrics given by (14). The 0.11
value was chosen, because re-localization within this range
usually enables to recover tracking in our RGB-D SLAM
[1], and should be suitable for other similar SLAM systems.
Additionally, mean Euclidean ¯d and angular ↵̄ distances
between the computed poses and the ground truth trajectory
were computed in all tests. Results are gathered in Tab. I,
where four sets of parameters were evaluated: optimal for the
PUT RGB-D/W dataset, optimal for the NYUv2 dataset, with
probability difference test switched off, and with point cloud
alignment test switched off. Visualizations of the recognized
places are presented in Fig. 5 and 6, for the PUT RGB-D/W
and NYUv2 datasets, respectively. We used the following
parameter values: ⌧

d

= 5.0, ⌧
h

= 2.5 (1.3 for NYUv2),
⌧
f

= 0.05 and ⌧
g

= 0.1.
TABLE I

GLOBAL LOCALIZATION RESULTS FOR DIFFERENT PARAMETER SETS

parameters PUT RGB-D/W NYUv2
⌧p ⌧pd ⌧fs corr incorr unk d̄ [m] ↵̄ [�] corr incorr unk d̄ [m] ↵̄ [�]
1.1 0.2 0.07 49 0 112 0.123 0.24 134 6 78 0.113 2.23
1.2 0.2 0.03 33 0 128 0.113 0.28 113 0 105 0.085 0.15
1.2 0.0 0.03 33 3 125 0.492 12.81 113 0 105 0.085 0.15
1.2 0.2 1 49 13 99 0.559 35.82 147 7 64 0.122 2.07

The results obtained using two different datasets indicate
that the proposed method is reliable, finding a large number
of locations along the test trajectories. If the algorithm
is correctly parametrized, it produces no false positives,
which is of pivotal importance in localization task. The
main cause for the number of places (local views) that
remained unrecognized was the insufficient quality of depth
data used to create the global maps. Maps produced from a
single sequence (NYUv2) or few sequences of very limited
overlapping had many areas that were empty or contained

http://lrm.put.poznan.pl/rgbdw/


point clouds of insufficient density to extract correct planes.

Fig. 6. Global localization results for the NYUv2 dataset for ⌧p = 1.2,
⌧pd = 0.2, and ⌧s = 0.03. Test trajectories are marked with red lines,
recognized places with blue dots, whereas green lines connect recognized
locations to their respective ground truth poses

The mean computing time for a single global localization
act in the experiments was 21 s on a Core i5 2.6 GHz laptop.
However, the most time-consuming step (14 s in average)
was the computation of the fitness score (20). This step can
be made much faster using approximate nearest neighbor
search, taking less than 1 s, as shown by a preliminary
implementation employing octree. Further optimization of
the computation time is a matter of our current research.

VII. CONCLUSIONS

We tackled the problem of global localization applying a
novel approach that creates a PDF describing the likelihood
of sensor’s pose using plane features. The experimental
results suggest that the proposed method performs well in
large-room-sized environments, yielding correct and accurate
pose estimates whenever it is possible to provide a good
quality of the a priori map and there are features available
in the environment.

An important advantage of the new probabilistic frame-
work is that not only paired planes can contribute to the PDF.
The framework can handle localization cues coming from
other feature types, or from other sensing modalities, e.g. an
orientation sensor like AHRS. Applications of the presented
algorithm are not limited to global localization and loop-
closing. It can be easily adapted for matching plane features
in graph-based SLAM utilizing planes [4].
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Semantical Occupancy Grid Mapping Framework

Timo Korthals, Julian Exner, Thomas Schöpping, and Marc Hesse

Abstract— In recent decades, mapping has been increasingly
investigated and applied in unmanned terrain, aerial, sea,
and underwater vehicles. While exploiting various mapping
techniques to build an inner representation of the environment,
one of the most famous remaining is occupancy grid mapping.
It has been applied to all domains in a 2D/3D fashion for
localization, mapping, navigation, and safe path traversal. Until
now generally active range measuring sensors like LiDAR or
SONAR are exploited to build those maps. With this work
the authors want to overcome these barriers by presenting
an occupancy mapping framework offering a generic sensor
interface. The interface handles occupancy grids as inverse
sensor models, which may represent knowledge on different
semantical decision levels and therefore build up a semantic grid
map stack. The framework offers buffered memory manage-
ment for efficient storing and shifting and further services for
accessing the 2D map stack in different cell-wise pre-fused and
topometric ways. Within the framework, two novel techniques
operating especially with occupancy grids are presented: First, a
novel odds based interpolation filter is introduced, which scales
grid maps in a Bayesian way. Second, a Supercell Extracted
via Variance-Driven Sampling (SEVDS) algorithm is presented
which, abstracts the semantical occupancy grid stack to a
topometric map. While this work focuses on the framework’s
introduction, it is extended by the evaluation of SEVDS against
state-of-the-art superpixel approaches to prove its applicability.

I. INTRODUCTION

Mapping frameworks (MFs) are widely used within com-
mercial products and build up the foundation in many ser-
vices like navigation with Google Maps or process planning
in farm management systems. Fig. 1 shows the principal
concept of a MF, which consists mainly of the map storage.
A map is a symbolic depiction which emphasizes relation-
ships between elements of some space. These maps may
have different representations depending on the application
like topographic, metric, orthographic, etc. Data acquisition
builds the map storage, whilst the preprocessing handles the
transformation and embedding of incoming data. Services
build up the link to other applications or clients, which
invoke a processing on the maps due to their request. For
the sake clarity, data acquisition and processing are explicitly
depicted, but can be alternatively represented as a service as
well. Within the authors’ nomenclature of MFs, services are
restricted to the derivation of alternative representations of
stored maps which excludes navigation, task calculation, and
others. Due to that definition, different mapping frameworks
exist in robotics that model an inner representation of the
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Fig. 1: Mapping framework concept

world. Apparently, every known mapping algorithm is real-
ized as a MF, which stores e.g. range readings into a data
structure while the constructed map can be requested dur-
ing navigation. The famous Simultaneous Localization and
Mapping (SLAM) concept, for instance, can be interpreted
as MF with feedback loop which updates a map hypothesis
during data acquisition and loop closure.

2D occupancy grids as statistical sufficient representation
for an inner world model were introduced by Moravec and
Elfes [1]. They have been widely applied and are still up to
date for robotic mapping and SLAM applications due to their
lean and efficient implementations. Semantical occupancy
grid maps (SOGMs), also known as inference grids [2], [3],
on the other hand got left behind since their first promotion.
This could be of lacking applications or implementation
complexity, because for each sensor detection algorithms, a
mapping from raw sensor data to a 2D grid-based semantical
interpretation of the environment has to be realized. On
the other hand, nowadays enormous robotic sensor setups
demand new approaches where SOGMs could be the next
breakthrough.

With this definition of SOGMs and MFs in mind, the
publication presents an Robot Operating System (ROS) im-
plementation of a map centric, semantical occupancy grid
mapping framework with generic interfaces to fuse inverse
sensor models. First, related work is presented in Section II.
In Section III the authors’ framework is introduced where
the occupancy mapping is depicted and generous sensor
interfaces, interpolation, scan matching, services, and the
implementation are defined. Section IV gives an evaluation
for a supercell clustering service in a static table top scenario.
Finally, a view on future applications in Section V is given
where the proposed framework will be exploited.

II. RELATED WORK

In the ongoing chapters the authors focus on robotic
mapping applications for environment traversal, recapitulate
common approaches and bring them into the given nomen-
clature.



A. Data Acquisition and Preprocessing
In the context of robotics achieving safe environment

traversal, areas which are not occupied by an object are of
interest. Active sensors concepts like LiDAR or SONAR,
which are inherently able to detect the range to objects,
are commonly used for this particular task [4]. Furthermore,
passive and indirect measurements by cameras, in a stereo
or inverse perspective mapping setup, became famous in
automotive applications due to their inexpensiveness [5].
Range measurements are preprocessed, such that they are
first transformed into the proper coordinate system of the
map. After this, an inverse sensor model is applied, which
is the deduction from measurements to causes [6].

B. World Modeling
The world modeling storage focuses the format in which

the information is obtained. Nüchter et al. sorts maps used
in robotics for representing environments in the following
descending order from level of detail to compactness [7]:
Grid maps spatialize the environment into an equidistant
grid which can be stored in arrays, or more efficiently in
sparse environments in quad- or octal-trees. Grid maps on
one hand are limited in environmental representation by their
resolution which influences memory consumption drastically,
but their non-parametric property makes them ideal for map-
ping unstructured objects. Feature maps represent obstacles
via geometric primitive descriptions, e.g. lines, planes, or
cubes. Topometric maps are hybrid maps consisting of a
topological structure with direct spatial relationship. The
highest compactness and therefore greatest abstraction is
achieved by topological maps where no more spatial but
logical relations exist.

C. Services & Existing Mapping Frameworks
Services are fundamental extensions to the mapping ap-

proach. They offer any subsequent application the interface
to access the mapped data in specific ways. For a navigation
approach on unstructured environments commonly a metric
grid map is necessary and therefore, a service which formats
the map data in such way is recommended.

Applicable mapping frameworks (MF) exist and are gen-
erally implemented within the Robotic Operating System
(ROS) middleware [8]. The most common approach for
the map storage and for incorporating new scans is the
occupancy grid map (OGM) algorithm based on grid maps
in a 2D or 3D fashion [1]. Due to that, the authors focus on
application which implemented that approach.

A popular ROS package that works with a grid-based
occupancy map representation is the costmap 2d for incor-
porating range measurements and offering the result to the
ROS 2D navigation stack [9]. Karto SDK is an commercial
but educationally freely available MF which incorporates
mapping and additionally localization, path planning, and ex-
ploration while interfaces for other robotic middlewares (MS
Robotics Studio and Robot OS) exist [10]. Kohlbrecher et al.
provide a comprehensive ROS package called hector slam
which is maintained by Team Hector [11]. It comprises the

main application hector mapping which realizes a SLAM
algorithm. Various subpackages extend the mapping as ser-
vices, e.g. map retrieval (hector map server) or trajectory
creation (hector trajectory server), which are build upon
that. Gmapping realizes a Rao-Blackwellized particle filter
for SLAM and allows access of the map via a service
[12]. All former approaches exploit 2D grid maps while
they are mainly designed for autonomous ground (AGV) or
surface (ASV) vehicles. 3D OGM is commonly applied in
autonomous aerial vehicles (AAV). A famous 3D occupancy
mapping framework is OctoMap by Hornung [13]. More
recently Droeschel et al. [14] used occupancy grid mapping
to fuse multiple sensor modalities into one representation to
achieve robust mapping in AAVs. Multimapping approaches
have been done by Morris et al. [15] handling one static
and multiple temporal maps, and Frankhauser and Hutter
handling multiple elevation maps [16].

Fundamentally, all named application share the same inner
representation structure which is a two dimensional OGM
approach for multiple reasons: First, grid maps can be stored,
searched, and accessed very efficiently by computer systems.
Second, the OGM algorithm introduced in III-A allows a
robust and efficient online sensor fusion and map updating.

III. SEMANTICAL OCCUPANCY GRID MAPPING
FRAMEWORK

Within this publication, three challenges are faced: trans-
fering the sensor detections into a map representation of the
vehicle’s environment, storing, and service advertisement.
First, the semantical occupancy grid mapping approach as
a map server is introduced in Section III-A. Second, the
generic interface definition by inverse sensor models (ISM) is
further explained in Section III-B. More deeply, Section III-
C proposes a novel interpolation technique for OGMs/ISMs
in Section III-C.1 and scan matching in Section III-C.2.
Services are introduced for accessing the current map data
in a raw, fused, or topometrical way in Section III-D.1 and
III-D.2. Finally, Section III-E gives the functional description
of the map server application in ROS.

A. Semantical Occupancy Grid Mapping
Two-dimensional occupancy grids were originally intro-

duced by Elfes [17]. In this representation, the environment
is subdivided into a regular array or a grid of quadratic cells.
The resolution of the environment representation directly de-
pends on the size of the cells. In addition to this discretization
of space, a probabilistic measure of occupancy is associated
with each cell. This measure takes on any real number in
the interval [0, 1] and describes one of the two possible cell
states: unoccupied or occupied. An occupancy probability of
0 means definitely unoccupied space, and a probability of 1
means definitely occupied space. A value of 0.5 refers to an
unknown state of occupancy.

An occupancy grid is an efficient approach for representing
uncertainty, fusing multiple sensor measurements on the
decision level, and to incorporate different sensor models
[5]. To learn an occupancy grid M given sensor information



P (m2) > 0.5

P (m1) < 0.5

P (m3) = 0.5

Mw
h

n

Fig. 2: SOGM with N = 3 layers

z, different update rules exist [18]. For the author’s approach,
Bayesian update rule is applied to every cell m 2 M
at position (w, h) as follows: Given the positions x

t

of a
vehicle at time t, let x1:t = x1, . . . , xt

be the positions of
the vehicle’s individual steps until t, and z1:t = z1, . . . , zt
the environmental perceptions. Occupancy probability grids
determine for each cell m of the grid the probability that this
cell is occupied by an obstacle. Thus, occupancy probability
grids seek to estimate
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This equation already describes the online capable, recursive
update rule that populates the current measurement z

t

to
the grid, where P (m|z1:t, x1:t) is the so called inverse
sensor model (ISM). The ISM is used to update the OGM
in a Bayesian framework, which deduces the occupancy
probability of a cell, given the sensor information.

The extension to semantical occupancy grid maps or
inference grids is straightforward and defined by an OGM M
with W cells in width, H cells in height, and N semantical
layers:

M : {1, . . . ,W}⇥ {1, . . . , H} ! m = {0, . . . , 1}N (2)

Compared a single layer OGM which al-
lows the classification into three classes�

occupied, occupied, unknown
 

, the SOGM supports a
maximum of

���occupied, occupied, unknown
 ��N = 3N

different classes allowing much higher differentiability in
environment and object recognition. The corresponding
ISMs are fused via the occupancy grid algorithm in their nth
associated semantical occupancy grid. The implementation
of a semantical map stack as shown in Fig. 2 is further
called map server (MS).

B. Inverse Sensor Model Handling

The ISM is the preprocessed sensor data originating from
one or more sensors. It maps from causes to reasons so that
information resides on a decision level (cf. [19]) as occu-
pancy probability at the particular cell. It is commonly used
for sensors with a planar sensor lobe, oriented parallel to the
ground. In that case, a quite simplistic model can be applied,
e.g. for a laser range finder. Each cell m that is covered by the
beam of the observation z and whose distance to the sensor is

shorter than the measured one, is supposed to be unoccupied.
The cell in which the beam ends (the measurement point) is
supposed to be occupied, and everything behind is unknown
[20]. For generic implementations, however, sensors like
cameras LiDAR and RADAR may be non-planary installed
and thus their sensor lobes are tilted with respect to the map.
Each sensor-algorithm combination requires its own ISM,
converting from the algorithm’s output to a 2D measurement
grid representation. An ISM approach for monocular/stereo
cameras, depth cameras, proximity sensors, RADAR, LiDAR
and their corresponding algorithms has been published by
Kragh et al. [21].

C. Preprocessing

Incorporating new sensor measurements on ISM level
needs to be handled in two dependent ways: First, the reso-
lution of the ISM is interpolated to meet the MS. Second, the
ISM is matched and therefore transformed by a homography
into the MS frame.

1) Interpolation: Kohlbrecher et al. states, that the dis-
crete nature of occupancy grid maps limits the precision
that can be achieved and also does not allow the direct
computation of interpolated values or derivatives [11]. For
this reason an interpolation scheme, allowing sub-grid cell
accuracy, is necessary for estimating occupancy probabilities.
Intuitively, the grid map cell values can be viewed as samples
of an underlying continuous probability distribution which
can be defined in various ways. A naive approach might
be the nearest-neighbor interpolation. In [11], a bilinear
filter is introduced for subsampling OGMs. Other approaches
using higher polynomials should not be applied to OGM
interpolation, due to their value range definition outside of
the sampling points. This can lead to values outside of (0, 1)
which needs to be truncated or handled otherwise.

In this paper, a new interpolation method called biodds
interpolation is proposed where it is assumed that not the
occupancy values are linearized between the sampling points,
but the amount of sensor readings. This way, the nature
of the OGM algorithm in conjunction with the probability
values, which are clearly non-linear as stated by Hähnel
[18], is respected. To achieve this, an interpolation function
is derived from a two-parametric odds model:

dOdd (R; ✏0, ✏1) = Odd (✏0)Odd (0.5 + ✏1)
R (3)

Defining ✏0 > 0 and 1�✏0 as the lower and upper bounds and
✏1 > 0 as the information increment, Equation 3 can be eval-
uated over R 2 [0, logOdd(0.5+✏1)(Odd(1 � ✏0)/Odd(✏0))]
measurements. For the sake of clarity the value range R is
mapped to x̂ 2 [0, 1]. Fortunately, the given odds model can
be approximated by function f with a vanishing error by a
one-parametric hyperbolic function:

f(x;↵) = 0.5 tanh((x� 0.5)↵) + 0.5 (4)

Wrapping everything up, the interpolation m of point P can
be calculated by applying the approximator f as depicted in



Fig. 3: From left to right: Interpolation point on a grid, odds interpolation for different ✏0, nearest neighbour, bilinear, and
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Fig. 3 depicts the different interpolation models for a grid
consisting of four cells. It is worth noticing that the two
extrema ✏0 ! 0 and ✏0 ! 0.5 of the odds interpolation leads
to either the nearest neighbor or the bilinear interpolation
with respect to the boundaries (cf. Fig. 3).

2) Scan Matching: Scan matching is the process of align-
ing ISMs with each other or with an existing SOGM. This is
necessary while ISMs can be produced in another coordinate
frame than the one of the map, or the ISMs are misaligned
due to poor odometry, registration, or ISM algorithm design.
The first issue can be solved by knowing the registration
between the map and the sensor frame and then applying an
homography to the ISM. The latter one can be solved similar,
but the missing transformation needs to be recovered. This
is done by utilizing ORB feature extraction of the ISM and
the corresponding SOGMs surrounding [22]. The features
are matched via the distance of pairwise feature candidates
which again leads to a homography that is depicted in Fig. 4.

D. Services

Services are defined, such that they process the requested
type, pose, and resolution as shown in Fig. 4. Pose and
resolution are features to facilitate requesting applications
to outsource such post processing to the MS. Therefore, it
is uniquely handled and benefits from the proposed interpo-
lation technique from Section III-C.1.

1) Cell Wise Retrieval: Requesting preprocessed SOGMs
is beneficial for applications only requiring one kind of
information which can be derived from a set of SOGMs.
Therefore, the authors implemented, besides the raw access
of SOGMs, also the two following fusion techniques among
layers: The first approach is based on a super Bayesian
independent opinion pooling PB [23]. It is applicable for the
case when separate SOGMs with identical feature representa-
tions (e.g. set of maps for class “obstacle”) are maintained.
Second, a non-Bayesian fusion maximum pooling method
PM is applied to heterogeneous feature representations s(e.g.
set of maps with varying classes). The fusion techniques are
cell-wise and therefore do not introduce any clustering.

PB(m) =
1

1 +
Q

N

1�P (mn)
P (mn)

, P̃M(m) = max
n

P (m
n

) (6)

2) Superpixel Clustering: Unlike single layer OGM ap-
proaches, an SOGM incorporates multiple OGMs with vary-
ing classes residing in the map storage. For further applica-
tions, respecting every grid cell is not a feasible approach
due to noise, sparse data, or offset between the layers. Even
worse, high bandwidth would be necessary for requesting a
raw SOGM. To transform the SOGM into a parametrized
form by clustering e.g. via Gaussians is unfeasible as well,
due to the risk of lacking objects. The authors’ approach is
therefore a superpixel-like clustering inspired by computer
vision to find homogeneous regions and assigning a feature
vector for these. This leads to a topometric map, which is
derived from the centroids of the superpixels as shown in
Fig. 6. Utilizing the Superpixels Extracted via Energy-Driven
Sampling (SEEDS) algorithm from Van den Bergh [24] the
authors revise the formulation

H(s) = D(s) + �G(s), (7)

to respect the nature, s.t. probability and locality of infor-
mation of SOGMs more precisely. In Equation 7 s is the
superpixel of interest, D is the color distribution term and G
is the contour function which can be smoothed via the scalar



factor �. As stated in the original paper a drawback of the
color distribution term is the lack of respecting the variance
of color values inside a superpixel. But especially for SOGM
clustering applications, where data represents probabilities,
this must be considered. For instance, superpixels consisting
of contradicting values greater and less than 0.5 inside one
layer should be avoided.

The authors introduce therefore the Supercell Extracted
via Variance-Driven Sampling (SEVDS) algorithm, which
substitutes the color distribution term of SEEDS by a vari-
ance driven formulation D0. The distribution term D0 of a
supercell c is defined as the sum of Eigenvalues e of the
covariance matrix C of the probability histogram h(c):

D0(c) =

NX

n=1

e
n

(var(h(c))) (8)

Each supercell c groups the cells m 2 c ⇢ M into a arbitrary
but connected shape as depicted in Fig. 5. The probability
range [0, 1] is divided into KN bins of size 1/K along every
principal dimension. Thus, a bin b

k1,k2,...,kN 2 N (with k
n

=
1, . . . ,K) of a N dimensional histogram h 2 Rk⇥k...⇥k for
one particular supercell c is calculated by

b
k1,...,kN =

X

m2c

NY

n=1

⇧

 
m

n

� 1+2(kn�1)
2K

K

!
(9)

with m
n

addressing a cell of the nth semantical layer and
⇧ being the boxcar function. From that histogram, the
covariance matrix var(h(c)) 2 RN⇥N is calculated. Further,
from that covariance matrix, the N Eigenvalues e

n

are
calculated. Their sum is the quantifier of the distribution of
occupancy probabilities in the corresponding supercell. This
procedure becomes intractable with O = (K2)N for even
a few semantical layers, but fortunately this derivation can
be simplified twice so that the calculation becomes linear
with O = KN . First, the sum of Eigenvalues is equal to the
trace and therefore no Eigenvalue decomposition needs to
be performed. Second, while the covariances are no longer
of interest due to the trace, the calculation of variances
var(h(c

n

)) 2 R of the marginal histogram is sufficient.
The marginal histogram is nothing but the histogram of the
a single semantic layer n in the supercell c

n

(cf. Fig. 5).
Finally, the distribution term can be simplified to

D0(c) =

NX

n=1

e
n

(var(h(c))) =

NX

n=1

var(h(c
n

)) (10)

Using the variance of histograms as a distribution measure-
ment becomes intuitive by taking the differences of proba-
bilities in one supercell into account. Thus, the distribution
of probabilities along the semantical layers is marginally
respected. But with increasing contradictions along the spa-
tial resolution the distribution term maximizes. Therefore,
D0 needs to be minimized to find the best supercell. This
is implemented just like done by the SEEDS in a greedy
fashion: For every supercell c an adjoining block c0 with ĉ =
{c

l

, c0} is taken into account for the distribution calculation.
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Fig. 5: Supercell with N = 2 layers and corresponding
histrograms with K = 2 bins.

P 1c
= (.34, .23)T

P 2c
= (.83, .46)T

P 3c
= (.75, .68)T

P 4c
= (.59, .22)T

T 1c1c
3c

2c
4c

T 3c

T 2c

T 4c

L 1c
= (2, 3, 4)

L 2c
= (1, 3, 4)

L 3c
= (1, 2, 4)

L 4c
= (1, 2, 3)

Fig. 6: Conversion of supercells to a graph of centroids
labeled with feature vectors.

If D(ĉ) < D(c) holds, the newly ĉ will be used further.
As depicted in Fig. 6, for every found supercell a tripel
C = (T

c

,L
c

,P
c

) consisting of its centroid location T
c

, a list
of adjunct supercell L

c

, and a feature vector P
c

is calculated

Odd (P
c

) =

 
Y

m2c1

Odd(P (m)), . . . ,
Y

m2cN

Odd(P (m))

!T

(11)

Experiments revealed that supercells tend to grow uncoor-
dinatedly. This was caused by neighbouring supercells com-
prising homogenous regions which leads to a total variance
of zero. This can be explained by taking blocks of cells away
from those zero-variance supercells their variance remains
zero, while the other supercells’ variance may decrease. This
corner case can be circumvented by not allowing superpixels
with a total variance of zero to shrink.

E. Mapping Framework Implementation in ROS
Fig. 7 depicts the composition of the mapping framework

(MF) habitate which consists mainly of two components:
The tile publisher keeps track of all necessary transforms
of region of interest (ROI). The map server fuses incoming
ISMs, offers services and debug messages.

An instance of the map server subscribes to all topics
which needs to be mapped. For every topic a double buffer
holding the current and last SOGM stack is allocated. To
build a generic ISM interface, all messages have to have
the ROS type nav msgs/OccupancyGrid. It is worth
mentioning that sensor fusion on the OGM level can directly
be applied by letting different nodes publish their ISMs to
the same topic. But further, one has to respect differing
publishing frequencies and weightings which can distort a
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Fig. 7: Mapping framwork implementation
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Fig. 8: 2D map centric mapping approach. The ROI com-
prises the horizontal and lateral (H⇥W ) dimesion of SOGM.

balanced fusion. While the amount of sensors measuring
exteroceptive features is increasing and with them the derived
ISMs, keeping track of all topics can be unfeasible. To
overcome the unmanageable number of topics to which the
map server has to subscribe to, a new scoping technique
inspired by Wienke et al. [25] is introduced. It is build upon
the common ROS pub./sub. model. Rather than subscribing
to every single topic explicitly, the map server can be
configured by a parent topic (e.g. /ism). All child topics
(e.g. /ism/a, /ism/a/b, /ism/c) will be subscribed on
demand after they have registered at the ROSMASTER.

In conjunction with the map server node, a tile publisher
node keeps track of all map transformations depicted in
Fig. 8. The tile publisher publishes transforms from the
parent coordinate system to the origin of the current map
tile. As the vehicle moves through the world, it will at some
point exceed the current map dimension. Therefore, if an
inner boundary dimension is passed, a new transform for
a new map tile is published to ROS’s tf tree. As proposed
by REP-105: Coordinate Frames for Mobile Platforms, all
sensor fusion has to be done in the local frame of a vehicle,
because it is not affected by any discrete jumps caused by e.g.
GPS. Therefore, all map tiles reside in the local frame, but
are referenced in any global frame for later georeferencing
or postprocessing. Just shifting the current map coordinate

frame is not feasible, because discontinuities and jumps of
frames are not well handled by ROS’s tf API and therefore,
new transforms with a new frame names are necessary. To
inform the map server, first the transforms to the new map
are published on the /tf scope. After a configurable delay
a Pose/NavSat/String tuple (/pns) is published to inform
about the current tile pose in the odometry frame, its NavSat
datum for global localization, and a string containing the
name of the current tile transform in ROS’s tf tree. Finally, as
the map server node receives a pns-tuple the double buffer of
SOGMs is swapped so that the content can be independently
stored in binary form, tagged with kind of content, resolution,
and location to a permanent storage.

IV. TESTCASE AND EVALUATION

The proposed SEVDS is evaluated and compared against
other superpixel algorithm implementations included in
OpenCV 3.2.0. As metrics Intra-Cluster Variation, Explained
Variation, Undersegmentation Error (UE) and Boundary Re-
call (BR) [24] are applied. Additionally, a pureness metric
is defined as

g(s) =
1

|s|
X

sj

| {m 2 s
j

|I(s) = Label(s
j

)} |
|s

j

| (12)

with Label(s
j

) = argmax
i

| {s 2 s
j

|I(s) = i} |. The Pure-
ness of a segmentation is defined by the average pureness
of its superpixels. As proposed by Stutz et al., parameters
were optimized such that (1� BR) + UE is minimized.
Input data originates from simulating the Autonomous Mini
Robot (AMiRo) via ROS and Gazebo in a table-top scenario
inspired by RoboCup@Home competitions [26], [27] (cf.
Fig. 9 top). The AMiRo maps its environment with known
poses, a tilted laser rangefinder and a RGB camera using
ISMs from [28]. The corresponding mapping for the enlarged
test case scenario in Fig. 9 is depicted in Fig. 10. The
composed SOGM is interpreted as multi-channel image and
provides the input for all evaluated clustering algorithms
presented in this work. A ground truth segmentation was pro-
vided by a human labeled segmentation (cf. Fig. 9 bottom).
Fig. 12 to Fig. 16 compare the results of the algorithms using
above-mentioned metrics for all four different scenarios
(scenarios are depicted in different colors). In Fig. 11 the
clustering is qualitatively depicted. Compared to SEEDS, the
proposed SEVDS let the supercells not degenerate that much
in object border regions and therefore provides more dis-
tinctive border segmentations. Other differences can barely
be noticed. All algorithms achieve very similar Pureness. It
should be noted that Pureness and Explained Variation are
displayed with an offset to illustrate small differences in these
metrics. SEVDS produces segmentations with noticeable,
significant lower Intra-Cluster Variation (ICV), due to the
fact that ICV’s definition is very similar to the variance
distribution term SEVDS aims to minimize. Explained Vari-
ation intents to measure boundary adherence independent of
human annotated ground truth (higher is better). SEVDS’s
segmentation yields slightly lower Explained Variation. On
average the Undersegmentation Error of SEVDS is 3.41



Fig. 9: Four randomized table-top scenarios used for recording maps and their corresponding ground truth map segmentation
with four greyish shaded classes: unknown, floor, table, obstacle. Scenarios from left to right: first, second, third, forth.

Fig. 10: Single SOGM layers produced by the “sensor:
classification” set (left) for the fourth example in Fig. 9
and the composition in RGB color space that depicts the
|{occ., occ., unknown}|#layer

= 27 possible classes.

Fig. 11: Clustering of SOGM resulting from the fourth
scenario (c.f. Fig. 10). From left to right: SEEDS, SEVDS,
LSC, SLIC, SLICO. Top: Coloring of clusters with class
majority. Bottom: Corresponding cluster segments in red.

times higher than SEEDS’s. But it should be noted that
the general power of all Undersegmentation Errors is pretty
low (10�2) and that this metric substantially depends on
the provided ground truth. SEVDS achieves slightly lower
Boundary Recall compared to SEEDS, but better results
than the other algorithms. To conclude, SEVDS generates
low Intra-Cluster Variation superpixels, with state-of-the-art
Pureness and Explained Variation, but improvable boundary
adherence. Anyway, this is an outstanding result which is
beneficial for the author’s definition on topometric features
from Equation 11. Having low variation means that the

derived feature vectors are highly separable. On the other
hand, having low variation would result in resembling fea-
tures among classes which would be hardly discriminable.
A noteworthy implementation detail is, that these clustering
algorithms now work on grids which have a spatial relation.
Therefore, as a rule of thumb the minimal initial superpixel
edge length should be of the size of smallest object to be
found (s.t. 8 cm b=8 pixel for the current evaluation).
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V. CONCLUSION AND OUTLOOK

The authors present a complete semantical occupancy grid
mapping framework (MF) which offers new possibilities of
mapping sensor readings on a decision level in a generic
way. Further, a new interpolation method has been proposed
to incorporate sensor readings in a Bayesian way. Finally,
services are introduced which refine multi layered, semantic
maps to a single layer, or via the newly proposed SEVDS
algorithm to a topometric map. Thus, this MF facilitates
the possibility to handle SOGMs by standard navigation
techniques. Ongoing investigations will exploit the proposed
MF in dynamic agricultural and multi robotic applications to
evaluate its mapping capability and quality. Further research
will concentrate on applying optimized navigation techniques
on SOGMs. Finally, it is intended to publish the MF as a ROS
package on https://opensource.cit-ec.de/.
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Consistency of Feature-based Random-set

Monte-Carlo Localization

Manuel Stübler, Stephan Reuter and Klaus Dietmayer

Abstract— Self-localization is one of the most critical parts

in robotics and automated driving. Thus, it is quite essential to

have some kind of self-assessment for the respective pose esti-

mate. Therefore, this paper introduces a new online approach to

check the consistency of feature-based random-set Monte-Carlo

Localization (MCL). The basic idea is to detect inconsistencies

of the assumed measurement process in a stochastic manner in

order to infer validity of the localization result. This concept is

closely linked to the Normalized Innovation Squared (NIS) in

Kalman filtering techniques. The problem of checking the con-

sistency online, in absence of ground-truth data, is formulated

using confidence intervals for the estimated measurement model

parameters. In contrast to the single-object Kalman filter, multi-

object filters not only consider the spatial uncertainty of sensor

measurements, but also the clutter rate and missed detections.

Thus, all those measurement model parameters need to be

observed and checked for consistency. The proposed concept is

applied to a random-set formulation of MCL that is formally

derived in the present contribution. The evaluation is done using

real-world data from a test vehicle in a scenario that covers

public urban and rural roads.

I. INTRODUCTION

Robust localization is a key prerequisite for automated
cars and robots. Besides Global Navigation Satellite System
(GNSS), map based localization methods have evolved in the
last decades and lots of them are formulated in a Bayesian
manner. For example, Sequential Monte-Carlo (SMC) meth-
ods represent the Probability Density Function (PDF) of a
robot’s pose by a set of weighted particles, conditioned on a
known map of the environment. This method is also known
as Monte-Carlo Localization (MCL) and the respective map
may incorporate a dense representation of the environment,
e.g. grid-based methods [1], or a set of features [2]. In the
case of GNSS, the term integrity is often used to express
the trust that can be put into the result of a system [3]. A
common framework in the GNSS domain is called Receiver
Autonomous Integrity Monitoring (RAIM) [4] which is
based on statistical tests and redundant information sources.
Likewise, the present contribution proposes a reliable trust
value for feature-based random-set MCL. There are other
techniques that address the integrity of map matching algo-
rithms, e.g. empirically derived [5] or statistically motivated
methods [6]. However, they are either formulated in a heuris-
tic manner or do not consider the full multi-object likelihood.
In general, statistical derivations typically incorporate the
NIS which is used especially for Kalman filters [7]. An
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extension of the NIS for the multi-object case is presented
in [8], [9]. In the present contribution, this idea is adapted to
feature-based random-set MCL. This is done by regarding
not only the spatial uncertainty of a sensor, but also the
clutter rate and detection probability in a stochastic manner.

In contrast to Simultaneous Localization and Mapping
(SLAM) algorithms, MCL is based on a known a priori
map. However, maps may degrade over time and contain
inaccuracies which lead to inconsistent localization results.
This contribution thus introduces a method to detect such
inconsistencies by estimating the measurement model param-
eters online and stochastically validate them. This validation
is performed by detecting a deviation from the expected
parameters. With the assumption that those parameters do
not vary over time, they are determined by the sensor and
scenario. Both should be known in advance. Scenario, in this
case, includes all additional influencing factors on the mea-
surement model parameters, e.g., weather condition or road
type. If the estimated parameters diverge from the assumed
ones, the localization result and especially the corresponding
uncertainty cannot be trusted anymore. This is due to the fact
that the stochastic prerequisites are no longer valid. Note that
the opposite is not true: it is possible that the localization
result is perfectly consistent while all measurement model
parameters deviate from the assumptions.

A few examples on the cause of a deviation between esti-
mated and assumed parameters: assuming that the map is out-
dated, the estimated clutter rate will raise since landmarks
are detected by the sensor that are actually not present in the
map. Those detections are then falsely regarded as clutter
measurements. The same, however, happens if the sensor
itself is faulty and produces more clutter measurements
than it typically does. Another example is the presence of
landmarks in the map that actually disappeared in the real
world. This results in a lower estimate for the detection
probability than assumed. Again, this can also be caused by
a faulty sensor. Further, if the localization result has a slight
offset, this results in a bias of the corresponding estimated
spatial uncertainty. This happens because landmarks from
the global a priori map are transformed into the local sensor
coordinate system of the respective particle based on its pose
hypothesis. But just like in the cases before, the sensor can
be the cause for such a bias, too. In general, thus, it is not
possible to determine the source for an inconsistency since
there may be a lot of different reasons that can cause it.

The subsequent parts of this contribution are organized as
follows: the mathematical foundation is given in Section II
and the formulation of the consistency check for the multi-



object measurement model is presented in Section III. In
Section IV an evaluation with real-world data is shown and
finally Section V provides a conclusion.

II. BASICS

This section provides a brief introduction into the relevant
part of the multi-object calculus. First the landmark map and
measurement representation as Random Finite Sets (RFSs)
is introduced. Further, the random-set formulation of MCL
and most important the corresponding measurement model
is described.

A. Landmark Representation

By modeling the map of landmarks and also the mea-
surements as RFSs following [10], an artificial ordering
of landmarks is avoided. This results in an absence of
explicit data association and further facilitates the modeling
of missed detections and clutter. The map of landmarks is
thus given by

M = {m(1)

, . . . ,m

(⌫)} (1)

where the state vector m represents the landmark position
and ⌫ is the total number of landmarks in the map. The set
of measurements with cardinality µ

k

at time step k is

Z
k

= {z(1)
k

, . . . , z

(µk)

k

} (2)

and all measurements up to time step k are denoted by Zk.

B. Monte-Carlo Localization

With Bayes theorem and the multi-object calculus, the
PDF of the current pose x

k

conditioned on the map and
measurements is written as [11]

p(x
k

|Zk

,M) =
R
g(Z

k

|x
k

,M)f(x
k

|x
k�1

)p(x
k�1

|Zk�1) dx
k�1RR

g(Z
k

|x
k

,M)f(x
k

|x
k�1

)p(x
k�1

|Zk�1) dx
k�1

dx

k

. (3)

The denominator is a normalization constant, g(·|·) is the
multi-object likelihood and f(·|·) is the transition kernel
based on the process model. It is also possible to add an
external control input u

k

to the above equation. This can,
e.g., be used for a dead reckoning process model by addi-
tionally incorporating velocity and yaw rate measurements.
Equation (3) can be solved using SMC methods analogous
to [12], [13] where each sample - or particle - represents a
hypothetical robot pose. Using the Markov property, a set of
particles is propagated in time recursively which is known as
Bootstrap Filtering or Sequential Importance (Re-) Sampling
[14], [15].

C. Multi-object Likelihood

In order to apply SMC algorithms for the RFS formulation,
the set-based measurement likelihood g(Z

k

|x
k

,M) must be
evaluated. This is done for a set of measurements Z

k

condi-
tioned on the current pose x

k

of the respective particle and
the map M. In RFS theory, it is typically assumed that a
sensor detects landmarks with a probability p

D

(·) and addi-
tionally generates Poisson distributed clutter with intensity

(·) and mean �

C

(c.f. [16]). The expected measurement of
a global landmark in the local sensor coordinate system is
given by

bm(i)

k

, h(m(i)

k

, x

k

) (4)

with the measurement function h(·) and the global landmark
position m

(i)

k

. The hypothetical pose x

k

of a particle is
necessary to transform the global landmark position into the
respective local sensor coordinate system. The measurement
likelihood is then evaluated in the local sensor coordinate
system. The multi-object measurement likelihood itself is
defined by [16, Ch. 12]
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The probability that all measurements are clutter is

⇡

C

(Z
k

) = e

��C
Y

zk2Zk

(z
k

) (6)

and the probability that all landmarks are not detected is

⇡(;|M) =
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(1� p

D

(bm(i)

k

)). (7)

The single-object measurement likelihood is typically as-
sumed to follow a Gaussian distribution with

g(z(j)
k

|bm(i)

k

) = N (z(j)
k

; bm(i)

k

,⌃(i,j)

k

). (8)

The covariance matrix ⌃(i,j)

k

follows the respective sensor
properties and optionally incorporates the uncertainty of a
map landmark. Finally, the association functions ✓ describes
an assignment of measurements to landmarks. It incorporates
missed detections (i.e. ✓(i) = 0), clutter measurements
(i.e. ✓

�1(j) is undefined) and furthermore ensures that a
measurement cannot be assigned to more than one landmark
(i.e. ✓(i

1

) = ✓(i
2

) > 0 ) i

1

= i

2

). Equation (5) states
that the sum is taken over all possible associations ✓. This
of course is impractical and a reasonably approximation is
to evaluate only the most probable associations and abort
when a summand adds no more significant value to the like-
lihood. This is achieved, e.g., by using a ranked assignment
algorithm [17] or Gibbs sampling methods [18].

III. CONSISTENCY CHECK

When implementing random-set MCL algorithms, the pa-
rameters of the multi-object likelihood must be known in
advance. Even though clutter rate and detection probability
can be estimated alongside the multi-object state following
[19], [20], in the present contribution it is assumed that those
parameters do not vary over time. The measurement model
is assumed to depend only on the sensor properties, feature
extraction process and scenario which are all assumed to be
fixed and known in advance. Of course one could always
model time-varying parameters and adapt them online, but
then there is no guaranty that the parameters which were



learned are correct. Hence, the idea here is to use this redun-
dant information (assumed parameters versus estimated ones)
exactly for the validation process. Therefore, a deviation of
the estimated measurement model parameters is assumed to
be the result of a divergent a priori map, a defective sensor,
a biased pose estimate or a different scenario than expected.
This inevitably leads to a pose estimate that cannot be trusted
anymore since the stochastic prerequisites are violated.

The following subsections derive confidence intervals for
all three measurement model parameters of the multi-object
likelihood: the spatial uncertainty of landmark measure-
ments, the state-independent detection probability and the
clutter rate. These assumptions are then tested individually
for consistency. The derivation of the consistency tests is
done by assuming that both the true association ✓

k

and the
true pose x

k

at time step k are known. The knowledge of
any ground-truth data, however, is not a prerequisite for the
final algorithm which is explained in detail later.

A. Spatial Uncertainty

As described earlier, the spatial uncertainty of landmark
measurements is typically assumed to follow a Gaussian
distribution with known covariance matrix ⌃(i,j). If the
true pose x

k

and true association ✓

k

between measurements
and landmarks are known and if the measurement noise is
uncorrelated, then

⇠
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follows a �

2 distribution with d · ⌫D
k

degrees of freedom
(c.f. also [9]). Here, d is the dimension of the measurement
space and ⌫

D

k

is the number of detected landmarks. The two-
sided confidence interval with a significance level of ↵ for
the respective �

2 distribution is then given by
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In contrast to the NIS provided in [7], the innovation
in Equation (9) is calculated for every landmark with an
associated measurement and accordingly summed up.

B. Detection Probability

Assuming that the detection probability p

D

is state-
independent, it follows a Bernoulli distribution with expec-
tation p

D

and variance p

D

(1� p

D

). Thus, using the central
limit theorem it is
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)
! N (0, 1) (14)

Fig. 1. Overview of the test track in Ulm with laser scanner landmarks.
Both evaluation recordings, which are independent of the mapping datasets,
start in the lower left corner and were driven clock-wise.1

for ⌫
k

! 1 where ⌫

k

denotes the number of all landmarks
in the sensor’s Field of View (FOV). This, however, only
works reliably for a large number of visible landmarks in
each time step k. An asymptotic and symmetric two-sided
confidence interval is then constructed for the corresponding
Gaussian distribution as follows:
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�
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Since the parameters are assumed to be time invariant, the
estimation can also be done using w consecutive time steps.
This procedure is especially helpful for a small number of
visible landmarks in each time step. With l = k�w+1 � 0
it is:
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for ⌫
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! 1, with ⌫
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⌫
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i

. The
same trick can be done analogously for the spatial uncertainty
in the previous section to incorporate several time steps.

It is also possible to calculate confidence intervals for the
Bernoulli distribution without the need for an approximation
using the central limit theorem, e.g. based on the Clopper-
Pearson interval [21]. However, a preliminary evaluation
showed no significant difference between both approaches.

C. Clutter Rate

The multi-object likelihood is often formulated with the
assumption that clutter is distributed uniformly within the
FOV. The clutter intensity (z

k

) is thus defined by the
Poisson distributed clutter rate �

C

and the area (or volume)
of the sensor’s FOV:

(z
k

) =

(
�C

Vol(FOV)

if z
k

2 FOV,

0 else.
(18)

1Aerial photography: c� Stadt Ulm, Abteilung Vermessung, 2010.



For a known association, the clutter rate at time step k

is denoted by �

k

= µ

k

� ⌫

D

k

, where µ

k

is the number of
measurements at time step k and again ⌫

D

k

is the number of
landmarks with an associated measurement.

Using the central limit theorem and the properties of the
Poisson distribution, i.e. mean and variance are both �

C

, then
for a time window of size w ! 1 it is:
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. Similar to Section III-B and with q

stated in Equation (16), an asymptotic confidence interval is
constructed as follows:
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In contrast to the spatial uncertainty and the detection
probability, the clutter rate provides only a single estimate �

k

per time step k. Therefore, it necessarily needs to be regarded
over several time steps to be adequately approximated by a
Gaussian.

D. Online Estimation

In order to check the consistency of all three measurement
model parameters as described previously, they first have to
be estimated following Equations (9), (14) and (19). The
estimation of those parameters, however, was achieved by
using the true pose x

k

and true association ✓

k

. In a real-world
scenario both are unknown and therefore must be estimated
themselves.

1) Pose: With the assumption that the prediction error
of the transition between two time-steps is negligible, the
true pose is approximated by the mean of the predicted
PDF. When using a particle filter, this is done by calculating
the weighted mean of all particles. Note that an offset in
the prediction step that is not negligible compared to the
spatial uncertainty of landmark measurements will result in
a bias of landmark measurements, c.f. Equation (4). This
bias will probably cause the consistency test for the spatial
uncertainty to fail. Thus, an offset in the prediction step that
is comparably large, e.g. a drift of the odometry, is detected
by the proposed method just like an offset regarding the
spatial landmark measurements of the sensor itself.

2) Association: Estimating the unknown association can
be achieved by several approaches: if there is one dom-
inating association in Equation (5), this association also
contributes the most to the multi-object likelihood and thus
to the localization result. In this case, all other associations
are negligible which, e.g., happens for an unambiguous
landmark-to-measurement constellation. Another approach is
to separate the estimation of the association function ✓

k

from
the multi-object likelihood. The association is then estimated
by solving the equation

✓

⇤ = argmin
✓
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i=1

d

c

(m(i)

, z

(✓(i))

k

) (21)

where d

c

(m, z) = min{c, d(m, z)} is a distance measure
with cut-off parameter c.

This approach is similar to the optimal assignment prob-
lem stated in [22]. Equation (21) determines the assignment
with the minimum overall distance between measurements
and landmarks in the sensor’s FOV. The cut-off parameter
c works as follows: if there is no measurement within the
radius c of a landmark, then it is regarded as a missed
detection. Further, if a measurement is not within the radius
of any landmark it is considered a clutter measurement.

The estimation of ✓ as stated in Equation (21) provides
some logical separation from the filtering process itself. It is
especially separated from the RFS formulation in Equation
(5) which considers every possibility and thus avoids the
idea of having a single, true landmark-to-measurement asso-
ciation. Further, this approach is particularly useful when a
measurement model is created for a completely new sensor
or scenario and if no a priori information is available so
far. It makes sense, if landmarks are quite distinct and the
consistency checking is carried out over several consecutive
time steps. This reduces the impact of a false association in a
single time step. Besides, a false association is typically more
likely to violate at least one of the consistency tests than to
support all of them. Hence, the estimation of ✓ following
Equation (21) is also used for the evaluation provided in
Section IV based on the Munkres assignment algorithm [23].

IV. EVALUATION

A. Setup

The evaluation is done based on real-world data from a
Mercedes-Benz E-Class (S212) equipped with a front-facing
laser scanner and a Real-time Kinematic (RTK) system.
Additionally, the on-board wheel and yaw rate sensors are
used to predict the ego vehicle in time based on a dead
reckoning transition model. The route is shown in Figure 1.
It is approximately 3 km long and divided into an urban and
a rural part. Landmarks are extracted by clustering the raw
points of a laser scan using Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [24] with a distance
threshold of 1.5m and a minimum of 3 and maximum of
8 points per cluster. Next, the corresponding 2D mean and
covariance matrix is calculated for each cluster. The centroids
of clusters are then used as a landmark measurement if the
smaller eigenvalue of the covariance matrix is below 0.05 and
the larger eigenvalue is below 0.1. This procedure discards
large and connected clusters but preserves those that are quite
compact, distinct and free-standing. The choice of parameters
was done completely empirically. Even though this extraction
process is quite simple, it works very well due to the robust
probabilistic formulation that correctly captures detection
probability, clutter rate and spatial uncertainty of measure-
ments. The a priori map that is used for the MCL consists
of 310 landmarks and was built from several recordings in
summer using the RTK system. The evaluation itself is done
with two separate datasets that were recorded in winter time.
The sample windows size was set to incorporate w = 12
consecutive time steps and the sensor has a frequency of
f = 12.5Hz. This results in a time window of about one
second. If the time window is too small, the approximation



Fig. 2. Evaluation showing an exemplary run. All three parts of the plot show the NEES of the position and orientation error. The dashed horizontal line
represents the respective 95% confidence interval. The gray background in a plot indicates that the consistency test of the corresponding parameter lies
outside of its respective confidence interval. A darker background means that this happened more often in the corresponding time window.

using the central limit theorem is not reasonable. However,
if the time interval is too long, the reaction time of the
consistency tests is unnecessarily protracted.

B. Results

The proposed method is evaluated by using ground-truth
position data from the RTK reference system. The random-
set MCL algorithm and also the corresponding measurement
model consistency tests themselves do not incorporate any
ground-truth information and thus are performed online.

Figure 2 shows an exemplary run that was processed with
one of the two evaluation recordings. The three plots each
show the Normalized Estimation Error Squared (NEES) in
red which actually corresponds to the squared Mahalanobis
distance and is calculated as follows:
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), (22)

where x̂

k

is the weighted mean of the particle set, x̄
k

is the
reference position from the RTK system, P

k

is the weighted
covariance matrix representing the particle set uncertainty
and R is the time-invariant covariance matrix of the RTK
system. In the best case, which is assumed for this evaluation,
the standard deviation of the reference system is 2 cm and
0.1 deg respectively. Note that the NEES is calculated by
approximating the particle set with a Gaussian distribution
N (x̂

k

,P
k

) comprising the three states x

k

, y
k

and �

k

. Thus,
if the localization result regarding its mean and uncertainty
estimate is consistent with the ground-truth data, Equation
(22) follows a �

2 distribution with three degrees of freedom
(c.f. [7]). This is similar to the spatial uncertainty described
in Section III-A. The NEES is not available in an online
scenario since it needs the true position x̄

k

from a reference
system. It is thus only used to evaluate the proposed method
which is performed online by using only the predicted
mean of the particle filter and the association estimate as

TABLE I
RESULTS OF TWO INDEPENDENT RECORDINGS WITH FIVE

MONTE-CARLO RUNS EACH, SHOWING THE PERCENTAGE OF OUTLIERS

(o) AND THE AVERAGE NORMALIZED ESTIMATION ERROR SQUARED ("̄)

Rec1 Rec2
B : Baseline o = 20% | "̄ = 5.31 o = 16% | "̄ = 4.65

S : ⇠Sl:k < q

+
l:k o = 18% | "̄ = 4.61 o = 14% | "̄ = 3.89

C : ⇠Cl:k < q o = 18% | "̄ = 5.00 o = 15% | "̄ = 4.41

D : ⇠Dl:k > �q o = 20% | "̄ = 5.30 o = 15% | "̄ = 4.61

S & C & D o = 15% | "̄ = 4.16 o = 12% | "̄ = 3.58

described in Equation (21). A dark background in Figure 2
means that the consistency test of the respective measurement
model parameter lies outside of its confidence interval. The
darker the background the more often this happened in
the corresponding time window. However, only the upper
boundary of the spatial uncertainty and the clutter rate as
well as the lower boundary of the detection probability is
considered here (c.f. Table I). The reason is that only those
parts are of interest where the assumed measurement process
is worse than expected because we also only consider the
one-sided confidence interval of the NEES.

In the following, a confidence level of 5% is assumed
for both, the NEES test which is performed offline with
ground-truth data as a reference and the measurement model
parameter tests which are performed online without ground-
truth data. The evaluation itself is shown in Table I. The
percentage of outliers is the relative amount of NEES values
that lie beyond the one-sided 95% confidence interval which
is denoted by the red dashed line in Figure 2. It is expected
to be exactly o = 5% for a perfectly consistent Gaussian
pose estimate of the particle filter. The average NEES in
this scenario should be "̄ = 1

n

P
n

k=1

"

k

= 3 due to the 3D
state vector. Besides the fact that the particle distribution will



TABLE II
ROOT MEAN SQUARE ERROR (RMSE) IN VEHICLE COORDINATES (VC)

WITH FIVE MONTE-CARLO RUNS PER RECORDING

Rec1 Rec2
RMSE(xvc) = 0.10m RMSE(xvc) = 0.11m
RMSE(yvc) = 0.14m RMSE(yvc) = 0.14m

RMSE(�vc) = 0.38 deg RMSE(�vc) = 0.39 deg

never perfectly match a Gaussian distribution, the uncertainty
that is assumed for the reference system also has a huge
impact on the NEES. Since the best case for the reference
system was assumed, it is clear that the optimal absolute
values o = 5% and "̄ = 3 are unlikely to be reached.
However, the interesting part here is the relative behavior
between the baseline and the respective subsets as shown
in Table I. The baseline B is calculated by incorporating
all time steps whether they violate one of the consistency
tests or not. If one would randomly choose a subset from
the complete sequence, the expected number of outliers and
the average NEES would correspond to those baseline values
in B. However, using only those subsets where one of the
tests is within the defined boundary and discarding all the
other values - since it is already known that they violate the
assumptions - significantly reduces the number of outliers
and similarly the average NEES. The combination of all
three tests provides a further improvement which shows
that the three stochastic tests reliably detect inconsistencies
at different time steps. Because the detection probability
p

D

= 0.2 is quite small, the lower boundary of the respective
Bernoulli consistency test is seldom reached and thus this
test provides the smallest benefit. This is due to the fact
that occlusion of landmarks was not modeled so far. Since
Table I shows the numbers for two separate recordings with 5
Monte-Carlo runs each, it is very improbable to have chosen
a subset with such tremendous decrease by chance. For the
sake of completeness, Table II depicts the corresponding
Root Mean Square Error (RMSE) of the localization result
compared to the RTK reference system.

V. CONCLUSION

In this contribution, a new online approach to estimate and
validate the measurement model parameters of feature-based
random-set MCL algorithms was introduced. The idea is
to stochastically detect an inconsistent measurement process
by estimating the relevant parameters online and creating
corresponding confidence intervals. The evaluation showed
that the concept can be successfully applied to challenging
real-world scenarios. The presented approach reliably detects
situations where one cannot trust the localization result
anymore. Besides an online self-assessment of feature-based
random-set MCL algorithms, the proposed method can also
be used to estimate all relevant parameters of the multi-object
measurement model of a yet unknown sensor and scenario
combination.
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Factor descent optimization for sparsification in graph SLAM

Joan Vallvé, Joan Solà, Juan Andrade-Cetto

Abstract— In the context of graph-based simultaneous lo-
calization and mapping, node pruning consists in removing a
subset of nodes from the graph, while keeping the graph’s in-
formation content as close as possible to the original. One often
tackles this problem locally by isolating the Markov blanket
sub-graph of a node, marginalizing this node and sparsifying
the dense result. It means computing an approximation with
a new set of factors. For a given approximation topology,
the factors’ mean and covariance that best approximate the
original distribution can be obtained through minimization of
the Kullback-Liebler divergence. For simple topologies such as
Chow-Liu trees, there is a closed form for the optimal solution.
However, a tree is oftentimes too sparse to explain some
graphs. More complex topologies require nonlinear iterative
optimization. In the present paper we propose Factor Descent,
a new iterative optimization method to sparsify the dense
result of node marginalization, which works by iterating factor
by factor. We also provide a thorough comparison of our
approach with state-of-the-art methods in real world datasets
with regards to the obtained solution and convergence rates.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is the
problem of building a representation of the environment
while getting localized in it. Without any strategy to face
it, the longer the experiment, the larger the problem to solve.
Efforts to reduce resource demands have been focused
mainly in two directions: by facing the computational
complexity of the algorithms, or by tackling the problem
size. Even though several improvements have been made
in the first direction [1, 2], the later is still of concern, as
the solution is always linked to the length of the experiment.
This claims for suboptimal strategies that reduce problem
size but still keep as much information as possible.

Several SLAM methods include mechanisms to limit
problem size growth. One of the simplest approaches
consists in considering a temporal or spatial window and
discarding the landmarks and/or poses that lie outside this
window. This implies giving up loop closures, such as in
visual and visual-inertial odometry methods [3, 4]. In Pose
SLAM [5], new observations and robot poses are only
added to the problem if their entropy-based information
content is significant. In contrast, in [6] a hierarchical graph
structure is devised. The graphs higher up in the hierarchy
represent marginalized sub-graphs and if the error is low
enough, only part of the problem is solved. Johannsson et
al. [7] propose a reduced pose graph that only grows with
the size of the environment being mapped by marginalizing
poses with regards to distance. Chouldhary et al. [8] on the
other hand propose an information-based reduced landmark
SLAM system. The method proposes a trade off between
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(a) Original graph. In
grey, node to be re-
moved.

(b) CLT topology. (c) Sub-graph topology.

(d) Sparsity patern af-
ter node marginaliza-
tion.

(e) Sparsity pattern of
CLT topology.

(f) Sparsity pattern of
sub-graph topology.

Fig. 1. Tree topology can be too sparse to accurately approximate the
dense distribution resulting of a node marginalization.

memory footprint and accuracy using an entropy-based cost
function to decide which landmarks should be discarded.

One important characteristic of SLAM is sparsity: the
network of geometrical constraints corresponding to sensor
measurements between robot trajectory and/or environment
representation is only a small subset of all the possibilities.
Graph-SLAM methods take profit of this sparsity to speed
up the computation of the optimal solution.

Moreover, SLAM is a non-linear problem that is faced
by linearizing it. The capability of relinearization greatly
improves the accuracy of the solution.

Normally, the only way of reducing the problem size
without loss of information is marginalization. However,
marginalization induces fill-in, increasing computational
cost, and does not allow for relinearization, deriving in
accuracy loss.

Several works have been published with methods for
finding the best sparse and relinearizable approximation of
the dense and not-relinearizable result of a marginalization.
This is known as sparsification, and is the focus of the
present paper. Kretzschmar and Stachniss [9] present an
information-theoretic compression method for pose graph
SLAM that selects the nodes containing the most informa-
tive laser scans. They find the subset of measurements that
maximize the mutual information of the map for that subset.
More recently, [10]–[12] approach the problem by finding
the sparse approximation that minimizes the Kullback-
Liebler divergence (KLD) with the dense distribution re-
sulting from the node marginalization. While there is a
closed form for the simplest topology, e.g. the Chow-Liu
tree (CLT), an iterative optimization is needed for richer
topologies.



In the majority of cases, and as we reveal in the experi-
mental section, a tree topology is too simple to accurately
approximate the dense result of a node marginalization
(see Fig.1). Hence, in this paper we focus on iterative
optimization for sparsification. We introduce Factor Descent
optimization for sparsification. Given a non-dense factor
topology, we iteratively optimize each of the factors leaving
fixed the rest. For each factor, we compute its parameters
(mean and information matrix) that minimize the KLD
given the rest of topology factors’ parameters.

The paper is organized as follows. The next section
includes the problem formulation and existing methods.
Section III presents our novel factor descent method. Sec-
tion IV presents the results, and conclusions and future work
are exposed in the last section.

II. NODE REMOVAL AND SPARSIFICATION IN GRAPH
SLAM

Graph-based SLAM methods represent the problem as a
set of variables (nodes) and a set of geometrical constraints
(factors). The state x includes nodes representing poses
of the vehicle along its trajectory and/or some map rep-
resentation. Each factor expresses the discrepancy or error
e between a measurement z and its expectation,

e(x) = h(x)� z+ v, v ⇠ N (0,⌦

�1
) (1)

being h(x) the sensor’s measurement model and ⌦ the
information matrix of the measurement Gaussian noise v.

The problem is solved iteratively by minimizing the
Mahalanobis squared norm of all linearized errors

�x

⇤
= argmin

�x

X

k

khk(x)� zk + Jk�xk2
⌦

�1
k

(2)

being x the state estimate at the current iteration, and Jk

the Jacobian of the k-th measurement. 1 Imposing null
derivative of the cost in (2) w.r.t �x, the optimal step
�x

⇤ is found and used to update the estimate. Current
methods for solving for �x

⇤ use Cholesky [2, 14, 15] or
QR [1, 16, 17] matrix factorizations. Important speed-ups
are obtained with incremental methods [1, 2, 15, 17], which
update the problem directly on the factorized matrix.

Reducing the problem size in graph SLAM is usually
approached in two steps: node marginalization and sparsi-
fication (see Fig. 2). These two stages do not necessarily
have to be immediately consecutive, and the second one
can be postponed depending on computational availability
[11].

Having selected a node to prune (Fig. 2.a), the process is
faced locally. A local problem around the node (Fig. 2.b) is
defined by cropping the node’s Markov blanket (all nodes
at distance 1) and all its intra-factors (the factors involving
only nodes in the Markov blanket). Optionally, this cropped
problem can be solved. Then, all factors can be relinearized
using the new solution before proceeding, yielding slightly
better results especially in on-line cases [12].

After that, marginalization of the selected node is per-
formed via Schur complement. This marginalization can be

1In case of manifolds, (1) and the squared Mahalanobis norm in (2)
become e(x) = h(x)  z � v and khk(x)  zk + Jk�xk2

⌦�1
k

,

respectively, with Jk = @(hk(x)  zk)/@�x. The � and  are the
addition and subtraction operators on the manifold, as described in [13].

understood as adding a dense factor (Fig. 2.c) that substi-
tutes all intra-factors that involve the removed node. This
new dense factor has no measurement model associated to;
hence, its error cannot be re-evaluated, and re-linearization
is not possible.

The goal of the sparsification process is to approximate
the dense distribution p(x) ⇠ N (µ,⌃), resulting from
node marginalization, with a sparse distribution q(x) ⇠
N (

˘µ, ˘⌃) defined by a new set of (relinearizable) factors
(Fig. 2.d). This is usually split in two phases: building a
topology (i.e. define a set of factors with their measurement
model) and computing their mean and information that best
approximate the original distribution.

A. Topology

The topology defines the arrangement between the
Markov blanket nodes and the new set of factors, each factor
with a measurement model. Typically, the factors are made
up of relative measurements between pairs of nodes. The
simplest topology using relative measurements is a spanning
tree. The Chow-Liu tree (CLT) defines a tree topology with
factors between the most correlated nodes (i.e. the ones with
most mutual information).

However, even taking the maximum mutual informative
factors, a tree topology is usually too sparse to approximate
the original distribution. For this reason, the so-called sub-
graph topology departs from the CLT and adds (a few) more
factors, also based on the nodes’ mutual information [12].
Alternatively, the cliquey topology [12] takes the CLT and
converts pairs of independent factors into one single factor
by correlating them.

Differently to the CLT-based methods, a `1-regularized
KLD minimization can be used to compute the topology
that will encode the most information [11].

B. Sparsification through KLD minimization

Given the topology, we want to compute its factors’
means ˘

zk and information ˘

⌦k that minimize the KLD
between the dense p(x) and sparse q(x) distributions. This
can be posed as

DKL =

1

2

⇣
h ˘⇤,⌃i � ln | ˘⇤⌃|+ k˘µ� µk2

⇤̆

�1 � d

⌘
, (3)

where h·, ·i denotes the matrix inner product and ˘

⇤ =

˘

⌃

�1

is the information matrix of q(x).
This expression can be minimized as follows. The di-

mension d of both distributions and ⌃ are constant w.r.t
the information of each measurement ˘

⌦k. The squared
norm term k˘µ � µk2

⇤̆

is null if the means of all mea-
surements are set using the dense distribution mean ˘

zk =

hk(µ). Then, introducing the block diagonal matrix ˘

⌦ =

diag(

˘

⌦1 . . .
˘

⌦k . . . ) containing all new factors’ information
matrices, and the Jacobian ˘

J = [

˘

J

>
1 . . .

˘

J

>
k . . . ]

> stacking
all new factors’ Jacobians, the sparse information matrix of
the approximate distribution is ˘

⇤ =

˘

J

>
˘

⌦

˘

J. Considering
the above, the factors’ information that minimize the KLD
in (3), can be written as the constrained problem

˘

⌦

⇤
= argmin

⌦̆

h˘J>
˘

⌦

˘

J,⌃i � ln |˘J>
˘

⌦

˘

J|

s.t. ˘

⌦ 2 D,

˘

⌦ � 0 (4)

where D refers to the set of block-diagonal matrices.



(a) (b) (c) (d) (e)

Fig. 2. Example of a pruning sequence of actions. The removed node is depicted in grey. (a) Initial graph. (b) Markov blanket and intra-factors are
kept. (c) Node marginalization produces a dense factor (the central factor). (d) Sparsification computes an approximation with a set of new factors. (e)
Substitution of the sparse approximation into the initial graph.

In some cases such as dense problems with only relative
measurements, the dense problem has a rank-deficient in-
formation matrix ⇤, and the covariance matrix ⌃ is not
defined. In that case, we can apply a projection ⇤ =

UDU

> such that D is invertible. Then, all formulation
derived from (4) holds by substituting

˘

J 7! ˘

JU

⌃ 7! D

�1
. (5)

This projection can be obtained by re-parametrizing the
problem to relative poses w.r.t an arbitrarily chosen
node [10, 11] or using a rank-revealing eigen decompo-
sition [12].

C. Sparsification in closed form

Certain topologies admit a closed form solution to (4).
When ˘

J is invertible, imposing null derivative of (4) w.r.t.
all factor information matrices yields

˘

⌦k = (

˘

Jk⌃
˘

J

>
k )

�1
. (6)

This is the case of the tree topology in SLAM of relative
measurements, using a projection as (5). However, and as
has been said, this topology can be too sparse to accurately
approximate the exact dense distribution. Also, (6) holds
for the cliquey topology. However, it can carry convergence
issues to the SLAM problem solution [12]. Moreover, the
cliquey forms break the homogeneity of factors, which is
valuable in many cases.

D. Sparsification via iterative optimization

Other topologies with non-invertible Jacobian ˘

J do not
admit a closed form solution and the problem (4) has to
be solved using iterative optimization. The state-of-the-art
literature proposes two different optimization algorithms:
Interior Point (IP) and Limited-memory Projected Quasi-
Newton (PQN) [18]. IP includes the constraint of positive
definiteness of the solution in the cost function

h˘J>
˘

⌦

˘

J,⌃i � ln |˘J>
˘

⌦

˘

J|� ⇢ ln | ˘⌦|. (7)

The log barrier parameter ⇢ is iteratively decreased towards
0. It requires an initial guess for ˘

˘

⌦ that strictly accom-
plishes the positive definite restriction, such as the identity
matrix [12]. IP has quadratic convergence, but requires
the (costly) computation of the Hessian and gradient of
(7). A stricter constraint can be applied in (7) instead
of the log barrier term to guarantee the conservativeness:
⇢ ln |⇤� ˘

J

>
˘

⌦

˘

J| [11].
On the contrary, PQN does not require the computation of

the Hessian (it still needs the gradient), nor a feasible initial
guess. The positive definiteness constraint is accomplished

through the projection P(

˘

⌦) onto the positive semi-definite
subspace, by setting all negative eigenvalues to zero,

P(

˘

⌦) = V diag(max{0,�i})V>
, (8)

being ˘

⌦ = V diag(�i)V
> the eigen decomposition. PQN

has a slower convergence than IP, but it can be initialized
closer to the optimal solution using an initial guess based
on the off-diagonal blocks of the dense information matrix,
as proposed in [19],

˘

⌦k = J

�>
k1

⇤k1,k2J
�1
k2

(9)

being k1, k2 the two nodes involved in the factor k (so
Jk1 ,Jk2 are the non-zero blocks of Jk) and being ⇤k1,k2

the off-diagonal block corresponding to the involved nodes.
Such initial guess is normally not symmetric nor positive
semi-definite, and one usually takes its closest symmetric
positive semi-definite approximation [20]. Since this may
result in a semi-definite positive guess (or close), it cannot
be used in the IP method.

III. FACTOR DESCENT OPTIMIZATION FOR
SPARSIFICATION

We propose Factor Descent sparsification (FD), a novel
optimization approach for solving (4) that takes inspiration
in coordinate descent optimization. FD is a cyclic block-
coordinate descent method; each step of the cycle consists
in solving for a (small) block of variables (those defining
one factor’s information matrix ˘

⌦i) while fixing the rest.
Consider a given topology and an initial guess ˘

⌦. The
derivative of (4) w.r.t the i-th factor’s information matrix
˘

⌦i is
@DKL

@

˘

⌦i

=

˘

Ji⌃
˘

J

>
i � ˘

Ji(
˘

⌥i +
˘

J

>
i
˘

⌦i
˘

Ji)
�1

˘

J

>
i , (10)

where ˘

⌥i is the information matrix of the problem consid-
ering only the rest of factors,

˘

⌥i =

X

j 6=i

˘

J

>
j
˘

⌦j
˘

Jj . (11)

Imposing null derivative and applying the Woodbury matrix
identity twice,2 we get the closed form,

˘

⌦i = (

˘

Ji⌃
˘

J

>
i )

�1

| {z }
�i

�(˘Ji
˘

⌥

�1
i

˘

J

>
i )

�1
. (12)

This is the optimal i-th factor’s information matrix in terms
of KLD if the rest of factors are fixed.

Descent of the full KLD cost of (4) is achieved factor
by factor, and hence the Factor Descent name. This can be

2applying the Woodbury matrix identity forwards and backwards from
D(A+BCD)�1B = D(A�1�A�1B(C�1+DA�1C)�1DA�1)B

= DA�1B�DA�1B(C�1+DA�1C)�1DA�1B
= ((DA�1B)�1 + C)�1



Algorithm 1 Factor descent sparsification
Input: Dense mean µ and covariance ⌃, topology Z

// Precompute constant variables

for zi 2 Z do
Ji  evaluateJacobian(zi,µ)
�i  (

˘

Ji⌃
˘

J

>
i )

�1

end for
i := 1
while not endConditions() do

// Compute the information of the rest of factors

˘

⌥i  
P

j 6=i
˘

J

>
j
˘

⌦j
˘

Jj

// i-th factor descent

˘

⌦i  �i � (

˘

Ji
˘

⌥

�1
i

˘

J

>
i )

�1

// Ensure positive semi-definite solution

if ˘

⌦i � 0 then
V,� eigenDecomposition(

˘

⌦i)

˘

⌦i  Vdiag(max(0,�))V>

end if
// Cycle for all factors

i++
if i > N then

i := 1
end if

end while

iterated as many times as desired. While the second term
of (12) should be computed at each iteration, the first one
�i is constant for each factor and should be computed only
once. The method is described in algorithm 1. The first term
�i can be interpreted as the information of the dense exact
distribution projected in the measurement space of the i-th
factor. Analogously, the second term is the projection of the
information of the rest of the factors onto the measurement
space of the i-th factor.

We want to emphasize that (12) is a generalization of (6).
The conditions in which (6) is applicable are the same in
which the second term in (12) is null. For example, in the
tree topology, the projection of the information of the rest
of the factors to each factor’s measurement space is null.

As in other methods, in case of rank-deficient ⇤, the
method holds using the projection (5). Note that the rest of
new factors must be projected too, with ˘

⌥ 7! U

>
˘

⌥U.
Since the optimal solution in the factor’s subspace is

computed in closed form (12), iterations in FD refer to
the fact that we iterate on the factors, not on finding the
optimal for each factor through repeated linearizations. In
other words, a clear benefit of FD is that there is no fitting
to any linear or quadratic function. The convergence rate
mainly depends on how much the direction to the optimal
solution is aligned with the sub-spaces corresponding to
each factor (see Fig. 3 for an illustrative example).

A. Positive-definiteness

It follows from (12) that ˘

⌦i is positive definite only if

(

˘

Jn⌃
˘

J

>
n )

�1 � (

˘

Jn
˘

⌥

�1
˘

J

>
n )

�1
. (13)

This happens when the projection of the information of
the dense distribution to the measurement space is ’bigger’
than that of the rest of the factors. A zero eigenvalue of ˘

⌦i

implies that the rest of new factors already explain com-
pletely the original distribution in some direction. Further,
a negative eigenvalue implies that the approximation is not

cost

t

Fig. 3. Examples of convergence of the cyclic coordinate descent
optimization for two different alignments of the coordinates w.r.t. the
direction to the optimal solution (green dot).

conservative (without considering the i-th factor) and the
optimal factor would subtract this excess of information.
After each iteration, we impose positive semi-definite result
applying (8).

B. Initial guess

Since the positive semi-definite constraint is imposed
after solving, the initial guess is not required to be in a
strictly feasible point. Thus, we can use the off-diagonal
blocks based initialization (9).

Alternatively, FD can be used to get an initial guess by
just applying the first cycle of (12). During this first cycle,
only the previously computed factors must be considered
in ˘

⌥i, and therefore it can be computed incrementally,

˘

⌥i =
˘

⌥i�1 +
˘

J

>
i�1

˘

⌦i�1
˘

Ji�1. (14)

IV. RESULTS

In order to test the performance of the FD sparsification
method just presented and to compare it with the state-of-
art IP and PQN methods, we implemented all methods in
Matlab. To prevent linearization errors to be confused with
sparsification inaccuracy, we relinearize the whole SLAM
problem and solve it at each new trajectory pose using our
own implementation of

p
SAM [16]. We implemented the

IP method using the gradient and Hessian in [12]. For PQN,
we used the authors’ Matlab implementation [21]. Finally,
we build the sub-graph topology as explained in section II-A
with a number of factors doubling that of the tree topology.

A. Initial guess and convergence rate

We want to test the different combinations of opti-
mization method and initial guess on several sparsification
problems. The methods PQN and FD are combined with
three different initial guesses: the identity matrix (Id) as
proposed in [12], the one based on the off-diagonal blocks
(ODB) as proposed in [19], and our First FD cycle (FFD)
of Sec. III-B. The method IP is only combined with Id, as it
diverges otherwise. This gives a total of seven combinations.

We executed a SLAM for the Manhattan M3500
dataset [22] with 80% of node removal. To guarantee equal
conditions for all the methods under test, all sparsification
problems after node marginalization are stored. Then, we
compare all methods by solving the stored problems. In all
cases, we solve and relinearize the cropped problems before
marginalization.

First, we analyze the relation between the type of initial
guess used and problem size. Fig. 4 depicts the mean and
variance of the KLD between each initial guess and the
dense exact distribution, as a function of the sparsification
problem size, i.e. the number of nodes in the Markov
blanket. As expected, in all cases the smaller the size of
the Markov blanket, the better. ODB initialization performs
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Fig. 4. Mean and variance (dashed line) of all three initial guess KLD
vs. the Markov blanket size of for sparsification processes made in the
Manhattan experiment with 80% node removal.
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Fig. 5. Mean KLD evolution of all sparsification combinations (methods
and initial guesses), for problems with Markov blanket size = 3 in the
Manhattan experiment with 80% of node removal.

better for small Markov blankets whereas the proposed FFD
works better for larger problems. The identity initial guess
(Id) is significantly inferior than the other two initialization
methods (notice the vertical log axis).

We analyze now the convergence rate for all seven
combinations of initial guess and methods. In Matlab, the
most computationally expensive operations are optimized,
and therefore CPU time measures are not reliable. Also,
since the size of the sparsification problems is small and
independent of the full problem size, the complexity of each
method w.r.t. the Markov blanket size is not necessarily
representative. Then, the evaluation of the convergence rates
is based on the number of optimization iterations.

Fig. 5 depicts the evolution of the mean KLD for all
method-initial guess combinations, for Markov blankets of
size 3. Although IP converges faster, PQN and FD take
profit of a (much) better initial guess at the initial iterations,
becoming better alternatives for implementations with low
computational resources that do not allow for many iter-
ations. If the number of iterations is not a constraint, IP
reaches the best results.

As well as the initial guess, the convergence of the
methods depends also on the size of the sparsification
problem. We show in Fig. 6 the mean KLD evolution for all
problem sizes. While in small problems FD-ODB is the best
combination up to 15 iterations, for larger Markov blanket
sizes IP becomes the best choice from a smaller amount of
iterations.

B. Application

We tested all methods on three different datasets [22]
to evaluate their performance. The typology of the chosen
datasets is very different. The Manhattan M3500 sequence
is a large problem and, since it is highly connected, it has
large Markov blankets. On the contrary, the MIT Killian
Court sequence has few loop closures and small Markov
blankets. The Intel Research Lab sequence is somewhere
in between.

In all cases, the same 80% volume of nodes were
marginalized. Since node selection is out of the scope of
this paper, we applied the simple strategy of keeping one
node every 5.

The following combinations of optimization method and
initial guess were tested: IP-Id, PQN-ODB, FD-ODB, FD-
FFD. We ran four independent SLAM solutions for each

TABLE I
FINAL KLD AFTER 80% OF NODE REMOVAL

Method Iterations
0 5 10 15

M
an

ha
tta

n IP-Id 1285 110.6 4.967 4.786
PQN-ODB 7.36 6.424 5.587 5.399
FD-ODB 7.36 5.469 5.291 4.852
FD-FFD 81.09 11.46 7.617 5.82

CLT 25.84 - - -

In
te

l

IP-Id 314.8 85.07 8.083 7.293
PQN-ODB 18.19 16.33 9.35 8.423
FD-ODB 18.19 7.962 7.247 7.027
FD-FFD 29.26 10.47 7.574 6.902

CLT 27.68 - - -

K
ill

ia
n

IP-Id 429.4 210.1 76.73 77.29
PQN-ODB 78.59 78.07 78.28 78.39
FD-ODB 78.59 77.21 77.4 77.37
FD-FFD 70.11 78.37 77.49 77.59

CLT 82.92 - - -

combination fixing different number of optimization itera-
tions: 0, 5, 10 and 15. For greater completeness, we also
ran a CLT using the closed form solution.

The baseline for evaluation is the batch optimization
of the original SLAM graph without removing any node.
Following [12], factors involving previously removed nodes
were redirected to the closest existing node. This was also
done for the baseline graph in order to evaluate only the
sparsification performance.

To evaluate the performance of the different approaches,
we computed its KLD with the baseline using (3), but this
time evaluating for the whole SLAM problem instead of
just the Markov blanket.

Table IV-B shows the final KLDs of all 17 experiments
for the three datasets. In the table, KLD for CLT is
reported only for zero iterations since it has a closed form
solution. The comparison between CLT and all methods
evidences the limitation of the tree topology for accurately
approximating the dense distribution. For highly connected
problems (Manhattan and Intel), the use of a sub-graph
topology produces a much smaller KLD. And for sparser
cases such as the Killian dataset, the sub-graph topology
slightly outperforms CLT. This is not surprising, since the
average Markov blanket sizes are small in this case.

Note that, even without any optimization iteration, using
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the ODB initialization always yields a better approximation
than CLT.

The presented results validate the initial hypothesis:
the tree topology is too sparse to accurately approximate
the dense distribution. A more complex topology can ap-
proximate the original graph better without computational
burden.

V. CONCLUSIONS AND FUTURE WORK

Sparsification is a useful mechanism to maintain the
SLAM problem bounded. The topology chosen determines
the existence of a closed form solution and strongly affects
the accuracy of the approximation.

Tree topologies admit a closed form solution but are
usually too simple to approximate the original graph. On the
contrary, more populated topologies lose the applicability of
closed form solution but can encode more information of
the original graph.

We presented the novel Factor Descent optimization
method for sparsification that provides more accurate ap-
proximations with less iterations than other state-of-the-
art sparsification methods. When combined with the off-
diagonal block initialization, Factor Descent gives the best
results in a larger number of situations.

In addition, we observed that the existence of a closed
form solution is not a sufficient argument for choosing a
tree topology instead a more complex one. Better approx-
imations in terms of KLD can be reached using a more
complex topology with few or no optimization iterations.

In future work we consider the implementation in C++
of all analyzed sparsification methods to be able to compare
them also with regards to computational time. Also, a non
cyclic version of Factor Descent can be explored to further
improve convergence.
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Collaborative Object Picking and Delivery with
a Team of Micro Aerial Vehicles at MBZIRC
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Abstract— Picking and transporting objects in an outdoor
environment with multiple lightweight MAVs is a demanding
task. The main challenges are sudden changes of flight dynamics
due to altered center of mass and weight, varying lighting
conditions for visual perception, and coordination of the MAVs
over unreliable wireless connections.

At the Mohamed Bin Zayed International Robotics Challenge
(MBZIRC) teams competed in a Treasure Hunt where three
MAVs had to collaboratively pick colored disks and drop them
into a designated box. Only little preparation and test time on-
site required robust algorithms and easily maintainable systems
to successfully achieve the challenge objectives.

We describe our multi-robot system employed at MBZIRC,
including a lightweight gripper, a vision system robust against
illumination and color changes, and a control architecture
allowing to operate multiple robots safely. With our system,
we—as part of the larger team NimbRo of ground and flying
robots—won the Grand Challenge and achieved a third place
in the Treasure Hunt.

I. INTRODUCTION

Aerial manipulation—especially picking, transporting, and
delivering objects—became an area of much interest in
recent years. Micro aerial vehicles (MAV) are well suited to
quickly deliver small, but valuable objects, e.g., spare parts
or medical substances. A particular advantage of employing
aerial vehicles to detect and pick objects is that—in contrast
to ground vehicles—they can reach otherwise hard to access
or even dangerous areas.

To facilitate the development in this field, one of the
tasks at the Mohamed Bin Zayed International Robotics
Challenge 2017 (MBZIRC) was collaborative picking with
MAVs. The Treasure Hunt task was to find and pick colored,
ferromagnetic discs from the ground of an outdoor arena
and to deliver them to a designated box in a predefined drop
zone. Fig. 1 shows one of our MAVs while picking a moving
object.

Teams were provided with rough specifications of the ob-
jects, i.e., diameter, height above ground, maximum weight
of 500 g, and the possible colors, in advance. The drop box
was specified by its approximate dimensions. Nevertheless,
the exact arena setup—including colored markings on the
ground making color-based perception challenging—was not
known in advance and teams had to develop robust and
flexible systems.

This work has been supported by a grant of the Mohamed Bin Zayed
International Robotics Challenge (MBZIRC) and grants BE 2556/7-2 and
BE 2556/8-2 of the German Research Foundation (DFG).

The authors are with the Autonomous Intelligent Systems
Group, Computer Science VI, University of Bonn, Germany
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Fig. 1. Picking a dynamic object. Our MAV follows the yellow disc with
visual servoing. The telescopic rod and the ball joint of our electromagnetic
gripper allow compliant picking without disturbing attitude control of the
MAV. The picked objects were delivered to a drop box up to 75m away.

In contrast to lab experiments or controlled field tests,
the particular challenge of the competition was the much
reduced testing time. The arena was only accessible for teams
at assigned time slots. In total, individual teams had two
rehearsal slots of 35 minutes and four competition trials—
two for the Treasure Hunt and two for the Grand Challenge.
The systems had to be set up in the arena in only five minutes
in each run. Consequently, complex algorithms that need
extensive fine-tuning or are prone to failing in some cases are
not an option for a competition system. Thus, we focused on
simple but robust approaches and tried to identify and cover
as many issues in advance as possible. Experiences gained
during trials had to be incorporated into the system without
additional testing before the next trial. Hence, the system
complexity needed to be as low as possible to eliminate error
sources. Furthermore, quickly changing overcast and light
sandstorms changed illumination and navigation conditions
significantly from trial to trial.

Due to these challenging conditions, only very few teams
managed to score in this task autonomously. Our main
contributions are

• robust detection of objects with only roughly specified
color under varying lighting conditions,

• relative navigation while picking and dropping,
• lightweight and flexible picking hardware,
• coordination of multiple MAV with and without WiFi

connections, and



Fig. 2. Closeup of our MAV. The Matrice 100 is equipped with a down-
pointing color camera for object and drop box detection. Objects are picked
with an electromagnetic gripper on a telescopic rod. A small lidar sensor
measures the distance to the ground. All calculations are performed on a
powerful onboard PC.

• evaluation of our integrated multi MAV system in
challenging conditions at MBZIRC.

II. RELATED WORK

Aerial manipulation has been investigated by multiple
research groups.

Morton et al. [1], for example, developed an MAV with
manipulation capabilities for outdoor use. The MAV is
equipped with a 3-DoF arm which is operated in hover mode
without object perception or autonomous flight. An MAV
with a 2-DoF robot arm that can lift relatively heavy weights
is presented by the authors [2]. The controller explicitly
models the changes in the vehicle dynamics by attaching
a heavy object. The object positions are known beforehand.
We employ a trajectory generator that uses a very simple
dynamics model with frequent replanning on top of a model-
free attitude controller to achieve robustness against changes
in flight dynamics.

Ghadiok et al. [3] built a lightweight quadrotor for grasp-
ing objects in indoor environment. Similar to our work,
they have a lightweight and compliant gripper to cope with
uncertainties during grasping. Target objects are equipped
with infrared beacons; we detect objects based on coarse
color specifications. The ETH Zürich MBZIRC team Elec-
tronic Treasure Hunters describe a preliminary state of their
approach to solving the challenge in [4]. They employ an
electro-permanent magnetic gripper and color blob detection
for visual servoing.

Some work exists on cooperative transport of objects [5],
[6]. However, this work assumes a permanently connected
object, i.e., no picking and placing.

III. SYSTEM SETUP

Our picking MAV, depicted in Fig. 2, is based on the DJI
Matrice 100 quadcopter platform. This platform is designed
for research and development—and consequently offers an
easy ROS integration. We equipped the basic platform with
a small, but powerful Gigabyte GB-BSi7T-6500 onboard PC
with an Intel Core i7-6500U CPU running at 2.5/3.1GHz
and 16GB of RAM. For object and drop box detection, we
employ a downward facing Point Grey BFLY-U3-23S6C-C
color camera with a wide-angle lens.

For allocentric localization, we use the filter result from
the MAV flight control unit (FCU) fusing GNSS, barometer,
and IMU data. A small Garmin Lidar Lite measures the
distance to the ground to allow for exact, drift-free navigation
close to the ground. To avoid electromagnetic interference
between components—in particular USB3 and GPS—the
core of our MAV is wrapped in electromagnetic shielding
material. This increases the system stability significantly.

Our gripper is an electromagnet with a telescopic rod. The
rod is passively extended to its full length by gravity and can
be shortened up to 31 cm when in contact with an object. A
switch detects shortening the rod. Two dampers avoid fast
oscillations while still allowing the rod to align with the
gravity vector. The gripper weighs 220 g including mounting
and electronics.

All three MAVs are similar in hard- and software—also
most of the configuration is derived from a single copter
ID—to simplify the handling of multiple robots in stressful
competition situations.

To make all components easily transferable between the
test area at our lab and also different arenas on site, we
defined all coordinates (x, y, z, ✓

yaw

) in a field-centric coor-
dinate system. The center and orientation of the current field
were broadcasted by a base station PC to all active MAVs—
and the ground robot in the Grand Challenge. Furthermore,
the base station PC, an Intel NUC equipped with a DJI
N3 module, constantly measures its GNSS position and
broadcasts position correction offsets to eliminate larger
position deviations caused by atmospheric effects.

The communication among the MAVs and the base sta-
tion is conducted over a stationary WiFi infrastructure. For
robustness, we employ a UDP protocol that we developed
for connections with low-bandwith and high-latency [7].

IV. VISUAL PERCEPTION

The mission plan demands for robust perception in two
phases: when sweeping the field at a very high speed, the
copter has to detect and track the pickable objects with low
latency; after arrival in the drop zone the box has to be
reliably detected and tracked during approach.

A. Object Detection
The challenge rules define two kinds of pickable objects:

thin ferromagnetic disks with a diameter of 20 cm and thin
rectangular objects with a size of 200⇥ 20 cm. The former
were colored in red, green, blue, and yellow while the
latter were exclusively orange. Since little detail was given
beforehand about the competition arena and, thus, possible
distracting objects, the detection algorithm was based on
both color and shape information where the specific color
was supposed to be trained quickly on-site when the actual
objects were available. The learned color distribution is also
able to model the effect of different lighting conditions and
reflective object surfaces.

Briefly, the camera image is scaled down depending on
the copter altitude and a bird’s-eye perspective transform
is applied in order to account for its attitude (see Fig. 3



Fig. 3. Overview of the object detection pipeline: (a) original camera
image, (b) undistorted bird’s-eye representation, (c) color likelihood images,
(d) detection hypothesis in green (accepted) and red (discarded).

(b)). Please note, that during maneuvering the camera can
be significantly tilted. A pixel-wise transform is computed
assigning the likelihood of belonging to one of the relevant
colors which results in one likelihood image per color (see
Fig. 3 (c)). A blob detection method identifies the connected
regions which are then filtered by several shape (aspect ratio,
convexity, size) and color (average likelihood, contrast to
background) criteria (see Fig. 3 (d)).

The initial image transform serves to simplify the detection
problem but also to limit the computational burden. Let
therefor be r the magnitude of the shorter side of a detectable
object in meters and h the MAV altitude obtained by relative
barometric and laser range measurements. The image is
scaled by
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where f is the camera focal length. For later convenience, s
is rounded to the first position after the decimal point, hence,
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describes the rotation from the camera frame into a camera
frame where the image plane is aligned with the ground
plane, i.e., the matrix
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yields a pixel coordinate transform into the bird’s-eye rep-
resentation via homogeneous coordinates. Finally, taking the
lens distortion into account, we arrive at

(u, v) 7! M

✓

d(u, v)
1

◆

(1)

with an invertible radial-tangential lens undistortion function
d operating on the image coordinates (u, v). K

c

is given
by the camera intrinsics. In order to efficiently execute this
transform, please note that d is static such that a pixel-wise
lookup table for each of the ten possible rounded scale factors
s can be precomputed. The second part of the mapping in
equation (1) is linear-projective and can be computed very
efficiently.

For detection processing, the color image is transformed
into HSV space. As pixel-wise color likelihood we use a
max-mixture of Gaussians model:
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three hyperparameters.
During training, the channel-wise mean of all pixels from
a manually labeled object detection is computed and stored
in a single prototype pixel value c

i

. In order to efficiently
calculate (2), a lookup-table is set up where the HSV color
space is sampled with a grid of 20 × 20 × 20 points.

The resulting images contain a point-wise likelihood for
each of the detectable colors. As blob detection we use
the implementation by Nistér and Stewénius [8] of the
maximally-stable extremal regions (MSER) algorithm which
yields a number of initial hypotheses. In order to select the
final detections, we regard

• the size: the number of pixels of the region,
• the aspect ratio of its oriented bounding box,
• the convexity: the ratio of the number of pixels over the

area of their convex hull,
• the color: the average likelihood in the region, and
• the background: the average discrepancy between the

likelihood of pixels inside the region and pixels sampled
from a surrounding circle.

A classifier can be trained on these quantities, but for the
scope of this venture, the selection criteria were manually
and individually tuned which allowed us to better follow
the behavior of the detector and quickly adapt it in case of
failure.

Upon a significantly confident detection, the algorithm
switches to a tracking mode where only a window around
the last known object position is searched for only the
identified color. This enables a much faster detection rate, in
particular during the picking maneuver. In close proximity



to the ground when the object is expected to be only partly
visible in the image, the shape criteria are ignored when
filtering the hypothesis.

It is further possible to use this algorithm to detect whether
an object is attached to the gripper by filtering for very large
detections in the specific color.

B. Drop Box Detection
In contrast to the pickable objects, the drop box was not

specified by the challenge rules. Hence, we deployed a very
general approach, only assuming that the box was rectangular
and would provide some contrast to the surrounding ground.
It is explicitly not assumed that the box would be uni-
formly colored1. Nevertheless, the dimensions of the box are
parametrized. As for the object detection, the camera image
is transformed to a bird’s-eye perspective to account for the
copter attitude. A Hough transform of the resulting gradient
image yields line segments that are combined in a RANSAC-
like procedure. In order to combine only promising pairs of
line segments, a hash table with the line orientation as key is
set up and only approximately perpendicular line segments
are sampled. Testing the rectangularity, aspect ratio, and size
of all RANSAC hypotheses provides the detection.

V. STATE ESTIMATION

At the onboard PC, we use state estimation filters for
maintaining a height offset between the measured height over
ground and the barometer, and for estimating the position
and velocity of (faster) moving objects during picking. Our
generic filter design does not make any model assumptions
and all dimensions are treated independently. Thus, we can
employ the same filter with different dimensionality for both
use cases. We modified our state estimation filter from [9]
by replacing the acceleration-based prediction step with a
constant velocity assumption.

A. Laser Height Correction
The operation close to the ground during picking makes

a good height estimate over ground obligatory. The Matrice
100 provides absolute GNSS altitude and a barometric height
to a starting position. While the first is usually not very
accurate, especially close to the ground, the second is prone
to drift over time. Hence, we employ a laser distance sensor
in order to correct the drift. The laser measurements close to
the ground are very noisy, at greater heights they are assumed
to be not reliable due to bright sunlight, but if available
their measurement is correct. In contrast, the barometer is
very reliable and locally consistent. Thus, we maintain an
offset between laser height and barometric measurements and
use this offset to correct the barometer drift. To acquire the
correct heights, we first transform the laser measurements
into an attitude-corrected frame. If the resulting measurement
is between 0.1m to 6m, we use this value to correct the
height offset. The advantage of this approach is that even
without laser measurements over longer periods of time, the
MAV can safely navigate in higher altitudes, e.g., to explore

1As a matter of fact, it was uniformly colored.
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Fig. 4. Overview of our state machine. To avoid any false negatives, the
dotted part was shortcut during competition.

or deliver objects, but the filter still converges quickly to the
correct height over ground when picking.

B. Object Tracking
To track dynamic objects, we filter their positions and

velocities in an allocentric frame to omit the orientation
dimension. Furthermore, in contrast to our MAV state es-
timation filter, we only incorporate position measurements,
letting the filter predict velocities without explicit correction.
Outputs of the filter are allocentric 2D position and velocity
estimates, used to intercept the target objects. For the very
slow moving objects used in the actual MBZIRC challenges,
estimating the object velocities was not necessary such that
we omitted their estimation in favor of filter stability.

VI. NAVIGATION AND CONTROL

Whereas the competition arena is of rectangular shape
without larger obstacles and with good GNSS coverage,
picking small objects from the ground and the coordination
of a team of multiple collaborating robots pose challenges
for navigation and control.

The top-level coordination is achieved by is a state ma-
chine running at 50Hz, depicted in Fig. 4. The state machine
selects navigation targets and configures the perception and
navigation modules and the hardware. After takeoff, and
when the list of detected objects is empty, the system starts
to explore the arena in a spiral pattern at a height of 4m.
The maximum exploration speed is 6m/s. Immediately after
object detection, we approach the closest object for picking2.
When reaching a position above the detected object, we con-
firm its color and reconfigure the object perception to use its
fast tracking mode with only one color. With visual servoing,
the MAV descents within a cone around the object center
until a) contact of the gripper with the object is detected,
b) the measured distance to the ground from the laser falls
below a safety threshold, or c) the object is not perceivable
any more. If the object is no longer perceived, the MAV
enters the exploration mode, in the other cases it ascents and
starts visual confirmation that an object is attached. Please
note that during the MBZIRC we disabled the visual object
confirmation and assumed that every picking attempt was
successful as false positives were far less problematic than
false negatives regarding the scoring scheme. Furthermore,
the gripper was much more reliable than expected.

2Due to the high exploration velocity, it is possible to observe multiple
objects before switching to the approach state.



Fig. 5. Sectors for safe operation of multiple MAVs. We divide the arena
into one to three sectors, depending on the number of active MAVs, all
with access to the drop zone (white rectangle). The black lines depict the
exploration patterns.

To drop objects, the MAV enters the drop zone at a height
of 8m and starts a local exploration flight to detect the drop
box. If the drop box is detected, the MAV descents to 1m
height and drops the object. After a timeout, the MAV drops
the object at the predefined center of the drop zone. As long
as the drop zone is occupied, the MAV waits outside. It enters
the drop zone close to its border after a timeout to drop the
object safely for partial points.

The allocentric navigation is based on GNSS positions—
bias corrected with help of the base station—in a field-centric
coordinate system. Positions in the arena, e.g., endpoints of
exploration trajectories, starting points of picking attempts,
and the drop zone, are directly approached by means of
our time-optimal trajectory generator [10] with maximum
velocity. Except for exploration this is 8.33m/s. We use a
generic motion model in our trajectory generator combined
with frequent replanning. Our controller generates attitude
setpoints which are executed by the Matrice 100 onboard
controller. This approach is independent from the accurate
weight and other parameters that change when picking or
dropping objects and, thus, robust but still efficient.

To ensure safe operation of multiple MAVs flying at high
speed, we divide the arena into sectors (see Fig. 5). Sectors
are derived from the number of active robots and their IDs.
Within their sector, the MAVs are allowed to freely navigate
below a maximum altitude. Outside their sectors, the MAVs
transfer at assigned higher altitudes on straight lines.

We assume that wireless connections between agents are
unreliable. Consequently, we designed our system in a way
to stay operative without communication, but to employ
knowledge about the other agents to operate more efficiently,
if available. Our system has no central control instance or
explicit negotiation between agents. The MAVs broadcast
selected parts of their knowledge, namely a) allocentric 3D
position, b) current navigation target, c) detected objects
outside of own operation sector, d) if the MAV is flying
or landed. The received information is integrated into the
individual world models. If the team communication is
reliable, the agents can enter the drop zone immediately
if unoccupied and follow dynamic objects into neighboring
sectors while picking. In case of disturbed communication,
fallback strategies are in place, e.g., more conservative nav-
igation in other sectors and time slots for entering the drop
zone.

VII. EVALUATION

The competition objective was to pick metal discs with a
radius of 10 cm on a 20 cm stand in the colors red, green,
blue, and moving discs in yellow, and deliver them to a

Fig. 6. Arena at MBZIRC. The colored discs randomly distributed over
the arena had to be detected, picked, and dropped into the white box or
surrounding drop zone. Many white lines and colored markings on the
ground posed a challenge for object detection. Right: Closeup of some
objects.

designated drop zone. The elevated position of the disks
made it necessary to pick the objects during flight without
the possibility to land nearby. A white box with ground plane
of one square meter—the preferred place to drop objects—
was placed in the drop zone of size 10⇥ 10m. Dropping
objects next to the box but into the drop zone was awarded
with half of the points. Overall, 16 discs were randomly
distributed over the 100⇥ 60m arena. Furthermore, three
larger elongated objects of orange color were placed in the
arena, which we were able to detect, but did not attempt
to pick. The maximum challenge duration was 20 minutes.
Fig. 6 shows the arena setup in the Grand Challenge. Videos
of our evaluation can be found on our website3.

In the first attempt of the first trial, we began to explore
the arena with three MAVs simultaneously. The trial was
canceled because of very strong winds with a speed of up
to 9m/s. Qualitatively, all MAVs followed their assigned
exploration trajectories until then.

In the second attempt of the first trial, we explored the
arena with three MAVs and successfully picked two discs
on moving bases. One of the discs could be delivered into
the drop box. Before the second disc could be delivered, the
referees called a reset and the MAV landed with the disc still
attached. Due to conservative safety distances to the ground,
we could not pick that disc after the reset. Furthermore, two
MAVs arrived at the drop zone at the same time and were
kept in a deadlock situation. Modifications to the system
during the competition were not allowed, so we could only
address these issues between trials. This was the fourth-best
result of all 36 trials—18 teams with two trials per team
where the better trial counted for the final score—in the
Treasure Hunt and worth a third place.

The second trial took place with very strong wind. Objects
were detected reliably and the descent of the MAVs was
stable despite the wind, but the MAVs always had an offset
of a few centimeters into the wind direction when picking.

In the first trial of the Grand Challenge, we started with
three MAVs, one failed directly at takeoff due to a hardware
defect. The other two explored the arena and started picking
and delivering objects. As the field was not covered in full

3
www.ais.uni-bonn.de/videos/ECMR_2017_Picking



Fig. 7. Treasure Hunt in the Grand Challenge. Each image shows the
trajectories of the active MAVs during the Grand Challenge (separated by 4
resets). Solid disks represent successful and rings show missed picks. The
dotted disks indicate disks lying on the ground. The left rectangle is the
starting zone, the right one the drop zone including the drop box. In Run 1
and Run 2, two MAVs were active. In Runs 3-5, only one MAV was active
since the other one worked erroneous. It flew way to high so we had to
call a reset. The following colored disks were picked (p) and missed (m)
during the Grand Challenge: Run 1: m-p; Run 2: p-p-p-p (the blue and the
red disk had to be put on the ground, because we called a reset. Each disk
is attempted to be picked twice later); Run 3: p-m-m-p (the yellow disk
was picked during a reset and had to be put back on the cart); Run 4: m-m;
Run 5: p-p-m-m-p-m. Total time airborne is 624 s.

due to one missing MAV, we reconfigured the system to use
only two MAVs in a reset. After a second reset due to another
hardware problem, the remaining MAV operated on the
whole arena. We successfully picked nine discs and were able
to deliver seven of them—six into the drop zone and one into

the drop box. Two discs were still attached to MAVs during a
reset and, thus, were lying on the ground after resuming the
trial. Overall, we scored 10.5 points and reached a second
place in this Grand Challenge subtask. Fig. 7 details our trial.
We canceled the second Grand Challenge trial due to severe
hardware issues without a score.

VIII. CONCLUSION

Operating complex robotic systems without manual adap-
tation to the current situation and with virtually no testing
time is very challenging. Whereas many highly sophisticated
state-of-the-art algorithms to all subproblems of the chal-
lenge exist, simpler and failsafe solutions are often key to
success. The complexity of the task is represented in the final
results: From 18 teams participating in the Treasure Hunt
only four were able to autonomously achieve partial task
fulfillment. Five more teams were able to deliver at least one
object with manual control. We came in third in the Treasure
Hunt after the second competition day, and, while winning
the Grand Challenge overall—in collaboration with an MAV
landing on a moving target and a ground robot operating a
valve—we achieved the second highest score in the Treasure
Hunt sub-challenge out of 14 participating teams.

We addressed many possible issues in advance; still,
unforeseen challenges occur during actual competitions, e.g.,
the unexpected strong wind and deadlock situations. The
system could be robustified by adding more elements of
randomness to the algorithms to prevent repetitive failing.
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A Predictive Online Path Planning and Optimization Approach for
Cooperative Mobile Service Robot Navigation in Industrial Applications

Felipe Garcia Lopez1, Jannik Abbenseth1, Christian Henkel1 and Stefan Dörr1

Abstract— In this paper we address the problem of online tra-
jectory optimization and cooperative collision avoidance when
multiple mobile service robots are operating in close proximity
to each other. Using cooperative trajectory optimization to
obtain smooth transitions in multi-agent path crossing scenarios
applies to the demand for more flexibility and e�ciency in
industrial autonomous guided vehicle (AGV) systems.

We introduce a general approach for online trajectory opti-
mization in dynamic environments. It involves an elastic-band
based method for time-dependent obstacle avoidance combined
with a model predictive trajectory planner that takes into
account the robot’s kinematic and kinodynamic constraints.
We augment that planning approach to be able to cope with
shared trajectories of other agents and perform an potential
field based cooperative trajectory optimization.

Performance and practical feasibility of the proposed ap-
proach are demonstrated in simulation as well as in real world
experiments carried out on a representative set of path crossing
scenarios with two industrial mobile service robots.

I. Introduction
Imagine two autonomously navigating mobile robots oper-

ating in close proximity to each other. If we command them
to swap places, during execution they will perceive each
other as obstacles. Independently, both robots will start to
perform obstacle avoiding routines which in most cases result
in sub-optimal or even infeasible path planning solutions for
the overall situation.

Current trends in industrial manufacturing demand au-
tonomous guided vehicle (AGV) systems with a high degree
of autonomy in order to fulfill the requirements of flexible
production systems. When it comes to path planning, these
multi-agent AGV systems usually rely on cooperative route
planning on a global scale that either try to completely
avoid conflicts, which often results in expensive detours, or
when path crossing is inevitable, e.g. at intersections, these
systems implement simple right of way regulations where
one or several agents need to halt to let another agent pass.
However, enabling smooth transitions in multi-agent path
crossing scenarios by sharing and cooperatively optimizing
the agents trajectories at runtime would reduce the overall
costs.

In mobile robot applications it has become a common
strategy to use a decoupled approach for the motion plan-
ning problem [19]. Thereby, the problem is separated into
a) global path planning, for o✏ine computing collision-free
paths in the robot’s configuration space from its current pose
to a desired goal, and b) local motion planning, for online

1Fraunhofer Institute for Manufacturing Engineering and Automation
IPA, Department for Robot and Assistive Systems, Stuttgart, Germany.
Email to {flg; jba; cch; srd}@ipa.fraunhofer.de

Fig. 1. Schematic illustration of two agents sharing each others planned
paths using a cloud-based infrastructure and performing cooperative trajec-
tory optimization for collision avoidance.

trajectory planning and reactive trajectory optimization in the
global path’s homotopy. Local motion planning is executed
periodically on a reduced spatial and temporal horizon as part
of the robot’s control loop. It is designed to immediately react
to changes in the environment and to consider the robot’s
kinematic and kinodynamic constraints.

In previous work [3], we introduced a cloud-based naviga-
tion architecture for AGV systems in industrial environments
that moves parts of the navigation tasks, particularly global
path planning, o↵ the mobile robots to a cloud server en-
abling cooperative global planning solutions. In that setting,
however, local motion planning still needs to run detached
on the local agents due to its real-time requirements.

Using the same cloud-based infrastructure, we present in
this paper a solution that also enables online cooperative tra-
jectory optimization even though the local motion planning
instances run on distributed systems. For trajectory planning
on the single agents we use a model predictive approach to
predict the agents’ trajectories over horizons of up to 20 sec-
onds. In path crossing scenarios the predicted trajectories are
shared with other agents in the shape of obstacle trajectories
using the cloud infrastructure. In case of predicted collisions
between two agents, the local planners perform a potential
field based cooperative trajectory optimization to resolve the
collisions. Figure 1 illustrates that setting.

A. Related Work

An established example for local motion planning is the
dynamic window approach (DWA) [7]. A sampling-based
method that continuously simulates a set of potential trajec-
tories from a restricted velocity state space. A minimum cost
trajectory is selected and applied to control the robot.

In terms of reactive obstacle avoidance our approach builds
on the classic elastic-band method (EBM) [20], an e�cient



potential field approach (PFA) that uses artificial forces to
deform a path at runtime. The original EBM has two major
drawbacks: a) As it only optimizes in a fixed configuration
space homotopy, the method gets stuck in local minima
in scenarios with path crossing dynamic obstacles. b) The
underlying PFA does not allow to incorporate arbitrary
robot-specific kinodynamic constraints on the path.

To tackle these issues, we enhance the concept of the
original EBM from configuration space to configuration-time
(CT) space to be able to incorporate predicted trajectories of
dynamic obstacles. We combine that method with a separate
model predictive control (MPC) based trajectory planner that
considers the robot’s kinematic and kinodynamic constraints.

In terms of incorporating predicted trajectories of dynamic
obstacles, in [14] a time-dependent planning approach for
social robot navigation is presented. Predicted movements
of pedestrians are incorporated by using time-layered occu-
pancy grid maps. A search-based path planning is introduced
using A* with directly executable motion primitives. In [8] a
trajectory deformation scheme is presented that already uses
elastic-band logic in configuration-time space. The approach
directly optimizes the robot’s trajectory using artificial forces
that are designed to ensure feasibility regarding the robot’s
dynamic model. In contrast, we use the EBM in CT space
only for reactive obstacle avoidance in order to provide a
time-dependent free space corridor around the robot’s current
trajectory. Actual trajectory optimization is performed inside
that corridor by the underlying MPC trajectory planner.

Using corridor planning to reduce and unify search spaces
for trajectory planners is a common strategy, see e.g. [23].
The original EBM already provides a concept of bubbles
that model a free space corridor around the robot’s path.
We enhance that concept to generate a set of cylindrical
bubbles in CT space to cover the robot’s trajectory, see
Fig. 3. A similar concept is already presented in [6] using
a space-time exploration guided heuristic search technique
for kinodynamic motion planning. Thereby, time-dependent
cylindrical tubes are computed to provide a free space
corridor. Our approach mainly di↵ers from this w.r.t. the use
of a reactive elastic-band technique.

In terms of combining EBMs with kinodynamic planning
and optimal control, in [11] a decoupled space-time trajec-
tory planning structure is introduced. It combines an EBM
based path planner for obstacle avoidance with sampling-
based kinematically-feasible trajectory generation. Another
EBM enhancement in that regard is the TEB approach [21].
Thereby, the system model, the kinodynamic constraints and
all obstacle information are transformed into a weighted
regulation problem which is e�ciently solved by a tailored
Levenberg-Marquardt algorithm. In order to cope with path
crossing dynamic obstacles, the TEB method simultaneously
optimizes multiple trajectories in distinct topologies. In con-
trast, our approach directly incorporates predicted trajectories
of dynamic obstacles and decouples reactive obstacle avoid-
ance from actual trajectory planning. For solving resulting
optimal control problems (OCPs) in our MPC trajectory
planner, we use Bock’s direct multiple shooting method [4].

For multi-agent systems using cooperative approaches
combined with cloud computing is an arising field in mobile
robot navigation. With regard to cooperative global path
planning, several approaches have been introduced, e.g.
[15](PRM), [5](RRT) and [3](CBS). For cooperative local
motion planning, there are several approaches that focus
on the special case of formation navigation, e.g. in [18] a
priority based approach is presented using a tailored RRT
algorithm to generate kinematically-feasible paths. During
runtime an online priority strategy is introduced to avoid
the mutual collisions of the robots. In [17] a multi-robot
online path-planning method is introduced using an artificial
bee colony algorithm. The approach is evaluated only in
simulation but shows valid results in several path crossing
scenarios. In [10] an optimal cooperative motion planning
for vehicle coordination at intersections is presented. The
approach assumes the agents’ paths as fixed and focuses on
optimal priority coordination and determination of suitable
velocity profiles for the agents. For cooperative collision
avoidance in automotive applications, a study is introduced in
[9] that compares several real-time approaches in simulated
path crossing scenarios. The study compares i.a. tree search,
mixed-inter programming and elastic-band techniques. The
presented EBM proposes additional artificial forces to re-
solve collisions between two vehicles. We use a similar ap-
proach in our solution by introducing additional cooperative
forces to our configuration-time EBM. Thereby, the coopera-
tive optimization is influenced by agents-wise priority scores
that set the proportional intensity of the agents’ cooperative
forces.

For the realization of our cooperative planning architecture
we use a cloud-based navigation setup that the authors
presented in previous work [3]. The communication between
agents and server is realized utilizing the Manufacturing
Service Bus (MSB) [22], a communication middle-ware for
industrial requirements.

B. Contribution

The main contribution of this work is the introduction of a
novel online trajectory planning and optimization approach
for cooperative multi-robot navigation. We present a gen-
eral local planning approach for dynamic environments that
involves an elastic-band based method for time-dependent
obstacle avoidance combined with an optimal control based
model predictive trajectory planner. In a practical implemen-
tation, we use a cloud-based navigation infrastructure for
industrial AGV systems to online share predicted trajecto-
ries with other agents in path crossing scenarios. Predicted
collisions between agents are cooperatively resolved using a
priority based potential field optimization adding additional
artificial forces to the EBM. We demonstrate feasibility and
evaluate our cooperative planning approach in real-world
experiments carried out on a set of path crossing scenarios
with two industrial service robots. We also validate the
approach in simulation in an intersection scenario with four
mobile robots.



Fig. 2. Our motion planning system realized in a cloud-based navigation
architecture showing the server level, agent level, the planning modules and
their interconnections.

II. Motion Planning Architecture

In this section we describe the motion planning architec-
ture that enables our online cooperative trajectory optimiza-
tion approach for industrial AGV systems. Thereby, we build
on the cloud-based navigation infrastructure from [3] that
features two types of planning components, a cloud server
and the mobile agents. The proposed architecture is depicted
in Fig. 2.

The cloud server manages all parts of the navigation that
are not real-time critical. On a central environment model,
cooperative global path planning solutions are computed and
then provided to the mobile agents via wireless communica-
tion.

On the agent level, local motion planning is periodically
performed to control the robot in the global path’s homotopy.
We consider two main local planning modules: a) an elas-
tic-band based corridor planner and b) a model predictive
trajectory planner.

The elastic-band based corridor planner performs reactive
obstacle avoidance in configuration-time space and provides
a time-dependent free space corridor to the underlying MPC
trajectory planner. In that way we reduce and unify the search
space for trajectory planning, as we only consider a single
free space constraint per time instance, no matter how many
distinct obstacles are present.

The MPC trajectory planner solves finite-horizon OCPs
on a cost-minimizing strategy. It considers the robot’s kine-
matic and kinodynamic constraints, time-dependent path
constraints as well as user-defined soft optimality criteria.
Resulting state trajectories are fed back to the corridor
planner in the shape of internal contracting forces to generate
optimal free space information around the robot’s current
trajectory. Corresponding control trajectories are provided by
the planner to a trajectory controller. The trajectory controller
implements an MPC algorithm as presented in [13]. The
corridor planner and the trajectory planner run as a unified
module, in our implementation with a frequency of 30 Hz.
The trajectory controller runs with 100 Hz.

In order to enable cooperative optimization, predicted state
trajectories are provided to the central environment model on
the cloud server. In path crossing scenarios, these trajectories
are distributed to other agents in the shape of time-dependent
obstacle information. To resolve predicted collisions between
agents, we introduce additional cooperative forces to the
EBM in the corridor planner.

III. Elastic-Band Corridor Planning
in Configuration-Time Space

Let us consider a simple pose model for a robot moving in
a plane and denote by C = {(x,y,✓) : x,y 2 R,✓ 2 [0,2⇡)} the
robot’s configuration space, the set of all possible positions
(x,y) and orientations ✓ of the robot. Given the robot’s
footprint, we decompose C into C

f ree

, the collision-free con-
figurations of the robot, and C

obs

, the set of configurations
that result in collisions with obstacles.

Let T = [t0,th] ⇢ R be a time interval. We then define the
configuration-time space as the direct product C⇥T = {(q,t) :
q 2 C,t 2 T }.
A. A Concept of Free Space Bubbles in C⇥T

Operating in C, the original EBM [20] uses a concept of
reactive free space bubbles B(q) ⇢C

f ree

for describing local
free space around given configurations q 2 C. It shows that
every collision-free path in C can be covered with a finite
number of such bubbles. We augment that concept to work
in C⇥T .

Let ⇢(q,t) denote the potential field function providing
the distance to the closest obstacle to a robot’s configuration
q 2 C at time t 2 T . We relax that function to provide the
minimal distance over a whole time interval �t:

⇢�t (q,t) =min{⇢(q,⌧) : |⌧� t | < �t}. (1)

All configurations in that time interval which are closer to
q than the value ⇢�t (q,t) are collision-free by definition.
Hence, in the sense of the original EBM, we can define
cylindrical bubbles of free space in C⇥T by

B�t (q,t) = {(q́,⌧) : kq́� qk
C

< ⇢�t (q,t), |⌧� t | < �t}. (2)

Let ' : T �! C be a collision-free trajectory. Then there
is a finite equidistant time discretization t0,. . . ,tn with �t =
t
i+1� t

i

and configurations q
i

2 C such that the trajectory is
covered by corresponding free space bubbles:

{('(t),t) : t 2 T } ⇢
n[

i=0

B�t (qi ,ti ). (3)

This arrangement is schematically illustrated in Fig. 3.

B. Modifying Free Space Bubbles

To optimize the shape of the corridor at runtime, we apply
a set of artificial forces on the bubbles B�t (qi ,ti ). Such a
force vector F (t

i

) 2C acts on the center pose (q
i

,t
i

) to move
the bubble in its time layer C⇥ {t

i

}:
Bopt
�t
= B�t (qi +F (t

i

),t
i

). (4)



Fig. 3. Left: Schematic illustration of a trajectory ' (t ) in C ⇥T space
covered by cylindrical bubbles that represent a local free space corridor.
Right: ROS-visualization of that concept in a dynamic obstacle avoidance
scenario (predicted obstacle in yellow) with time as vertical dimension.

1) Internal Contracting Forces: Let '(t) be the robot’s
currently planned trajectory. To provide optimal local free
space around that trajectory, we introduce internal contract-
ing forces pushing the bubbles towards the trajectory:

Fint(ti ) = kint · ('(t
i

)� q
i

), (5)

where kint 2 [0,1] is a configurable gain.
2) External Forces: To avoid collisions, the corridor is

deformed by external forces that push the bubbles away from
(dynamic) obstacles, kext 2 [0,1]:

Fext(ti ) = kext · (⇢max� ⇢�t (qi ,ti ))
@⇢�t
@q (q

i

,t
i

)
��� @⇢�t

@q (q
i

,t
i

)���
C

(6)

with ⇢max being the maximal distance up to which obstacles
are taken into account. As in the original EBM [20], to
prevent undesired e↵ects, only the perpendicular part of
external forces F?ext(ti ) must be applied. In our case, we
compute that part such that

D
F?ext(ti ),'̇(t

i

)
E
= 0 holds.

3) Cooperative Forces: Let O : T �! P (C) denote the
trajectory of a dynamic obstacle. To resolve predicted colli-
sions of the corridor with dynamic obstacles, say q

i

2 O(t
i

),
we replace our regular external forces with forces Fdyn(t

i

)
that depend on the obstacle’s direction of motion @O

@t (t
i

). We
use the angle � between vectors @O

@t (t
i

) and (q
i�1 � q

i

) to
obtain

Fdyn(t
i

) = (1� | cos(�) |) · (⇢max� ⇢�t (qi ,ti ))(q
i�1� q

i

)
+ | cos(�) | ·F?ext(ti )

(7)

The first term of the right-hand side of that equation pushes
the bubble backward in direction of its predecessor by using
the vector (q

i�1�q
i

). That means the robot is forced to slow
down in that part of its path to let the dynamic obstacle pass.
Proportionally, that behavior is suppressed when the obstacle
moves rather tangentially to the robot’s free space corridor.

For our cooperative collision avoidance, we have to take
into account that all involved agents will simultaneously
apply Fdyn(t

i

) to resolve predicted collisions. As full op-
timization steps on all agents won’t be necessary, we use
a priority strategy to influence the strength of Fdyn(t

i

) on
the respective agents. This allows us to influence at runtime
which of the two agents executes the major part of the

Algorithm 1 Optimize Free Space Corridor
Require: Current corridor B�t (q

i

, t
i

) for i = 0, . . . , n. The robot’s currently planned
trajectory ' (t ). Dynamic obstacles O

j

(t ) for j = 0, . . . ,m.
1: for i = 0 to n do
2: q

i

 (q
i

+Fint (ti )) // apply internal contracting forces
3: if q

i

2 O
j

(t
i

) then // check for collisions with dynamic obstacles
4: q

i

 (q
i

+Fcoop (t
i

)) //apply cooperative force
5: else
6: q

i

 (q
i

+F?ext (ti )) //apply regular external force
7: end if
8: while Not enough overlap to B�t (q

i+1, ti+1) do
9: n n+1

10: for k = i +1 to n do
11: q

k+1  q

k

12: end for
13: q

i+1  (q
i

+ 1
2 (q

i+1 �qi

)) //insert new bubble at time t

i+1
14: end while
15: end for
16: while kq

n

�q
n�1 k < ✏ do //delete redundant bubbles at the end of the corridor

17: (q
n�1, tn�1) (q

n

, t
n

)
18: n n�1
19: end while
20: return Optimized corridor Bopt

�t
(q

i

, t
i

) for i = 0, . . . , n.

collision avoidance routine w.r.t. the involved agents’ foot-
prints, kinematics, loads and overall agility. The cloud server
provides the agents with weighting factors k ( ·)

coop 2 [0,1] such
that collisions can be resolved pairwise between two agents
A and B with respective forces

F ( ·)
coop(t

i

) = k ( ·)
coop ·F ( ·)

dyn(t
i

) (8)

and k (A)
coop+ k (B)

coop = 1.
4) Preserving Connectivity of the Corridor: Applying

artificial forces can harm connectivity of the corridor. As
in the original EBM [20], we reconnect consecutive bubbles
B�t (qi ,ti ) and B�t (qi+1,ti+1) not having enough overlap by
inserting an additional bubble B�t (qi + 1

2 (q
i+1 � q

i

),t
i+1) at

time t
i+1 and by shifting all subsequent bubbles �t ahead in

time. As time is also optimized in the MPC trajectory plan-
ner, internal contracting forces will push redundant bubbles
towards the goal pose, where they can be deleted.

IV. Model Predictive Trajectory Planning

To model the system dynamics of a mobile robot, we
generally consider augmented state spaces X  - C not
only representing the robot’s localization (x,y,✓) but also
its movement in terms of linear and angular velocities
(v

x

,v
y

,v✓ ), accelerations (a
x

,a
y

,a✓ ), or any other quantity
of interest: x = (x,y,✓,v

x

,v
y

,v✓ ,. . .) 2 X.
Let U ⇢ Rm be a set of feasible control inputs u 2 U

that modify the robot’s state as a function of time t. We
denote by f the right-hand side function of an ordinary
di↵erential equation (ODE) modeling the robot’s dynamics:
ẋ(t) = f (t,x(t),u(t)).

A. OCP Formulation

To transfer the time-dependent path constraints provided
by the corridor planner to our OCP, we seek to obtain analyt-
ical representations of the free space bubbles B�t (qi ,ti ). For
q
i

= (q
i,x ,qi,y ,qi,✓ ) we extract an euclidean sphere S(q

i

,t
i

) =(
(x,y) 2 R2 : (x� q

i,x )2+ (y� q
i,y )2  ⇢�t (qi ,ti )

)
at time t

i

that can be formulated as inequality constraint in our OCP.



Let x0 denote the robot’s current state and let x
f

be its
desired goal state. The trajectory planner then iteratively
computes optimal trajectories x : T �! X and u : T �!U by
solving the following OCP on a receding horizon of finite
length:

min
t

f

,x(t ),u(t )

Z
t

f

t0

L(t,x(t),u(t))dt +�(t
f

) (9a)

subject to ẋ(t) = f (t,x(t),u(t)) (9b)
(x(t0),x(t

f

)) = (x0,x f

) (9c)
8
t 2[t

i

, t
i+1) (x(t),y(t)) 2 S(q

i

,t
i

) (9d)
t
f

2 [t
n

��t,t
n

] (9e)
v(t) = (v

x

(t),v
y

(t),v✓ (t)) 2 [vmin,vmax] (9f)
u(t) = (a

x

(t),a
y

(t),a✓ (t)) 2 [umin,umax] (9g)

In our implementation, the cost functional of the above OCP
consists of �(t

f

) = k
t

f

·t
f

for weighted time optimization and
a Lagrange term L(·) = kx(t)k2

Q

+ ku(t)k2
R

. The weighting
matrices R and Q allow us to configure di↵erent optimality
criteria on the system’s state and control trajectories.

B. Numerical Solution Method

Resulting OCPs are solved by using Bock’s direct mul-
tiple shooting method [4], [16]. The infinite dimensional
problem from Eq. 9 is transformed into a finite dimensional
NLP, which is numerically solved by a tailored sequential
quadratic programming (SQP) method, in our case using
exact Hessian approximations. Among the advantages of that
solver is that it allows warm starts for subsequently solving
similar problems and that it supports nonlinear inequality
path constraints as they arise from the corridor bounds.

V. Evaluation

We evaluated our approach in real-world experiments
using two mobile service robots of type rob@work 3 [2]
that are interconnected via MSB [22] to the cloud-based
navigation infrastructure from [3].

A. Implementation and Communication

All navigation components, on server and agent level, run
ROS implementations. We use occupancy grid maps for static
sensor-based environment modeling. For dynamic obstacles
we use feature maps with time-dependent multi-disc approx-
imations of the obstacles’ footprints, see right-hand side of
Fig. 3. The implementation of our corridor planner builds
on the ROS navigation stack [19]. For numerically solving
OCPs, the trajectory planner implementation makes use of
libraries provided by the ACADO Toolkit [12].

For communication purposes, a layer 3 connection is
present between agents and cloud server using wireless LAN.
As described in [3], we utilize the MSB as communication
middle-ware. For ROS-based systems it provides a web-
socket interface that allows to send any message in a rostopic
to any other component. When navigating in path-crossing
scenarios, agents share their predicted trajectories with a
frequency of 2 Hz.

Fig. 4. Top row: Illustration of the conducted path crossing scenarios
(1-4). Bottom row: Snapshots of the scenarios with two mobile robots of
type rob@work 3. For videos of the experiments, visit https://youtu.
be/zaIW76A7ips.

Fig. 5. Velocity profiles of the two robots for scenarios (1-4), v
x

in m

s

.
Cooperative approach in solid lines. Conventional approach in dashed lines.

B. Experimental Setup

We use the two mobile robots on a set of basic path
crossing scenarios as illustrated in Fig. 4. The robots have
footprints of 1.03⇥0.6 m and operate in a 7⇥7 m workspace.
The robots receive their global paths in configuration space.
For cooperative optimization, dynamic obstacle trajectories
are only shared at runtime, so the local motion planners
need to adapt online and are challenged to sustain smooth
path and velocity profiles. In comparison, we run the same
scenarios with conventional single-robot path planning using
a DWA implementation from the ROS navigation stack [1].
In terms of planning constraints, we consider both robots
having di↵erential drive kinematics with a state vector x =
(x,y,✓,v

x

,v✓ ) and a control vector u = (a
x

,a✓ ).
Thereby, velocities are bound to |v

x

|  0.55 m

s

and to
|v✓ |  1.5 rad

s

. For the control vector we have acceleration
constraints |a

x

|  1.5 m

s

2 and |a✓ |  2.5 rad

s

2 .
The elastic-band corridor planner uses kint = 0.7, kext = 1.0,

a time discretization of �t = 1.0 s and a maximal corridor
width of ⇢max = 1.0 m. For weighting the cost function of
the trajectory planner’s OCP solver, we use k

t

f

= 10, R =
diag(100,100) and Q = 0. We use a maximal number of 10
SQP iterations per trajectory planning instance. In terms of
weighting the cooperation forces in the scenarios from Fig.
4, we use k (A)

coop = 0.3 and k (B)
coop = 0.7, as we consider robot

B to be more agile than robot A.
In addition to these practical experiments, we performed

further validation in simulation on path crossing scenarios

https://youtu.be/zaIW76A7ips
https://youtu.be/zaIW76A7ips


Fig. 6. Intersection scenario in simulation with paths of four circular mobile
robots. Left: Top view. Right: Orbit view with time as vertical dimension.

with up to four robots, see one of the sets in Fig. 6.

C. Results

In all experimental path crossing scenarios (1-4) our
approach successfully obtained smooth transitions. Thereby,
robot B performed the major part of evasive movements.
None of the robots had to stop to realize (1-4). Compared to
conventional local planning, the cooperative approach results
in smoother velocity profiles and shorter arrival times for the
overall system, see Fig. 5. For all scenarios (1-4), the usage
of conventional single-robot navigation resulted in collisions.
We implemented a slightly larger safety stop sensor field on
robot A, to force it to stop to let robot B pass when they
get too close to each other. In that way feasible solutions
could be obtained for scenarios (1-3) with conventional
planning. In comparison to the best conventional results, the
cooperative approach reduced arrival times for the overall
system by 25% for scenario (1), by 13% for (2) and by
22% for (3). Video footage of the conducted experiments is
available online: https://youtu.be/zaIW76A7ips.

All computations were performed on standard PCs featur-
ing an Intel i7 CPU at 2.4GHz running ROS indigo under
Ubuntu 14.04. In terms of planning times, we considered
horizons for trajectory prediction of up to 20 seconds. In
that range the average computing time for optimizing the
local free space corridor is stable at 2 ms. The optimization
times of the model predictive trajectory planner are depicted
in the following table:

Trajectory Planning Times
horizon length h in sec. min. mean max.

0 < h  5s 6 ms 8 ms 10 ms
5 < h  10s 8 ms 11 ms 14 ms

10 < h  15s 10 ms 13 ms 16 ms
15 < h  20s 15 ms 17 ms 21 ms

VI. Conclusion and Outlook
This work proposes an approach for cooperative online

trajectory optimization using a cloud-based architecture for
mobile robot navigation. The feasibility of the approach was
shown in simulation and in real world experiments on a set
of path-crossing scenarios.

Even though our corridor planner copes with dynamic
obstacles, to resolve predicted collisions it is still up to
configuration and selection of heuristics for the robot to
slow-down or to speed up. To optimally change homotopy
classes in C⇥T , we will enhance our corridor planner with
an approach similar to the distinct topologies optimization
described in [21].
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”Look At This One” Detection sharing between modality-independent
classifiers for robotic discovery of people

Joris Guerry1, Bertrand Le Saux1 and David Filliat2

Abstract— With the advent of low-cost RGBD sensors, many
solutions have been proposed for extraction and fusion of
colour and depth information. In this paper, we propose new
different fusion approaches of these multimodal sources for
people detection. We are especially concerned by a scenario
where a robot evolves in a changing environment. We extend
the use of the Faster RCNN framework proposed by Girshick et
al. [1] to this use case (i), we significantly improve performances
on people detection on the InOutDoor RGBD People dataset [2]
and the RGBD people dataset [3] (ii), we show these fusion
handle efficiently sensor defect like complete lost of a modality
(iii). Furthermore we propose a new dataset for people detection
in difficult conditions: ONERA.ROOM (iv).

I. INTRODUCTION

When exploring an unknown place, a robot can find itself
in very different situations. Because of these uncertain condi-
tions, different sources of information may be used to ensure
greater detection robustness. In the context of computer
vision, a colour camera (Red-Green-Blue) can be coupled to
a so-called ”depth map” camera providing additional spatial
information. Kinect or Xtion cameras are examples of RGBD
sensors providing all of this information to the user. The low
cost of these devices and their plug’n’play design have raised
a recent interest for the scientific community. The nature of
the information provided by each built-in sensor is different
and can be complementary. For this reason, it is important
to cleverly merge this information to improve classification
performance and to be robust to specific failure conditions
for each modality. In particular, for a robot equipped with
such sensor (Figure 1) in an exploration scenario, situations
such as a dark room can suppress the RGB modality, while
sunny areas can suppress the depth modality.

In this paper, we focus on people detection because of
its importance in many scenarios for domestic or search-
and-rescue robotics. Many methods have been proposed for
this detection task on RGB images, such as Histogram of
Oriented Gradients for people detection [4] and Deformable
Part Models [5] to name but a few. The use of a sec-
ond modality like depth permits to be less dependant to
colour and texture features and instead to focus on global
geometric shape or object instance separation. Using such
a multimodal RGBD approach, Gupta et al. [6] proposed
a method based on the Girshick et al. Region-CNN [7].

1Joris Guerry and Bertrand Le Saux are with ONERA
The French Aerospace Lab, F-91761 Palaiseau, France
firstname.name@onera.fr

2David Filliat is with the ENSTA ParisTech, U2IS, Inria
FLOWERS team, Université Paris-Saclay F-91762 Palaiseau, France
david.filliat@ensta-paristech.fr

Fig. 1. Our mobile robot used for ONERA.ROOM acquisitions

They use an independent Region Of Interest (ROI) proposal
module and then extract features of the region through a
convolutional neural network (CNN). These features are
subsequently classified by a support vector machine (SVM).
The major contribution of their work is an efficient encoding
of the depth information: HHA (Horizontal disparity, Angle
of normal vector to gravity). However, the ROIs proposition
phase as well as the HHA processing are time-consuming
and the SVM makes the training process complex. Aware
of this complexity problem of HHA encoding, Eitel et al.
proposed in [8] to make a simple and fast rendering of the
depth map, transforming the spatial distance into a colour
information with the Jet colormap. The authors proposed to
merge three CNNs, an RGB expert, a depth expert and an
optical flow expert, replacing the last layer of each expert
by a common fully-connected fusion layer and appending a
final global softmax layer. The evolution of this work led
to the use of a CNN module that weights the outputs of
each expert on the fly, rather than learning the combination
statically. This module, called Gating network [2], is based
on features extracted at the last levels of each expert. Thus,
with both class probability vector, a final vector is obtained
as a weighted sum of the coefficients proposed by the Gating
Network. Therefore, an expert can overwrite the information



of others if the Gating Network weights it sufficiently. Since
the neural network used is non-linear, this kind of decision
can lead to the complete loss of information of one of the
experts.

Another multimodal fusion strategy was proposed by
Hazirbas et al. with FuseNet [9], where the intermediate
tensors of the depth expert neural network are concatenated
in the RGB expert network. The convolution kernels of
the depth expert remain independent of the colour, but the
convolution kernels of the RGB expert must now process the
depth information. If the resulting activation of the convolu-
tional filters is not sufficient for at least a single modality,
it is possible that the total activation is not sufficient for
the macro network, locally blocking the information. For
example, if the RGB image is too dark, only the depth expert
should be able to express itself, which is not possible here.
Badrinarayanan et al. [10] applied a new encoder-decoder
CNN structure for semantic segmentation on a RGBD dataset
showing better results with only RGB modality than former
RGBD based methods. But this dataset was not presenting
hard luminosity condition.

Fig. 2. Fr RCNN architecture [1]

However, some efficient methods have been also proposed
for single modality. For range images [11] computes feature
on the point cloud which is processed from the depth
acquisitions. For RGB-only data, object detection is a very
active domain. The R-CNN adapted by Gupta for RGBD
has already been outperformed by Fast RCNN [12]. This
is a deep network object classification method, also used
in [2], which uses an ROIs proposal module independent of
the classification network. In following works, the Region
Proposal Network (RPN) has been added to a new version
of the method: Faster RCNN [1] (abbreviated to Fr RCNN).
The RPN provides regions of interest directly within the
CNN architecture. The CNN ROIs provided by the RPN are
then extracted from the 5th convolution layer output to be
classified by the second part of the network (see Figure 2). In
this paper, we study how multimodal RGBD information can
be exploited in the frame of the Fr CNN approach. Indeed,
more than a particular neural network, Fr RCNN is a concept
that can be applied to many structures of CNN. Yet, the
Fr RCNN is just made for a single source of information and,
to our knowledge, has not been structurally adapted to the use
of multimodal sources. We will show that these approaches
significantly improve performances on people detection on
the InOutDoor RGBD People dataset [2] and the RGBD
people dataset [3] and that these fusion handle efficiently
sensor defect like complete lost of one of the modalities.
We also propose a new dataset, ONERA.ROOM, containing
more challenging detection conditions acquired in a mobile

Fig. 3. Different fusion architectures, from top to bottom: U-fusion (NMS
with the expert classifier outputs), X-fusion (NMS on the RPN outputs and
NMS on the classifier outputs), Y-fusion (working on the concatenation of
the tensors of each semi-expert).

robotics exploration scenario.

II. JOINT-MODE APPROACH FOR OBJECT
DETECTION

We propose multiple approaches for fusion of information
from both modes: RGB and depth. First, we build single
mode experts based on the effective region proposal module
of Fr RCNN [1]. We show that this architecture can also
be successfully applied to depth data. Second, the objective
of fusion is to be able to adapt to realistic data in which
the conditions of luminosity can completely degrade the
performances of the RGB expert (in dark environment,
blurry, smoky, ...) or of the depth expert (outdoor, long
distance, ...). This is why the approaches we propose try to
keep the experts independent (i.e avoid hybrid architectures)
while allowing them to help each other.

In this paper, NMS is referring to Non-Maximum Sup-
pression, recently called GreedyNMS in [13] as opposed to
learnt NMS. This post-processing sorts and selects the best
object detections among proposals in order to only keep one
detection per object.

From now on, our different architectures are named RGBD
RCNN (see Fig. 3) with the following variants.

• The U architecture is a naive version with two parallel
networks. Thus, the two streams of information are only
merged at the end of the detection. The fusion step
is performed by NMS. This simple approach allows
to have a better recall than single experts since one
network can make up for the failing one but can lead
to worse precision. This strategy can be applied to
every computer vision technique that proposes bounding
boxes.



• The X architecture is more subtle. Placing a common
NMS after the RPN makes it possible to share the
ROIs before the classification process of each expert.
This pooling of detections allows an expert to share its
detections with the other expert : ”Look at this one !”.
Thus, class-blind object detections from both RGB and
depth can be classified by the two experts meanwhile
the redundant proposed regions are handled by the final
NMS.

• The Y architecture aims to use only one RPN, taking as
input the 5th convolution outputs of both experts con-
catenated in a single tensor. The underlying assumption
is that a RPN which gets both RGB and depth inputs
will be able to predict better ROIs. However, the RPN
feature space is now twice as big as before and thus
training is more complex. So, longer time is required for
optimisation. A second benefit of such a fusion is that it
results in a lighter architecture with a single classifier, so
less parmeters to optimize and faster prediction times.

The U and X architectures are structurally independent:
RGB and depth experts are trained separately and it is only
at test time that ROIs are shared. They are thus incremental
approaches: a new sensor modality could be added without
retraining the existing ones. On the contrary, the Y archi-
tecture would require a new training with all sources. The
advantage is that it would also be able to learn cross-modality
features.

In this paper, our new method uses Fr RCNNs based on the
VGG16 [14] network1. Each training is done with stochastic
gradient descent for 10,000 iterations with a constant learn-
ing rate of 0.001 through Pytorch framework. Parameters
are initialized with pre-trained weights on the ImageNet [16]
dataset. At test time, each expert runs at 3 frames per second
(fps) and the X-fusion runs at 5 fps.

III. RESULTS

Fig. 4. Examples of predictions with models trained and tested on RGBD
People dataset [17], from left to right : RGB expert, depth expert, X-fusion.
The depth expert was able to find all the people in the image but the X-
fusion propose better bounding box alignments with the ground truth.

We compare our approach with state-of-the-art methods
on two public RGBD datasets for people detection: RGBD
People in part III-A and the more recent InOutDoor dataset

1Fr-RCNN was also implemented with Residual Networks [15], leading
to improvement over VGG networks on many datasets but at a large
computational cost

with a moving camera in part III-B. We also run experi-
ments of people detection with our robotic platform in even
more challenging set-ups, which yields the new dataset we
deliver: ONERA.ROOM (in part III-C). For performance
evaluation we use standard metrics of object detection used
in similar contexts [2]: Average Precision (AP), Equal Error
Rate (EER), Intersection-over-Union (IoU) and the harmonic
mean of the precision/recall pair (F1).

A. RGBD PEOPLE DATASET
We first test our method on the RGBD People [3] dataset.

This set of over 3000 RGBD images was acquired with 3
static cameras in a large hall with stable lighting conditions.
By reproducing the experiment in [2], we produced 5
random sets (70 % training / 30 % test) and give the averaged
results in Table I, ignoring cases of occlusions . We consider
a correct detection if IoU > 0.6. The method Fr RCNN
allows a significant gain on the method proposed in [2] (+9.1
points) and the X-fusion slightly increases this result (+0.2
points). An illustration of these results is shown in Figure 4.

TABLE I
EER ON RGBD PEOPLE [17] DATASET FOR SEVERAL DETECTORS.

HOD IS SHORT FOR HISTOGRAM OF ORIENTED DEPTHS AND HGE FOR

HIERARCHICAL GAUSSIAN PROCESS MIXTURES OF EXPERTS.

Method Source EER
HOD [18] D 56.3
HGE [18] RGBD 87.4

Gating Net. [2] RGBD-Optical flow 89.3
Fr RCNN [1] D 98.3
Fr RCNN [1] RGB 98.4

RGBD RCNN U RGBD 98.4
RGBD RCNN Y RGBD 98.3
RGBD RCNN X RGBD 98.6

B. INOUTDOOR RGBD PEOPLE DATASET (IOD)

TABLE II
PERFORMANCE ON THE IOD DATASET (REFERENCE SETS [2]) FOR

DIFFERENT DETECTORS.

Method Source Precision/Recall AP EER IoU F1
Gating Net. [2] RGBD –/81.1 80.4 – – –
Fr RCNN [1] RGB 73.2/94.2 91.9 90.1 80.3 82.4
Fr RCNN [1] D 46.9/85.9 84.0 84.8 79.4 60.7

U RGBD 45.6/96.4 94.4 92.1 80.3 61.9
X RGBD 43.5/96.5 94.3 92.4 79.9 60.0
Y RGBD 59.4/93.3 90.2 90.1 80.2 72.6

U * RGB-D 46.9/85.9 84.0 84.8 79.4 60.7
X * RGB-D 45.9/85.9 84.1 84.8 79.4 59.9
Y * RGB-D n.a/0 n.a n.a 0 n.a

The more challenging IOD [2] dataset is obtained by an
RGBD camera embedded on a mobile robot which evolves
among people in motion. It has sharp changes in brightness
(indoor / outdoor) and consists in 4 sequences (8305 images)
captured at different times of the day with variations in
ambient light. We consider a detection is correct if IoU > 0.6.
The Fr RCNN [1] alone, (RGB or D) already achieves a



better score than the previous state of the art [2], with a
gain of 11.5 points on the AP. This important gain can be
partially explained by a better recall (detection rate) thanks
to the RPN. Fusion strategies further improve the score by
2.5 points, raising AP to 94.4%. A classification example on
IOD is available on the left column of Figure 5.

We notice that X and U strategies have better performance
than Y. The training is more delicate for the Y strategy.
Indeed, the task is more complicated because the feature
space is bigger for the single RPN/classifier. Moreover, this
type of hybrid network can not handle the loss of one of
the sources as shown by the total absence of detections for
Y * in the experiments with ablation of the RGB modality
(see Table II). On the contrary, U * and X * react well by
equalizing the performances of the depth expert alone.

Fig. 5. Examples of predictions with models trained on IOD [2] and tested
on IOD and ONERA.ROOM datasets. It is interesting to notice that the X-
fusion (left column) has a new ROI. This is allowed by the intermediate
NMS, post-RPN: the depth expert found an object and was not able to
classify it, however, the RGB expert did not initially find this object but
was finally able to classify it. The U-fusion (right column) does not allow
this pre-classification detection exchange but allows to reorder, by score,
the ROIs during the final NMS. In this example, the ROI from the depth
expert is dismissed in favor of the RGB expert central ROI, which allows
the depth expert to provide a previously ignored ROI (in yellow).

C. ONERA.ROOM
We now propose a new and more challenging dataset in a

robotic exploration scenario.
Robot framework: The experimental set-up consists in

a four-wheeled Robotnik Summit XL (cf. Fig. 1) equipped
with a RGBD camera (Asus Xtion in its last version, but
formerly Kinect v1 and Realsense camera). The sensors are
linked to an embedded computer and wi-fi transmitter for
remote data processing.

Dataset: ONERA.ROOM is a new data set with 27 se-
quences acquired by various RGBD sensors (Kinect v1, Re-

Precision-Recall curve on IOD [2] dataset.

Precision-Recall curve on ONERA.ROOM dataset.

Fig. 6. The asterisk means that the source RGB was unavailable (black
image). U and X-fusions behave well against this defect (see fusion curve
U * and fusion X *) which fall back to the performance level of the depth
expert. The X-fusion has a better AP than the RGB expert. Although the
EER of the Y-fusion is good, this strategy is unable to make any detection
in the event of loss of the RGB source.

alSense and mainly Xtion), embedded on a remote-controlled
mobile robot. 23 sequences containing people have been
labelled, representing 27201 ROIs of people distributed in
35379 images. Oriented to robotic scenarios for search
and rescue, the ONERA.ROOM dataset includes sequences
acquired in the dark, sequences blurred by the movement of
the robot and cases of unconscious people on the ground.
It has three main sets of increasing difficulty level: ”Easy”,
”Average” and ”Hard”, and is made publicly available for
research purposes on our website2.

Experiments: To impose a statistical independence be-
tween the training data and the test data, we used the
models trained on the IOD train set and apply them to ON-
ERA.ROOM. All the quantitative results on ONERA.ROOM
refer to the Easy set. We consider a detection is correct
if IoU > 0.5. The trends are similar to the experiments on
IOD (see Figure 6 and Table III). The U and X fusions are
better than the RGB expert and as good as the depth expert
in the absence of light. A U-fusion classification sample is

2http://jorisguerry.fr/ONERA.ROOM



Fig. 7. Influence of decreasing luminosity. ONERA.ROOM propose a static
sequence where the only changing factor is ambient light. The yellow curve
indicate the mean pixel intensity. First column shows true positive detection
of RGB expert, second column concerns depth expert and third column are
the X-fusion detections. The last column images are made from the RGB
and depth mean image for illustration purpose only.

TABLE III
PERFORMANCES ON THE ONERA.ROOM DATASET, ”EASY” SET, FOR

VARIOUS DETECTORS TRAINED ON IOD [2].

Method Source Precision/Recall AP EER IoU F1
Fr RCNN [1] RGB 61.0/96.1 91.2 91.0 72.8 74.6
Fr RCNN [1] depth 25.6/76.9 66.9 68.3 65.3 38.5

U RGBD 26.7/95.8 90.6 88.0 71.1 41.8
X RGBD 25.7/96.6 91.3 89.1 71.7 40.7
Y RGBD 81.1/92.1 87.1 90.3 71.7 86.3

U * RGB-D 18.2/78.3 67.0 68.3 65.3 29.5
X * RGB-D 25.0/77.0 66.7 68.1 65.3 37.8
Y * RGB-D n.a/0 n.a n.a 0 n.a

available in the right column of Figure 5. In the case of a
rescue mission such an approach will be more robust to un-
predictable, degraded conditions. A video illustrating several
conditions is available on the website of the ONERA.ROOM
dataset. Figure 7 illustrates RGB expert, depth expert and
X-fusion behaviours facing luminosity reduction: when the
environment is too dark for the standard RGB expert, the
depth one is able to compensate and the X-fusion detects
and localise the right silhouettes. Other challenging situations
present in ONERA.ROOM are shown in Figures 8 (people
in bright, sun-illuminated environments), Figure 9 (people
crouching or lying on the ground) and Figure 10 (multiple
people occluding each other). These situations are examples
of the X-fusion strength versus single experts, explaining the
gain of performance shown in Table III.

Fig. 8. X-fusion on ONERA.ROOM allows to make a detection where both
RGB/D experts were impotent (left and middle column) and can differentiate
two very close people mingled by both RGB/D experts (right column).

Fig. 9. X-fusion on ONERA.ROOM was close to detect the unconscious
person on the floor (left column) but lacks of precision in the ROI. Still,
it is the only one to detect a crouching person (left column), a person at
the edge of the depth rectified image (middle column), and propose a better
ROI in the last column than the depth expert.

IV. CONCLUSION

We have presented several strategies for merging the
predictions of CNNs experts on different modalities. The
multimodal object detection architecture based on Faster
RCNN [1] enhances robustness in the case of heterogeneous
conditions. The results on the InOutDoor RGBD People [2],
RGBD People [3] and ONERA.ROOM datasets show that
these strategies result in an average precision gain under nor-
mal conditions and remain robust under extreme conditions.
In addition, we set new references in the state of the art on
these datasets. Our best proposal, the X RGBD RCNN, gets
more than 90% of AP on all these datasets and is able to
withstand the failure of one of the two sensors. Lastly, we
made ONERA.ROOM publicly available in the hope that it
will encourage and facilitate the work on challenging RGBD



data.

V. PERSPECTIVE AND FUTURE WORK

Our future work will aim at incorporating temporal infor-
mation to enable re-identification of previous detections and
to implement temporal filtering of class probability vectors.
A detection tracker could be seen as a third expert proposing
ROIs previously revealed: ”Look at this one, again!”. As
mentioned in [13], the NMS here is still a hand crafted
processing who can be improved by deep learning. This is
particularly interesting considering that both experts here are
equally weighted whereas the RGB expert alone is better
than the depth expert. Thus, a trained NMS could benefit
from this kind of a-priori knowledge.
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Fig. 10. X-fusion on ONERA.ROOM allows to improve ROIs proposition
(left and middle columns) and is even able to detect the unconscious person
(right column). However, as for the U-fusion, these strategies suffer from
false positive (left column) because they can not remove a detection.

REFERENCES

[1] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
neural information processing systems, 2015.

[2] O. Mees, A. Eitel, and W. Burgard, “Choosing smartly: Adaptive
multimodal fusion for object detection in changing environments,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2016.

[3] L. Spinello and K. O. Arras, “People detection in rgb-d data,” in 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2011.

[4] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 1, pp. 886–893,
IEEE, 2005.

[5] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based models,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
2010.

[6] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, “Learning rich
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A bio-inspired celestial compass applied to an ant-inspired robot for
autonomous navigation*
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Abstract— Common compass sensors used in outdoor en-
vironments are highly disturbed by unpredictable magnetic
fields. This paper proposes to get inspiration from the insect
navigational strategies to design a celestial compass based on
the linear polarization of ultraviolet (UV) skylight. This bio-
inspired compass uses only two pixels to determine the solar
meridian direction angle. It consists of two UV-light photo-
sensors topped with linear polarizers arranged orthogonally
to each other as it was observed in insects’ Dorsal Rim
Area. The compass is embedded on our ant-inspired hexapod
walking robot called Hexabot. The performances of the celestial
compass under various weather and UV conditions have been
investigated. Once embedded onto the robot, the sensor was first
used to compensate for yaw random disturbances. We then used
the compass to maintain Hexabot’s heading direction constant
in a straight-forward walking task over a flat terrain while
being perturbated in yaw by its walking behaviour. Experiments
under various meteorological conditions provided steady state
heading direction errors from 0.3� (clear sky) to 1.9� (overcast
sky). These results suggest interesting precision and reliability
to make this new optical compass suitable for autonomous field
robotics navigation tasks.

I. INTRODUCTION

Autonomous navigation systems mostly make use of
Global Positioning System (GPS) and Inertial Measurement
Units (IMU). Unfortunately, the precision of GPS methods
is in the range of one meter, which makes them not suit-
able for all robotic applications. Besides, local magnetic
fields produced by ferrous materials in urban infrastruc-
tures can cause incorrect magnetometer measurements. These
magnetic disturbances are classically compensated applying
Kalman filtering and require data fusion from gyroscopes and
accelerometers [1]. The solutions currently proposed remain
sensitive to multiple sources of disturbances since gyroscopes
and accelerometers are also prone to drifts. Biomimetic
approach has led to interesting models for optimization,
control and automation in robotics. In complex outdoor
environments where magnetic interferences are increasingly
present and often unpredictable, bio-inspired solutions would
be interesting to abstract from magnetic pollution and GPS
precision.

We propose here to get inspiration from the insects’
skylight polarization compass [2] to provide a reliable mea-
surement of the heading direction for outdoor robotic tasks.
The scattering of sunlight within the Earth’s atmosphere

*This work was supported by the French Direction Générale de
l’Armement (DGA), CNRS, Aix-Marseille Université, the Provence-Alpes-
Côte d’Azur region and the French National Research Agency for Research
(ANR) with the Equipex/Robotex project.

1Aix-Marseille University, CNRS, ISM, Inst Movement Sci, Marseille,
France. julien.serres@univ-amu.fr

produces a polarization pattern across the sky. Solar radia-
tions remain unpolarized until their entry into the atmosphere
where scattering interactions with atmospheric constituents
induce the partially linear polarization of the skylight [3].
The direction of the linear polarization of skylight at the
zenith point is always perpendicular to the solar meridian1.
The angle direction of the solar meridian is not constant and
highly depends on the position of the Earth about the sun
and the location of the observer.

Biological studies showed the existence of ommatidia
sensitive to the polarization of skylight in the Dorsal Rim
Area (DRA) of the insect’s compound eye ([4], [5]). Each
ommatidium is sensitive to a unique direction of polarization
and its orthogonal direction, and the spectral sensitivity is
generally in the ultraviolet (UV) range, except for a few
species whose maximal sensitivity is in the blue range or
in the green range. Many hypotheses have been proposed
to explain why ommatidia are sensitive to UV light instead
of other spectral ranges, but the most reasonable assumption
is that the skylight polarization remains strong in the UV
under canopies and clouds ([6], [7]). In the locust brain, the
information perceived through the DRA is first integrated by
polarization neurons, called POL-neurons, in the optic lobe,
which shows a high synaptic activity for three distinct ori-
entations (10�, 60� and 130�), while in the central complex,
POL-neurons show a rather uniform synaptic activity for all
polarization angles [8]. DRA-based neural models mostly
provide an estimated heading direction by computing the
logarithmic difference between the response of the omma-
tidium to a single polarization orientation, and the response
of the same ommatidium to the corresponding orthogonal
polarization orientation [5]. The study of the DRA in desert
ants and honeybees showed that insects refer to a unique
global polarization angle [9] to get their bearings. For
instance, during a foraging trip in an unknown place, desert
ants Cataglyphis integrate their heading direction through
their celestial compass. Although their foraging trip consists
of a slightly random exploration trajectory, their homing
trajectory tends to be direct and straight to the nest [9].

The first autonomous wheeled robot to use a celestial
compass, Sahabot 1, was created by Lambrinos et al. in
the late 1990s [10]. Getting inspiration from the DRA of
the cricket, the spectral sensitivity ranged from 400nm to
520nm. The project sought to test three models of heading
direction measurement: (a) the scanning model uses only

1The solar meridian is the circle that crosses the zenith and the sun relative
to an observer on the Earth.



one polarization sensor, consisting of a pair of photodiodes
mounted below orthogonally set linear polarizer, and makes
the robot rotate to find angle that provides the highest sensor
response. However, the rotating phase often induces 2D
displacements and therefore increase the final position error
in a navigational task; (b) the extended scanning model uses
the same procedure as the scanning model but with three
polarization sensors set at different orientations (0�, 60� and
120�) as in the optic lobe of insects. The solar meridian
direction is then computed simply by subtracting the sensor
signals. This method provides more reliable results since
peaks detected at the corresponding linear polarization angle
are sharper than in the scanning model, but 2D drift remains
an issue; (c) the simultaneous model uses three polarization
sensors without rotating the robot. Logarithmic differences
are computed between each sub-unit of POL-sensors so that
the heading direction can be correctly estimated. Tests were
performed in the early morning and the average angular
error was of 0.66� using the simultaneous model, and 1.73�
using the simple scanning model. The simultaneous model
was then applied to Sahabot 2 in order to implement ant-
inspired path integration models [11]. It is still unclear how
insects distinguish solar and anti-solar angles, but some
suggest that insects use a circadian clock to both dispel
the heading direction ambiguity and compensate the sun
path [12]. Sahabot simply integrated the position of the sun
to avoid any ambiguity ([10], [11]).

Chu et al. developed a celestial compass based on the one
integrated in the Sahabot projects, using the simultaneous
model ([13], [14]). The optical compass was embedded
onto a wheeled robot using a fuzzy logic controller to
follow a preprogrammed trajectory. Tests were performed
at the end of the day to prevent any sensors saturation. A
miniaturized version of the celestial compass has also been
proposed [15] but no implementation onto a mobile robot has
been recorded yet. Another implementation of the celestial
compass has been embedded on a small Unmanned Aerial
Vehicle (UAV) [16]. Three polarization sensors, including
effective directions and their corresponding orthogonal, were
integrated in an ocelli based autopilot designed to control the
UAV roll and pitch over ten seconds of flight [16].

In this paper, we propose to merge both scanning and
simultaneous models proposed by Lambrinos et al. into a
UV-polarized light scanning model providing highly accurate
measurement of the heading direction of our walking robot
under various meteorological conditions and a low UV-
index2. Section II presents the UV-polarized light compass
and analyzes its performance under highly different weather
and UV conditions. Section III describes the hexapod walk-
ing robot. Section IV examines two practical experiments
of heading direction recovery using our celestial compass in
real outdoor conditions.

2Experiments conducted with Sahabot were done in desert condi-
tions whith high UV range (UV-index of 11 in Maharès, Tunisia,
in August 1996). Most of the time, the sky was clear. Source:
http://www.temis.nl/uvradiation/UVindex.html

II. THE UV-POLARIZED LIGHT COMPASS

A. The 3D-printed UV-polarized light sensor

The celestial compass uses two UV-light sensors mounted
below rotating UV linear sheet polarizers held by two 70-
teeth gears (see figure 1.B) which are driven by a third
one composed of 10 teeth and actuated by a stepper mo-
tor (AM0820-A-0,225-7, Faulhaber). Due to its symmetric
properties, the two UV sheet polarizers holder gears turn
in the same direction. The entire prototype was printed
using PLA filament (polyactic acid). The angular resolution
of the compass can be modified by changing the micro-
step settings of the stepper motor. The UV-light sensor is
SG01D-18 (SgLux) which active area is equal to 0.5mm2

and spectral sensitivity is between 200nm and 375nm with a
maximum spectral response at 280nm. Each POL-unit has
an angular field of view of ±50�, and a refresh rate of
33.3Hz. The UV linear sheet polarizer has a local maximum
single (resp. parallel) UV-light transmission of 52% (resp.
27%) for wavelengths between 270nm and 400nm. The peak
transmission is located near 330nm.

We call POL-sensor any sub-unit of the compass com-
posed of a UV-light photo-receptor topped with a UV sheet
polarizer. The left (resp. right) POL-sensor is called UV0
(resp. UV1). Let x be the rotation angle of the UV sheet
polarizer holder gears, and y the solar meridian direction
angle. Therefore, the response of each POL-sensor unit is:

⇢
UV0(x) = A0 +B0 · cos(2(x+y))

UV1(x) = A1 +B1 · cos(2(x+y + p
2 ))

(1)

where x 2 [0;2p] is the angle of rotation of the polarizers
and y 2 [0;p] is the solar meridian direction angle, A0 and A1
are offsets determined by the average UV-light radiance and
inner bias of each photo-sensor, B0 and B1 are constants de-
termined by the degree of polarization and inner gain of each
photo-sensor, and UV0 and UV1 are p-periodic sinusoidal
functions. POL-sensors measurements are normalized so that
the minimum value is set at 0 and the maximum value is set
at 1. In case of bad weather conditions, B0 and B1 values
are significantly reduced due to the weakening of the degree
of polarization, implying heavy noise disturbances in POL-
sensors measurements. To prevent incorrect computation of
y , we propose to restrict the signal to its first harmonic.
Let UV nc

0 (resp. UV nc
1 ) be the normalized and corrected UV0

(resp. UV1) POL-sensor measurement:

Algorithm 1 First harmonic restriction
1: for i2 [0 : 1] do
2: dUVi = fft(UVi)
3: dUVi[2 : length(dUVi)�3] = 0
4: UV n

i = abs(ifft(dUVi))
5: UV nc

i =UV n
i �min(UV n

i )+ e
6: UV nc

i =UV nc
i /max(UV nc

i )

where fft and ifft are respectively the direct and reverse
fast Fourier transforms, and e = 0.0001 is set to prevent



Fig. 1. A. Top view of the Hexabot robot equipped with the UV-polarized light compass. (a) Celestial compass; (b) MinImu-9 v.3 gyro, accelerometer
& compass (Pololu) used for outdoor ground truth measurement; (c) Raspberry Pi 2B board. B. An exploded view of the compass. (a) 3D-printed fixation
(PLA, polyactic acid) for the UV sheet polarizer; (b) UV linear sheet polarizer (HNP’B replacement, UV grade 275�750nm); (c) 3D-printed gears (PLA);
(d) stepper motor AM0820-A-0,225-7 (Faulhaber); (e) ball bearing; (f) 3D-printed support (PLA); (g) UV-light sensor SG01D-18 (SgLux); (h) 3D-printed
support (PLA) for UV-light sensor.

from logarithm calculation failure. The POL-unit response
is defined as follows :

p(x) = log10

✓
UV nc

1 (x)
UV nc

0 (x)

◆
. (2)

We then compute the solar meridian direction y by
locating the two local minimum values of the p function,
the first one being in [0;p] and the second one in [p;2p]:

y =
1
2

✓
argmin
x2[0;p]

p(x)+ argmin
x2[p;2p]

p(x)�p
◆
. (3)

due to the symmetry of the polarization pattern around
the zenith point, y is only known within [0;p]. Classical
methods to eliminate the ambiguity between ySolar and
yAnti�Solar use the ambient radiance distribution. As none of
the tasks asked from the robot imply a turn back movement,
there was no reason for y to change for y +p . Therefore,
we assume that y 2 [0;p]. Using the average value of the two
minima of function p provides more accuracy in determining
the solar meridian direction angle y relative to the robot.

B. Performances of the celestial compass under various
weather conditions

The celestial compass was tested under various weather
conditions in order to quantify its reliability and perfor-
mances in determining the solar meridian angular direction.
Four sets of data obtained in February and April 2017 under
both clear and covered sky conditions are shown in figure 2.
The UV-index was equal to 1 in February, and 7 in April
according to the French meteorological services.

The table I provides the average peak-to-peak magnitudes
UV0,P�P (resp. UV1,P�P) of raw signals UV0,k (resp. UV1,k),
and the corresponding coefficient of variation Cvp, where

k 2 J1..nK stands for the k-th test, n is the number of tests
conducted, and p 2 {0,1} corresponds to the left and right
POL-units. Letters standing for conditions are used with
respect to the identifiers of graphs in figure 2.

TABLE I
PEAK-TO-PEAK MAGNITUDE OF RAW SIGNALS

Conditions UV0,P�P Cv0 UV1,P�P Cv1 n
(a,b) 333.19 6% 396.00 6% 21
(c,d) 79.47 22% 124.93 22% 15
(e,f) 959.06 5% 1137.11 5% 36
(g,h) 176.11 18% 111.22 21% 36

The estimated cosine waves UV nc
0 and UV nc

1 were com-
pared to the normalized raw signals by applying the Mean
Squared Error (MSE) method. Therefore, the error ep,k is
defined as

ep,k = MSE(UV nc
p,k) =

1
N

N

Â
i=1

�
UV nc

p,k(i)�UV n
p,k(i)

�2
(4)

where N is the total length of the signal. Due to some
improvements made in the stepper-motor control, N got risen
from 280 in February to 373 in April. Finally, in table II we
compute the average error ep as the mean value of all ep,k
for k 2 J1..nK. The coefficients of variation Cv[ep] were also
calculated.

The overall results show that it is clearly impossible to
distinguish whether the estimation of the angular direction
y was done in winter or not, and under clear sky or not. We
notice that both average errors and coefficients of variation
are highly similar between February and April at a given
weather condition. Besides, though the variability of signals
is heavily increased under covered sky, the celestial compass
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Fig. 2. Examples of signals obtained during several acquisitions from the UV-polarized light compass. Each pairs of graphs (a,b), (c,d), (e,f) and (g,h)
show normalized raw and filtered outputs for UV0 and UV1 photo-sensors (left), and the POL-unit response for both raw and filtered data(right). Pair (a,b)
was obtained in February 2017 under clear sky conditions with a UV index equal to 1, pair (c,d) at the same period but under covered sky. Pairs (e,f) and
(g,h) were obtained in April 2017 with a UV index of 7 - the first one under clear sky, the second one under covered sky.

TABLE II
STEADY STATE ERROR BETWEEN NORMALIZED AND FILTERED DATA

Conditions e0 Cv[e0] e1 Cv[e1] n
(a,b) 4.28e-03 6% 4.83e-03 4% 21
(c,d) 9.02e-03 36% 7.31e-03 32% 15
(e,f) 3.99e-03 10% 4.14e-03 5% 36
(g,h) 6.14e-03 27% 8.36e-03 19% 36

remains fully able to accurately estimate y . The restriction of
the signal to its first harmonic is consequently an interesting
approach to provide a good estimate of the solar meridian
angle direction y without introducing delay.

III. HEXABOT : THE ANT-INSPIRED ROBOT

A. The robot platform

A fully open source, 3D-printed, six-legged walking robot
called Hexabot3 (figure 3) has been developped to mimic
the desert ant in several navigational tasks such as homing
in unknown environments. The overall weight of Hexabot,
including batteries, is 925g, and the maximum length is
360mm with a maximum height of the center of mass is
145mm. Its battery endurance, depending on the capacity,
ranges from half an hour to one hour. The robot has three
DYNAMIXEL XL-320 actuators per leg which allows to
reach high walking speed (approximately 35cm/s in optimal
conditions) and execute complex motion when crossing over
an uneven terrain. Besides, six-legged robots show more
stable walking motion than the four-legged ones since they

3Based on Metabot, a quadruped walking robot. See http://metabot.cc/

can operate static gait (i.e. three to five legs remain on the
ground at any time).

Fig. 3. Hexabot robot equiped with a pair of UV-polarized light sensors
forming a celestial compass.

B. Robot electronic architecture

An OpenCM9.04C micro-controller (32-bit ARM Cortex-
M3) controls the robot. This first board is connected to
a second one, a Raspberry Pi 2B board (32-bit quad-core
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Fig. 4. Robot electronic architecture. The dashed line marks out the
robot controller and actuators. The magnetometer and UV-polarized light
sensors (in yellow) are connected to the Raspberry Pi 2B board using I2C
communication protocol.

ARM Cortex-A7) which achieves sensor data acquisition and
processing, and send high level orders the robot controller.
The celestial compass is embedded on the dorsal part of the
robot (see figure 1.A). Communication with the Raspberry Pi
board was implemented by means of I2C protocol (figure 4).

IV. EXPERIMENTS

Hexabot was set to tripod gait for all navigational tasks
as it provides an optimal compromise between high walking
speed and moderate attitude disturbances. However, inter-
actions between legs and the ground tend to cause a large
drift of the trajectory. We propose here to use our UV-
polarized light compass to contain the drift occurring after
each stride. All experiments were done between 02/02/2017
and 02/20/2017 in outdoor conditions, at any time of the
day, and were located in an open-air car park in the Luminy
campus (43�14001.600N ; 5�26039.200E) of Aix-Marseille Uni-
versité, Marseille, France. The angular precision of the UV-
light polarized compass was arbitrarily set at 1.29� for all
experiments. The acquisition time was consequently of 42s.

Drift measurements were made for five outdoor straight-
forward walking tasks on a flat but rough terrain. Tests were
conducted over six seconds at maximum walking speed.
Results show an average heading direction disturbance of 28�
(magnetometer measurements). In those conditions, Hexabot
drifts from initial walking axis by an average length of one
meter.

A. Recovery of orientation under various weather conditions

The ability to reorientate Hexabot after a random yaw
disturbance was first tested. The reorientation tasks consists
of : (1) the robot acquires its initial heading direction with
the celestial compass; (2) the robot turns by a random angle
and then acquires its new heading direction; (3) the robot
computes the difference between the initial and the new
heading direction and uses it as an order to turn back to

its initial orientation. Finally, we compare the ground truth
measurements (magnetometer4) before the disturbance and
after the angular correction. To prevent any yaw ambiguity,
disturbances were set between �70� and +70�. Such a
restriction makes sense as angular drifts over a straight-
forward walking task are systematically small (less than 30�
over a 3-meter walk) but randomly oriented in the both
directions due to interactions with the ground.

Figure 5 shows heading errors under three different
weather conditions. The variability of performances in ori-
entation recovery can be explained by the non-regularity of
Hexabot’s stride length while turning due to interactions with
the ground. In view of this, the presented results exhibit
great performance, especially under clear sky conditions.
The decrease noticed under cloudy sky and overcast sky
conditions stems from the low degree of polarization of the
skylight [6] which implies the overpowering of the Rayleigh
scattering, thus disturbing the polarization pattern of the
skylight.

Fig. 5. Heading direction angle errors in degrees in function of weather
conditions. From left to right, the median heading direction angle error
measured is equal to 0.4�, �2.9�, and �1.9�. UV-index from 1 to 2 (source:
French Meteorological services).

Considering the results obtained with Sahabot robot
in [10], our UV-polarized light compass provides similar and
even slightly better results under clear sky, and promising
results under bad meteorological conditions such as clouds
in the sky and a much lower level of UV radiance due to the
period and the location of experiments.

B. Heading-lock over a straight-forward walking task

As mentioned above, Hexabot exhibits important drifts
in yaw orientation and the celestial compass successfully
corrected yaw disturbances at fix point. We now test this
ability to maintain the robot within a straight-forward tra-
jectory applying yaw correction after each walking step.
First, the initial angle is acquired. Then Hexabot executes
a series of strides during two seconds and measures its
new yaw orientation, the value of which is compared to
the initial one to compute the yaw angle correction to be
applied. Finally, Hexabot executes the corresponding turning

4Experiments were conducted with a calibrated magnetometer and away
from any magnetic fields interference.



Fig. 6. Evolution of the measured heading direction angle y before (in red)
and after (in blue) angular correction using only the UV-polarized light com-
pass during a straight-forward walking task. Walking steps measurements
from 1 to 6 were acquired on 02/18/2017 while the next six measurements
were acquired on 02/20/2017.

movement before moving to the next series of strides. Due to
power supply limits and to avoid the impact of polarization
shifts induced by the sun movements, data were acquired
over two distinct days (02/18/2017 and 02/20/2017), but
experiments were all performed at the same time (2:00 pm)
under perfectly clear sky conditions with a UV index of 2.

Results for all experiments are shown in figure 6. The
average heading angle error measured is of �0.3� which
is consistent with performances exhibited previously under
clear sky conditions. The peak error measured is of 7.7�,
occurring during the ninth walking step. Since there were no
clouds in the sky, the polarization pattern remained rather
constant all over the experiments. As a consequence, the
heading direction error is mainly caused by interactions
between legs and the ground.

V. CONCLUSION
In this paper, a novel insect-inspired celestial compass was

introduced. Performances analysis during winter and spring
showed this compass can be used in all weather conditions,
including high and low UV-index, clear and covered sky.
The sensor was then embedded onto an ant-inspired walking
robot to maintain the robot’s heading direction constant while
walking.

The heading recovery experiments performed both at fix
point and during a walking task showed highly precise and
reliable results under clear-sky conditions, with an average
steady state error as small as 0.3�. Results under cloudy-sky
conditions also exhibits good performances, from 0.8� under
variable weather, to 1.9� under overcast sky, but slightly
less reliable due to the high variability of meteorological
conditions.

Future work will focus on the impact of the turning
uncertainty of the robot on the heading direction. Residual
heading-lock errors can be reduced by changing to a closed-
loop system showing the suitability of this new optical com-
pass sensor for autonomous robotic tasks such as homing.
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A Fully Automatic Hand-Eye Calibration System

Morris Antonello, Andrea Gobbi, Stefano Michieletto, Stefano Ghidoni and Emanuele Menegatti

Abstract— To retrieve the 3D coordinates of an object in
the robot workspace is a fundamental capability for industrial
and service applications. This can be achieved by means of a
camera mounted on the robot end-effector only if the hand-
eye transformation is known. The standard calibration process
requires to view a calibration pattern, e.g. a checkerboard, from
several different perspectives. This work extends the standard
approach performing calibration pattern localization and hand-
eye calibration in a fully automatic way. A two phase procedure
has been developed and tested in both simulated and real
scenarios, demonstrating that the automatic calibration reaches
the same performance level of a standard procedure, while
avoiding any human intervention. As a final contribution, the
source code for an automatic and robust calibration is released.

I. INTRODUCTION

The hand-eye calibration problem consists in estimating
the rotation and translation of the end effector or gripper of
a robot, i.e. the hand, with respect to the camera mounted on
it, i.e. the eye. As reviewed in [1], a number of typical robot
tasks like visual servoing [2], grasping and stereo vision re-
quires the knowledge of this transformation or, at least, could
highly benefit from it. This way, the robotic arm can move
the camera with respect to a fixed reference system, e.g. the
robot base or the workcell world reference. Unfortunately,
in most applications the hand-eye transformation needs to
be calculated several times during the life cycle of a system,
thus requiring many manual interventions.

A well-known approach was proposed by Tsai et al. [1]
in 1988. Such approach requires the user to acquire a
large set of images (more than 50) framing a calibration
pattern (usually a checkerboard) from different views and
the corresponding set of robot poses. Its implementation is
already available in the Robot Operating System (ROS) [3],
a framework widely used in robotics, and in the Visual
Servoing Platform (ViSP) [4], a library for developing visual
servoing systems. This task can be partially automatized by
fixing the pattern position inside the robotic work-cell and
saving a pre-determined robot motion. Even if this can be
easily done with recent robotic arms, there are some draw-
backs: it might not be possible to fix the pattern position, and
this solution would not work after any change in the work-
cell or robot-camera configuration. An automatic approach
automatizing the robot motion has been proposed by Tsai
et al. [5] but, given that it requires the pattern calibration,
i.e. the knowledge of the pattern position in the world, it
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Laboratory (IAS-Lab), Department of Information Engineering
(DEI), University of Padova, Via Ognissanti 72, 35129, Padova,
Italy. morris.antonello, michieletto, ghidoni,
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shares the same drawbacks. Indeed, the pattern localization
can be cumbersome. It is usually achieved by means of two
standard procedures described in the robot vendor manuals:
the calibration of a tip mounted on the end effector and the
calibration of the work object, in this case the calibration
pattern. The tip allows to accurately touch three points on
the calibration pattern so as to define a Cartesian reference
system on it.

In this paper, such standard approach [1], [5] is extended
so as to perform both the calibration pattern localization
and hand-eye calibration in a fully automatic way. This is
a chicken-and-egg problem: to localize the pattern by means
of the camera, the hand-eye calibration is needed; however,
in order to automatize the hand-eye calibration, the pattern
localization is also needed. Here, this is overcome by means
of two phases, in each of which an hand-eye calibration is
performed as shown in the overview in Figure 1. In particular,
our main contributions are:

• A fully automatic hand-eye calibration procedure, which
does not require the knowledge of the calibration pattern
3D location;

• An open-source module1 based on the framework ROS
and the libraries ViSP and MoveIT! [6], which can be
easily exploited on other robot platforms.

These results could speed up the research of the wide com-
munity working with robotic manipulators on complex and
precise manufacturing tasks. In the challenge EuRoC2[7], the
hand-eye transformation was necessary for visual servoing
in tasks like car door assembly [8] and coil winding [9],
[10]. In the challenge MBZIRC3, many mobile manipulators
were equipped with a camera on the robotic arm. The hand-
eye transformation was necessary for grasping a wrench and
rotating a valve stem. Furthermore, from our experience,
the hand-eye transformation turns out to be useful also in
other specific scenarios. In the context of the EU project
FibreMap4[11], it allowed to inspect a carbon fiber preform
in order to analyze its surface with a high accuracy and map
carbon fibres on its model [12]. In ThermoBot5, it allowed
to subtract the background from thermographic images, thus
improving the speed and reducing false positives when de-
tecting defects in carbon fiber parts [13]. Different examples
of robot hand-eye configurations are reported in Figure 2.
In our real experiments, the configuration in Figure 2(a) has
been adopted.

1
http://robotics.dei.unipd.it/129-auto-hand-eye

2
http://www.euroc-project.eu/

3
http://www.mbzirc.com/

4
http://fibremap.eu/

5
http://thermobot.eu/

http://robotics.dei.unipd.it/129-auto-hand-eye
http://www.euroc-project.eu/
http://www.mbzirc.com/
http://fibremap.eu/
http://thermobot.eu/


Fig. 1. The proposed two phase procedure. In the first phase, a raw hand-eye calibration is calculated with images grabbed while the robot is moving
in the robot base or world reference system. Hence, the checkerboard can be localized. In the second phase, a refined hand-eye calibration is calculated
using images grabbed with the robot moving in the checkerboard reference system.

(a)

(b) (c)

Fig. 2. The robot setup exploited in this paper is similar to that of the
project EuRoC (a). Other two hand-eye configurations, respectively in the
challenge MBZIRC (Desert Lion Team) (b) and the project FibreMap (c),
are reported. The hand is in the green box, the eye is in the cyan box.

The remainder of the paper is organized as follows. Sec-
tion II reviews the work related to the hand-eye calibration
problem. Section III describes our novel approach, first
giving a picture of the entire workflow, then focusing on
the two steps with an eye on the framework adaptability
to other robots. In Section IV, our methods are thoroughly
evaluated in a simulated and a real environment. Finally, in
Section V, conclusions are drawn and future directions of
research identified.

II. RELATED WORK

In the past, many methods have been proposed to perform
the hand-eye calibration. As reviewed in [1], they can be
divided into two categories: approaches coupling hand-eye
calibration with conventional robot kinematic model cali-
bration like [14] and approaches decoupling hand-eye cali-
bration from conventional robot kinematic model calibration
like [15]. In [1], a new approach belonging to the second
category is also proposed, which is faster and more accurate.
This is now a common approach implemented in ROS and
ViSP.

In [5], Tsai et al. discussed what are the main sources
of error. In order to keep the errors low, they suggested to
move the robot in different positions, the so-called stations,
for each of which the robot is stopped and an image is
acquired. They are chosen with a star-drawing technique
giving a systematic way of generating an arbitrary number
of view points with varying camera distances and angles.
In our work, we used their calibration function and ensured
the acquisition of images with varying distances and angles,
but we did not implement their star-drawing technique. As
previously discussed, even if the work by Tsai et al. has
been a clear step towards the complete task automation,
their procedure requires the calibration pattern position to
be known, in turn requiring the human intervention. This is
overcome by our two phase approach.

More recently, in [16], [17], two extended hand-eye cali-
bration approaches without the requirement of a calibration
pattern have been presented. Indeed, in medical applications,
an unsterile calibration pattern cannot be used. In [16],
feature tracking and a structure-from-motion approach are
exploited. This proved to be useful to simplify the calibration
process, which has to be done before every surgical proce-
dure. Nevertheless, this approach is not as accurate as the
common one. In [17], the approach is claimed to be accurate.
Anyway, it uses the surgery instruments with known CAD
models as calibration objects. In our scenario, an object with
a known CAD model is less practical than a checkerboard.

III. METHODS
This section focuses on the description of our automatic

procedure. For ease of understanding, the main reference
systems and transformations are depicted in Figure 3. The
symbols B, H , C and P are the initials of Base, Hand, Cam-
era and Pattern, the names of the main reference systems.
The symbols BH , HE, EP and BP stay for the respective
rototranslations from the Base to the Hand, the Hand to the
Eye, the Eye to the Pattern and the Base to the Pattern. Our
goal is the estimation of BP and HE (in red).

The automatic procedure can start after moving the robot
to a starting position from which the calibration pattern is
visible. Our calibration pattern is the asymmetrical circle
pattern, currently supported in OpenCV [18], but could be
also the classical black-white checkerboard with equally
spaced squares. This procedure is characterized by two
phases, displayed from left to right in Figure 1. In the first
phase, a raw hand-eye transformation (HE) is estimated



Fig. 3. Representation of the main reference systems (colored triads) and
transformations (dot lines). Our goal is the estimation of the Base-Pattern
(BP ) and the Hand-Eye transformation (HE).

from images grabbed while the arm is moving the hand
(H) in the robot base or world reference system (B) with
a stop-and-go motion. Indeed, the links BP and HE are
both unknown so, instead of moving the camera (E) with
respect to the the calibration pattern (P ), we can only
move the hand (H) with respect to the world/robot base
(B). Thus, the actual path of the camera with respect to
the checkerboard depends on the starting position. This
means that, for instance, the actual number of acquired
images framing the calibration pattern and the number of
angulations cannot be controlled, impacting the quality of
the estimated hand-eye transformation, which, as a result, is
also influenced by the starting position. Nevertheless, thanks
to this first hand-eye transformation, the checkerboard (P )
can be roughly localized. Thus, in the second phase, the robot
camera (E) can be moved by the arm with respect to this
reference system (P ), finally providing a second hand-eye
transformation (HE). This second phase gives the advantage
of starting the procedure from a known point and moving the
arm along a more controlled and repeatable path.

A. Pattern Localization

As previously mentioned, this automatic procedure starts
from a position from which the calibration pattern falls in
the camera Field of View (FoV). An example is reported in
Figure 4. From here, the robotic arm moves through several

(a) (b)

Fig. 4. An example of starting position of the pattern localization: (a)
the robotic arm UR10 with a stereo-camera rigidly mounted on the gripper
(EuRoC project setup) (b) the checkerboard. The checkerboard is in the
camera FoV.

stations with a stop-and-go motion so as to avoid issues when
synchronizing the robot-pose with the image. These stations

are not chosen a priori. The robotic arm moves its gripper
along each axis until the pattern stops being detected. In
particular, at fixed steps, a check is performed to verify that
the pattern is still detected, hence visible. If so, the acquired
image can be used to calibrate and locate the checkerboard,
and the robot can keep moving along that axis. Additionally,
more stations can be added by rotating the gripper around
the gripper axis. Collision avoidance and target reachability
is guaranteed by the MoveIt! library.

At the end of this phase, the pattern localization is
performed from a set of rectified images {Ii} framing the
calibration pattern and a set of Base to Hand transformations
{BHi} with i 2 {0, . . . , N � 1}. For each image, the
transformation Eye to Pattern EP can be estimated from the
3D-2D point correspondences, e.g. by means of the itera-
tive method based on the Levenberg-Marquardt optimization
available in the OpenCV library. From {BHi} and {EPi},
the hand-eye calibration method by Tsai et al. [1] leads to
the estimation of HE. Thus, the pattern calibration location
can be easily estimated as BP = BHN�1⇥HE⇥EPN�1,
where BHN�1 is a valid robot pose and EPN�1 the respec-
tive valid Eye to Pattern transformation.

B. Automatic Acquisition

Once a first hand-eye HE is estimated and the checker-
board P is located in the work-cell, the camera can be moved
with respect to the checkerboard independently from its
location in the workspace along a controlled and repeatable
path. As shown in Figure 5, the acquisition can always start
from the same view of the checkerboard.

(a) (b)

Fig. 5. An example of starting position of the automatic acquisition: (a)
the robotic arm UR10 with a stereo-camera rigidly mounted on the gripper
(EuRoC project setup) (b) the checkerboard. The checkerboard is in the
camera FoV and clearly visible.

In this phase, the robot moves mimicking a typical ac-
quisition performed by a human and, as suggested by Tsai
et al. in [5], varying distances and angles are considered.
The robot moves again in a stop-and-go fashion stopping
with a fixed stride to check that the calibration pattern keeps
being visible. A scheme representing the camera movements
is reported in Figure 6. In particular:

• the camera E scans a number of planes num p, which
are parallel to the checkerboard but outdistanced of
a fixed step d p starting from a minimum distance
d min p. For instance, num p can be equal to 3, d p
to 0.05m and d min p to 0.40m;



(a)

Fig. 6. The camera can be moved with respect to the checkerboard
independently from its location in the workspace along a controlled and
repeatable path.

• the plane scan is performed from a position 0, almost
in the center. Then, the camera is moved along the
checkerboard axis x and y, between the position 1 and 2
or 3 and 4. The terminal positions are not fixed. Indeed,
as in the previous phase, the camera is moved along an
axis until the checkerboard stops being in the FoV;

• each plane can be scanned with varying configurable
angles. This is shown in Figure 6, in which the camera
E at the position 4 is rotated with three different angles
around the axis y. Rotations around other axes can be
set too. For instance, one plane can be scanned several
times, first with all the angles set to 0, then setting a
rotation angle of 10� around the axis x, then 10� around
the axis y and so on.

Again, collision avoidance and target reachability is guaran-
teed by the MoveIt! library. If any of the stations cannot be
reached, the robot continues moving towards the subsequent
one. From the new sets {BHi} and {EPi}, the hand-eye
calibration method by Tsai et al. [1] leads to the estimation
of HE.

C. System Adaptability

This approach has been implemented by means of the
libraries ViSP, ROS, MoveIt!, OpenCV and PCL, which
are widely adopted by the robotic community. Currently,
the MoveIt! library supports 65 robots. Thus, even if this
implementation has been tested on the Universal Robot
UR10 only, it can be potentially used with many others.
We selected an approach based on well-known libraries and
frameworks for being able to work with different robots
and cameras with almost no need for code and system
modifications. In fact, our approach obtains the hand-eye
calibration starting solely by camera and robot. Standard
procedures integrated in the ROS framework provide robot
and camera information to our algorithm. A configuration
file stores parameters related to different characteristics of
the system.

Camera intrinsic parameters are collected by using a
topic6. In the majority of the sensors available in ROS, the
topic is published directly by the camera driver, and it can
be updated by using a camera calibration procedure already
available in ROS. Anyway, if no information about intrinsic
parameters is exposed by the camera driver, the message firm
is publicly available on the ROS website.

Similarly, the system looks for a robot model to learn
its physical structure, know about kinematic chains, and
understand dynamics. The physical structure is represented
by means of the Unified Robot Description Format (URDF)7.
In the URDF, the robot is composed of joints and links:
part dimensions, motion limits, weights, visual and col-
lision shapes complete the robot description. Kinematic
chains are defined inside the Semantic Robot Description
Format (SRDF)8. Moreover, SRDF is usually accompanied
by a series of files providing information about collision
avoidance, inverse kinematics, robot controllers. MoveIT! is
able to exploit such information simply by referring to a
specific kinematic group. In our system, it is possible to
select the correct kinematic group by changing a parameter in
the configuration file. Dynamics is fundamental for a correct
simulation in the Gazebo environment. This information can
be integrated directly in the URDF file and it is the basis for
obtaining realistic tests with physics engines.

IV. EXPERIMENTAL RESULTS
To test the automatic procedure, a scenario similar to the

one of the EuRoC project has been selected. The robotic
arm is the Universal Robot UR10, collaborative and with 6
degrees of freedom. A stereo-camera composed of two PC
webcams is rigidly mounted on it. One of them is taken
as a reference, and the hand-eye calibrations are computed
with respect to it. In the following, the results of experiments
performed in both simulated and real test-beds are discussed.

A. Simulation Experiments

Thanks to the simulation environment, the ground-truth
hand-eye transformation and checkerboard can be easily
retrieved. To assess the generality of the system, it was tested
with the robot starting from 3 different positions (Test A) and
with 3 different checkerboard positions in the work-cell (Test
B). The 6 different configurations are reported in Figure 7
and 8, respectively. In total, 12 hand-eye transformations and
6 checkerboard locations have been estimated.

With regard to Test A, the main results are summed up in
Table I. The hand-eye transformations have been compared in
both translation and angle, in particular �t is the Euclidean
distance in meters while �q the difference vector between
two quaternions in degrees. In addition to the ground truth,
the HE transformations have been compared with a baseline
consisting in the HE calculated with a manually determined
motion defined by 10 waypoints at varying heights and
angulations. The baseline, the hand-eye calculated in the first

6
http://wiki.ros.org/Topics

7
http://wiki.ros.org/urdf

8
http://wiki.ros.org/srdf
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(a) (b) (c)

Fig. 7. Different starting positions with varying inclinations of the camera.
The calibration pattern stays on a vertical plane.

(a) (b) (c)

Fig. 8. Different checkerboard positions: on a vertical, horizontal and
inclined plane.

phase and the hand-eye calculated in the second phase are
almost equivalent with a standard deviation of only 0.0017m
and 0.1016�. Interestingly, in this ideal simulated scenario,
the second hand-eye calibration leads to worse performance
even if in the second phase the camera is closer to the
calibration pattern. This implies that the image quality is
higher but also that the number of acquired images is minor
since the camera is staying closer to the checkerboard and
moving with a fixed step from one position to the next
until the checkerboard is visible. In this ideal scenario, the
second effect is clearly prominent. Finally, as shown in
Table II, the differences in the checkerboard localization are
also minimal. The worst entry deviates from the ground-
truth of about 0.0159m (Position 2) and 1.1412� (Position
1). As expected, these deviations are higher since the error
on the hand-eye is accumulated with the errors in the robot
positioning (BHN�1 transformation) and, mainly, the error
in the checkerboard positioning with respect to the camera
(EPN�1 transformation).

With regard to Test B, the main results are summed up in
Table III. Even if the robot starts from 3 different positions,
both phases of the calibration procedure succeed giving
results similar to those already presented.

B. Real Experiments

The entire procedure has been executed from 5 different
positions, which have been randomly chosen around the
checkerboard at a distance of about 1.00 m. In the second
phase, the robot has scanned 3 planes at the distances of
0.40 m, 0.45 m and 0.50 m, from which the checkerboard is
better focused. One of these trials has been already shown
in Figure 4 and 5. In total, 10 hand-eye transformations, 5
for each of the two phases, and 5 checkerboards have been
estimated. In Table IV, the main results are recapped. Given

the lack of the ground-truth, no direct comparison can be
performed. Anyway, it can be seen that, as expected, the
standard deviations of the hand-eye translations and rotations
obtained after the first phase (respectively 0.0113m and
1.8703�) are much higher than the standard deviations in
the second phase (respectively 0.0054m and 0.5324� ). This
is due to the fact that the second phase moves the robot along
a known path in the checkerboard reference system.

V. CONCLUSIONS

This paper presented an automatic system for localizing
the calibration pattern and performing the hand-eye calibra-
tion taking a step forward in comparison to existing methods.
Indeed, previous works focused on optimizing the hand-eye
calibration instead of trying to fully automatize the procedure
from the beginning to the end. The proposed approach
is based on two phases, in each of which an hand-eye
calibration is performed. The second phase allows acquiring
images in a controlled setup by moving the camera with
respect to the calibration pattern. Both phases were tested in
simulated and real scenarios showing that stable results can
be obtained after the second phase. As a final contribution
to the research community, the toolbox is released online.
We plan to use this tool in the upcoming projects and
keep on improving it. We would like to test and compare
different tool and camera paths in the two phases in order to
investigate on the relation between path and overall accuracy.
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TABLE I
HAND-EYE TRANSFORMATIONS IN THE SIMULATION EXPERIMENT TEST A: TRANSLATIONS AND ROTATIONS IN QUATERNIONS. THE ROBOT STARTS

FROM THREE DIFFERENT POSITIONS. THE CHECKERBOARD IS VERTICAL.

HE x y z qx qy qz qw �t �q
Ground truth 0.0842 0.0959 0.1139 0.5879 -0.3928 0.5879 -0.3928 0.0000 0.0000

Baseline 0.0887 0.0936 0.1087 0.586417 -0.390973 0.589555 -0.39445 0.0072 1.5200
Phase 1 - Position 1 0.0879 0.0914 0.1133 0.5880 -0.3928 0.5878 -0.3929 0.0058 1.4806
Phase 1 - Position 2 0.0866 0.0940 0.1105 0.5888 -0.3929 0.5886 -0.3904 0.0045 1.5720
Phase 1 - Position 3 0.0884 0.0916 0.1119 0.5877 -0.3943 0.5868 -0.3935 0.0063 1.2554
Phase 2 - Position 1 0.0927 0.0945 0.1128 0.5885 -0.3931 0.5875 -0.3923 0.0086 1.4433
Phase 2 - Position 2 0.0924 0.0942 0.1130 0.5886 -0.3930 0.5876 -0.3922 0.0084 1.4893
Phase 2 - Position 3 0.0931 0.0942 0.1126 0.5885 -0.3931 0.5875 -0.3923 0.0091 1.5119

TABLE II
BASE-CHECKERBOARD TRANSFORMATIONS IN THE SIMULATION EXPERIMENT TEST A: TRANSLATIONS AND ROTATIONS IN QUATERNIONS. THE

ROBOT STARTS FROM THREE DIFFERENT POSITIONS. THE CHECKERBOARD IS VERTICAL.

BP x y z qx qy qz qw �t �q
Ground truth 0.8000 1.5000 1.4000 -0.7071 0.0000 0.0000 0.7071 0.0000 0.0000

Position 1 0.7997 1.4965 1.3977 -0.7066 0.0002 -0.0002 0.7075 0.0042 1.1412
Position 2 0.7864 1.4928 1.3957 -0.7082 -0.0011 -0.0015 0.7059 0.0159 1.1248
Position 3 0.8012 1.4929 1.3964 -0.7063 0.0011 0.0016 0.7078 0.0080 1.1411

TABLE III
HAND-EYE TRANSFORMATIONS IN THE SIMULATION EXPERIMENT TEST B: TRANSLATIONS AND ROTATIONS IN QUATERNIONS. THE CHECKERBOARD

IS POSITIONED IN 3 DIFFERENT PLACES: VERTICAL, HORIZONTAL AND ON AN INCLINED PLANE.

HE x y z qx qy qz qw �t �q
Ground truth 0.0842 0.0959 0.1139 0.5879 -0.3928 0.5879 -0.3928 0.0000 0.0000

checkerboard 1 0.0927 0.0945 0.1128 0.5885 -0.3931 0.5875 -0.3923 0.0086 1.4433
checkerboard 2 0.0928 0.0943 0.1129 0.5885 -0.3930 0.5875 -0.3922 0.0088 0.9978
checkerboard 3 0.0914 0.0943 0.1130 0.5885 -0.3932 0.5875 -0.3924 0.0074 1.3638

TABLE IV
HAND-EYE TRANSFORMATIONS IN THE REAL EXPERIMENTS AND THEIR STANDARD DEVIATIONS IN THE TWO PHASES.

HE x y z qx qy qz qw std(t) std(q)
Phase 1 - Position 1 -0.2394 -0.0280 -0.0961 0.5141 0.4865 0.5205 0.4776
Phase 1 - Position 2 -0.2527 -0.0341 -0.0880 0.4856 0.5081 0.5162 0.4894
Phase 1 - Position 3 -0.2394 -0.0237 -0.1095 0.5067 0.4917 0.5152 0.4859 0.0113 1.8703
Phase 1 - Position 4 -0.2452 -0.0293 -0.0934 0.4993 0.5001 0.5183 0.4816
Phase 1 - Position 5 -0.2372 -0.0368 -0.0965 0.5004 -0.4933 -0.5223 -0.4831
Phase 2 - Position 1 -0.2521 -0.0215 -0.1075 0.4974 0.5055 0.4783 0.5180
Phase 2 - Position 2 -0.2500 -0.0191 -0.1091 0.4973 0.5031 0.4775 0.5211
Phase 2 - Position 3 -0.2450 -0.0289 -0.1117 0.4950 0.5093 0.4807 0.5143 0.0054 0.5324
Phase 2 - Position 4 -0.2517 -0.0181 -0.1096 0.4960 0.5059 0.4745 0.5225
Phase 2 - Position 5 -0.2505 -0.0194 -0.1096 0.4974 0.5054 0.4763 0.5199
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Lidar-based Urban Road Detection by Histograms of Normalized
Inverse Depths and Line Scanning

Shuo Gu, Yigong Zhang, Jian Yang and Hui Kong

Abstract— In this paper, we propose to fuse the geometric
information of a 3D Lidar and a monocular camera to detect the
urban road region ahead of an autonomous vehicle. Our method
takes advantage of both the high definition of 3D Lidar data and
the continuity of road in image representation. First, we obtain
an efficient representation of Lidar data, an organized 2D
inverse depth map, by projecting the spatially unorganized 3D
Lidar points onto the camera’s image plane. The approximate
road regions can be quickly estimated by extracting vertical
and horizontal histograms of the normalized inverse depths.
To accurately find the road area, a row and column scanning
strategy is applied in the approximate road region. We have
carried out experiments on the public KITTI-Road benchmark,
and achieve one of the best performance among the Lidar-based
road detection methods without learning procedure.

I. INTRODUCTION

The problem of traversable road detection has been studied
for decades in the context of autonomous driving vehicles.
Many successful strategies for road detection using images
are proposed in the literature. However, the image based de-
tection methods can become unreliable when strong changes
in illumination occur. In some challenging scenes, 3D range
data, obtained from stereo cameras, radars or Lidars, are
necessary for road detection task. In recent years, 3D Lidar
scanners have been widely used in autonomous driving. The
Lidar based road detection methods do not suffer from the
external illumination and can capture geometry in a very
high resolution. The high definition of 3D Lidar data makes
it possible to detect most obstacles and the traversable area.
However, one major drawback of the Lidar based methods
is that the point cloud in each Lidar frame contains large
number of spatially discrete and unorganized 3D points as
shown in Fig.1 (a). Searching or indexing among these Lidar
points is time-consuming. Therefore, it is necessary to design
a method to transform the spatially discrete and unorganized
Lidar point cloud into a continuous and organized form.

Sensor fusion is a solution to solve this problem as the
points in image representation are spatially continuous and
organized. In this paper, we propose to fuse the geometric
information of a 3D Lidar and a monocular image to detect
the road region. Through the sensor fusion, we can take
advantage of both the high definition of 3D Lidar data and
the continuity of the road in image representation. First, the
3D Lidar and the monocular camera are cross calibrated.
Then, the discrete and unorganized 3D Lidar points are
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projected onto the image plane as shown in Fig.1 (b). We
can obtain a new representation of Lidar data, a spatially
continuous and organized 2D inverse depth map by applying
a linear interpolation (Fig.1 (c)). The road plane detection
problem in discrete and unorganized Lidar data is converted
to a simple linear classification task in 2D space. Based
on this new representation, we can acquire the intermediate
representations of road scene by extracting vertical and
horizontal histograms of the normalized inverse depths as
shown in Fig.1 (d). In the horizontal histogram map, the road
plane is projected as a straight line segment. In the vertical
histogram map, the pixels that correspond to road area have
small values. The approximate road regions can be quickly
estimated with both histograms.

The inverse depth histograms are very accurate in detect-
ing road area when the road can be well approximated by
a plane. However, the road region is not a perfect plane in
general. The road scene can include both road and sidewalk
regions, and can be slanted or tilted. Usually, a larger
threshold is set to cover most possible road scenarios and
in this case, the road area cannot be accurately detected.

To solve this problem, we present a row and column
scanning strategy to improve the road detection performance.
Height difference relative to a reference point, which can be
reliably located in the approximately detected road region, is
the only criterion in our scanning strategy to classify between
road and non-road points.

To summarize, our paper makes the following major
contributions: (i) we propose a continuous and organized
representation of the spatially discrete and unorganized Lidar
data. (ii) we propose maps of histograms of normalized
inverse depth to quickly estimate the approximate road
region. (iii) we propose a row and column scanning
strategy to improve the road detection performance of
(ii), and show promising results on a variety of road
scenes. The online evaluation result of our algorithm
(HID-LS) on the KITTI-Road benchmark is available
at http://www.cvlibs.net/datasets/kitti/eval road.php.
Some video demos of road detection results on the
KITTI (visual odometry) road sequences are available at
www.youtube.com/channel/UC9BMwRuISFVoepoUibQANdA.

II. RELATED WORKS

Road detection has been an active research area for many
years. A variety of approaches based on different sensors
have been proposed to detect road regions in some kinds
of scenes. In [1], a survey of the recent progress in road
detection is presented. There are two main trends in road



Fig. 1. The flowchart of our algorithm. (a) the input includes 3D Lidar data and a monocular image; (b) projection of Lidar points shown in green; (c)
the dense interpolated inverse depth map and height map; (d) the vertical and horizontal histogram extracted from (c); (e) the approximate road region
estimated with vertical and horizontal histograms; (f) the row scanning and column scanning based on (e); (g) the road detection result of the proposed
method.

detection: (i) the approaches based on single sensors (monoc-
ular camera, or stereo vision, or Lidar) and (ii) multiple
sensors.

Among the single-camera based road detection methods
([2][3]), most of them are based on learning classifiers. They
often take the assumption of lower part of the image being
road in order to learn a classifier online or make use of
manually labelled datasets to train the classifier offline [4].
The color ([5][6]) and texture ([7][8]) information are often
employed as the feature to train a classifier. However, these
approaches can easily fail if the evaluation scenarios are
different from the training data.

Among the stereo-vision based approaches, most make use
of the disparity map acquired through stereo matching. The
U-V-disparity [9] and local descriptors [10] obtained from
disparity map can be used to analyze the road. Some digital
elevation mapping techniques [11] are used to detect the road
curb. However, most of these methods need dense stereo
matching, which is usually time consuming and the error of
disparity value increases with the distance.

Among the 3D Lidar based algorithms, the flat plane
assumption [12] is often applied. Most of these methods
make use of the high definition of Lidar data and take the
flat area as the road. Some approaches model the road with
various road boundary detection methods ([13] [14]). Robust
regression method named least trimmed squares (LTS) [15]
is introduced to fit the road curb. The min-max elevation
map method in [16] has been widely used in road detection.
In [17], a Gaussian differential filter is used to segment the
Lidar scan into road and non-road. In [18], a Lidar-histogram
method is proposed to detect road on the Lidar-imagery.
These methods can obtain good results when the height
difference between road and non-road area is significant. If
the height difference is not salient, Lidar based approaches
may fail.

In order to overcome the drawbacks of single sensors,
multiple sensor fusion has been used to incorporate strengths
of single sensors while reduce the individual weakness. In
[19], the Lidar points are projected into the image plane to

build a graph and the local spatial relationship between points
is used to estimate the road region. In [20], after projecting
3D Lidar points to a 2D reference plane, a sliding window
technique is applied in the upsampled dense height maps
to estimate the road region. In [21], the Lidar points are
used to estimate the road plane and then, the road points are
projected into the image plane to learn a gaussian model. In
[22], the Lidar data and monocular images are fused in the
framework of conditional random field to detect road robustly
in different scenes. In [18], a weighted fusion strategy is
applied to combine color and position information learning
from training set and the geometry information obtained
through Lidar-histogram to estimate the traversable region.
Our method is similar to [19][20] in the way of sensor fusion,
we only use the geometric properties of the 3D Lidar and
the monocular camera, no photometric properties are used.
Photometric information like color and texture from images
can be added to further improve the detection performance.

III. OUR APPROACH
Our method includes the procedure of (i) the sensor fusion,

(ii) the vertical and horizontal histograms of normalized
inverse depths and (iii) the row and column scanning.

A. Sensor Fusion

As presented in [23], Lidar points are stored as (x, y, z)T

(x=forward, y=left, z=up). In this step, we transform the spa-
tially discrete and unorganized 3D Lidar points to continuous
and organized 2D image points. This consists of two parts.
First, we transform the 3D point P
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in image coordinate system. The transformation matrices are
defined as:

P

c

= T

cam

velo

· P
v

, p = T

proj

· P
c

(1)

where T

cam

velo

is the transformation between the Lidar and
camera coordinate systems. T
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is the projection matrix



from camera to image coordinate systems. Only 2D points
in the field of view of the camera (0 < u <= width, 0 <

v <= height) are used. Then, a spatially continuous and
organized 2D inverse depth map as shown in Fig.1 (c) can
be obtained by applying linear interpolation to Fig.1 (b).

B. Vertical and Horizontal Histograms for Rough Road
Detection

After the fusion step, the road detection problem in
spatially discrete and unorganized 3D Lidar data is converted
to a simple linear classification task in 2D space. Inspired
by the works related to the u-v disparity [9], we present a
histogram-based method to estimate the road plane. As the
inverse depth map in Fig.1 (c) is equivalent to the disparity
map in stereo vision up to a scale, we convert the inverse
depth to a equivalent disparity as follows:

d(u, v) = s · 1
x

(2)

where d(u, v) is the equivalent disparity of point p =
(u, v)T and s is a scale factor used in the inverse depth
normalization. The horizontal and vertical histograms of the
normalized inverse depths are defined as follows:
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where Ht

n

and Vt

m

represent the horizontal and vertical
histogram maps, respectively, which accumulate the number
of pixels whose equivalent disparity value equals t row-
wisely and column-wisely, respectively, in the normalized
inverse depth map. In the vertical histogram map, the height
is equivalent to the maximum value of the normalized inverse
depth, and the width is equal to that of the input image. The
small values in the vertical histogram map correspond to the
pixels in road plane, i.e.,
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) 2
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non-road, otherwise
(4)

where I(m,�(m)
n

) is the pixel at the location of
(m,�(m)

n

) of the input image. The V
m,n

is the pixel value
at (m,n) of the vertical histogram map V . The �(m)

n

is
the row-coordinate of a pixel in the m

th column of the color
image whose inverse depth value is n. The �V is a threshold
that is used to decide whether I(m,�(m)

n

) is a road pixel
or belongs to non-road region.

In the horizontal histogram map, the height is equal to
that of the input image, and the width is equivalent to
the maximum value of the normalized inverse depth. The
road plane corresponds to the straight line in the horizontal
histogram map. The road profile line can be fitted by the
RANSAC (Random Sample Consensus) [24] algorithm and
the road region can be quickly estimated. We assume that the
line equation is v = ku+b, where (u, v) is the coordinate of

a point on the line. Theoretically, this line can classify the
point cloud into a road plane, positive and negative obstacles.
In reality, road is not a perfect plane in 3D space. Therefore,
we specify a tolerance margin to contain the road points,
written as follows:

(
v = ku+ ↵b, ↵ > 1, upper bound
v = ku+ �b, � < 1, lower bound

(5)

We can roughly obtain the classification of road and
obstacles. For a certain scanning row v, the bottom and
top margins of its disparity can be denoted by B(v), T (v).
Assuming that D(v) is the disparity of a point, if D(u, v) <
B(v), this point is lower than the road plane, belonging
to negative obstacle. If D(u, v) > T (v), this point is
higher than the road plane, belonging to positive obstacle.
If B(v) <= D(u, v) <= T (v), this point is nearly on the
the road plane, belonging to the road.

The major problem of this kind of histogram based
approach is that the applied tolerance margin has a great
influence on the road detection result. It is hard to achieve
reliable and accurate detection performance in varieties of
road scenarios if based on only one set of threshold values.
To ensure that we can detect the road surface for most of the
road scenes, we usually set a large value to �V in (4), and a
large value to ↵ and a small value to � in (5), respectively.
But this usually results in a false detection region which
could include both road and sidewalk simultaneously.

An example of approximate road detection based on
horizontal histograms with large tolerance margin in line
fitting is shown in Fig.2 (c) and (d). The results show that
the large tolerance margin may lead to misclassification of
obstacles which will affect the reliability of the following
reference point selection. Fig.2 (e) and (f) show examples of
the approximate road detection based on vertical histograms.
Likewise, it also results in false detection where the detected
region contains area above the horizon. To reduce the false
detection in the approximate road region as much as possible,
we combine both the horizontal- and vertical-hisogram based
strategies. Specifically, we first obtain an approximate road
region by applying the horizontal-histogram based scheme
(5), and then apply the vertical-histogram based scheme (4)
to the region obtained by the horizontal-histogram based
scheme. The approximate road region obtained by combining
both histogram based schemes is shown in Fig.2 (a) and (b).

C. Row and Column Line Scanning
We propose a row and column scanning strategy to accu-

rately find the road within the approximate road region.
1) Height Difference:
To make use of the high definition of 3D Lidar data,

we classify road and non-road pixels based on the height
difference relative to a reference point. A point is classified
as non-road if the function below returns zero and otherwise
road.

road(p) =

(
0, if kh

r

� h

p

k > t

1, otherwise
(6)



Fig. 2. Approximate road region estimated by different histogram strate-
gies. (a) and (b) vertical and horizontal histogram method; (c) and (d)
horizontal histogram method; (e) and (f) vertical histograms approach.

where h

r

is the height value of a reference point p
r

. h
p

is
the height value of a point p. t is the threshold of the height
difference.

2) Reference Point Selection:
Height difference is the only criterion applied in our

scanning method which is essentially finding points of the
same type (road or non-road) as the reference points. Thus,
the selection of reference points has large influence on
the road detection result. In this paper, we apply a dense
reference point selection strategy within the approximate
road region. Instead of selecting only one in a row or in
a column, we use more reference points. A new reference
point will be selected if the distance relative to the current
reference point is beyond a certain threshold. Our dense
selection strategy can take advantage of the local flatness
property of the road region and can be applied in non-flat
scene.

3) Row and Column Scanning:
Row Scanning: The row scanning process starts from

middle (the first reference point) to left and right, respec-
tively, and ends when meets the boundary, i.e., consecutive
non-road points. The position of the first reference point
of each row is defined as the average position of the
detected road boundaries in previous row. If it is not in the
approximate road region, we will use the nearest point in
the same row of the approximate road area as the actual first
reference point.

As shown in Fig.1 (b), the Lidar sensor lacks sensing
information in distant regions, e.g. near the end of road. The
interpolated height data around this area are not reliable and
we will stop the scanning process if the number of road
points in a row is less than a certain threshold to avoid the
inaccurate interpolation.

Column Scanning: Similar to the row scanning process,
the column scanning starts from bottom to top and ends when
meets consecutive non-road points. The difference lies in
that the row scanning results are used to determine whether
the points on the last row of the image are road or not,
then, all the first reference points are selected from these
road points. This makes column scanning dependent on the

Fig. 3. Road detection results of row scanning and column scanning (Per-
spective view). (a) row scanning approach; (b) column scanning approach;
(c) and (d) row and column scanning approach; Red denotes detection result
of row scanning and green represents supplementary result from column
scanning; (e) ground-truth of road area.

Fig. 4. Road detection results of row scanning and column scanning (BEV).
(a) row scanning approach; (b) column scanning approach; (c) row and
column scanning; (d) ground-truth of road area.

scanning results of last few rows.
Row and Column Scanning: The stop mechanism in row

scanning usually leads to early stop when cars are present
on road, which results in missing road detection as shown in
Fig.3 (a). The column scanning does not have this problem,
but it can be more prone to false detection in the nearby
regions due to dependence on row scanning results.

To solve the problems mentioned above, we propose to
combine the row and column scanning. We use the row
scanning result as a base and the column scanning as a
supplement to fill the missing part in the distance. Exper-
iments show that the combination improves the detection
performance.

IV. EXPERIMENTS

To evaluate the performance of the proposed method,
we test it on the public KITTI benchmark [25]. All the
experiments below are tested on a standard PC with a 16GB
of RAM and a quad-core Intel Core i5-4460 CPU clocked
at 3.2GHz. The algorithm is implemented with C++ under
Ubuntu 14.04 and the average consuming time is about 0.5
second.

A. KITTI-Road dataset

The KITTI-Road dataset [23] includes synchronized im-
ages and Lidar data with calibration parameters, ground-
truth, and scripts for evaluation. The KITTI-Road dataset
consists of two parts, the training dataset of 289 images
with ground-truth images and the testing dataset of 290
images which only allows evaluation by submission of result



TABLE I
EVALUATIONS ON KITTI-ROAD TRAINING BENCHMARK(BEV)

UM ROAD
Algorithm MaxF AP PRE REC FPR FNR

Row 89.05 % 80.43 % 91.31 % 86.90 % 3.80 % 13.10 %
Column 87.99 % 79.39 % 84.18 % 92.16 % 7.96 % 7.84 %

Ours 91.35 % 83.58 % 88.79 % 94.06 % 5.46 % 5.94 %
UMM ROAD

Algorithm MaxF AP PRE REC FPR FNR
Row 92.45 % 87.51 % 95.37 % 89.70 % 4.75 % 10.30 %

Column 92.66 % 88.20 % 91.80 % 93.53 % 9.11 % 6.47 %
Ours 94.49 % 90.63 % 94.47 % 94.50 % 6.03 % 5.50 %

UU ROAD
Algorithm MaxF AP PRE REC FPR FNR

Row 88.30 % 77.33 % 88.69 % 89.92 % 4.08 % 10.08 %
Column 83.06 % 72.19 % 82.40 % 83.73 % 6.36 % 16.27 %

Ours 90.17 % 81.51 % 87.03 % 93.55 % 4.96 % 6.45 %

images to the website. The two datasets have three different
categories of road scenes, namely Urban Marked (UM),
Urban Multiple Marked (UMM), and Urban Unmarked
(UU). Scripts provided by [23] can generate a specific score
for each one. The dataset offers pixel-based evaluation in
perspective view and bird’s eye view (BEV). The metrics
include maximum F1-measure (MaxF), average precision
(AP), precision (PRE), recall (REC), false positive rate
(FPR) and false negative rate (FNR), and are computed after
transforming from the image domain to BEV space. The
KITTI-Road dataset uses the MaxF as the primary metric
value for comparison between different methods. Note that
our method is training-free, we test it on both training and
testing datasets.

B. Experiments Setting

Row Scanning: The distance threshold of the reference
point selection is set as 0.2m in y direction and the threshold
of the height difference relative to a reference point is set as
2cm.

Column Scanning: The distance threshold of the refer-
ence point selection is set as 1m in x direction and the
threshold of the height difference relative to a reference point
is set as 5cm.

C. Comparison of Different Methods

To show the effectiveness of the combination of row
and column scanning, we evaluate the scanning methods
quantitatively in KITTI-Road training dataset. Table I shows
the comparison results in BEV. It shows that the combination
of row and column scanning does improve the performance.

In this part, we also compare the line scanning method
with and without approximate road region estimation step
in KITTI-Road training dataset quantitatively. Fig.5 shows
an example of the comparison. Fig.5 (a) and (d) are the
line scanning results with the constraints that the reference
points are selected in the approximate road region. Fig.5
(b) and (e) are results of line scanning operated on the
whole image. It is obvious that result based on the whole
image may cover the area above horizon. As the BEV
representation only covers from -10m to 10m in lateral (y)

Fig. 5. Comparison of different approximate road regions. (a) and (d)
approximate road area estimated by vertical and horizontal histograms; (b)
and (e) the whole image; (c) and (f) ground-truth of road area.

TABLE II
EVALUATIONS ON KITTI-ROAD TRAINING DATASET(PERSPECTIVE)

UM ROAD
Algorithm MaxF AP PRE REC FPR FNR

OnlyScanning 92.98 % 82.18 % 88.75 % 97.64 % 2.44 % 2.36 %
Ours 93.72 % 83.76 % 90.49 % 97.19 % 2.01 % 2.81 %

UMM ROAD
Algorithm MaxF AP PRE REC FPR FNR

OnlyScanning 94.55 % 86.44 % 92.70 % 96.48 % 2.38 % 3.52 %
Ours 95.28 % 88.25 % 94.69 % 95.87 % 1.68 % 4.13 %

UU ROAD
Algorithm MaxF AP PRE REC FPR FNR

OnlyScanning 89.77 % 79.13 % 85.68 % 94.26 % 2.49 % 5.74 %
Ours 91.52 % 82.67 % 89.57 % 93.55 % 1.72 % 6.45 %

direction and from 6m to 46m in longitudinal (x) direction,
the misclassifications above horizon have little influence on
the BEV results as shown in Fig.5 (e). Thus, we compare the
road detection results in perspective view. Table II shows that
the approximate road region can help improve the detection
performance in perspective view.

KITTI-Road: In this section, we compare our approach
with some other Lidar based methods which can be re-
ferred ([18][19][26]) in the KITTI-Road benchmark. Fig.6
illustrates some visual results of our method in BEV and
perspective view. The quantitative results in the BEV space
are shown in Table III. The performance of our method ranks
the first among these methods. The result is very promising
considering that we only use the geometric information of
Lidar and monocular images. The detection performance can
be further improved by combing photometric information
like color and texture from image.

V. CONCLUSIONS
In this paper, a road detection method based on the fusion

of the geometric information of the 3D Lidar and the monoc-
ular camera is proposed. Through the spatially continuous
and organized representation of Lidar data, a histogram based
method can be applied to quickly estimate the approximate
road regions. We also propose a row and column scanning
strategy to improve the approximate road detection results.
Experimental tests on KITTI-Road benchmark show that our
method can successfully detect road in multiple scenes. As



Fig. 6. Road detection in perspective view and BEV. Here, red denotes false
negatives, blue denotes false positives and green represents true positives.

TABLE III
EVALUATIONS ON KITTI-ROAD TESTING BENCHMARK(BEV)

UM ROAD
Algorithm MaxF AP PRE REC FPR FNR

RES3D-Velo 83.81 % 73.95 % 78.56 % 89.80 % 11.16 % 10.20 %
LidarHisto 89.87 % 83.03 % 91.28 % 88.49 % 3.85 % 11.51 %
HybridCRF 90.99 % 85.26 % 90.65 % 91.33 % 4.29 % 8.67 %

Ours 92.03 % 83.73 % 88.97 % 95.31 % 5.38 % 4.69 %
UMM ROAD

Algorithm MaxF AP PRE REC FPR FNR
RES3D-Velo 90.60 % 85.38 % 85.96 % 95.78 % 17.20 % 4.22 %
LidarHisto 93.32 % 93.19 % 95.39 % 91.34 % 4.85 % 8.66 %
HybridCRF 91.95 % 86.44 % 94.01 % 89.98 % 6.30 % 10.02 %

Ours 94.36 % 91.01 % 94.88 % 93.84 % 5.57 % 6.16 %
UU ROAD

Algorithm MaxF AP PRE REC FPR FNR
RES3D-Velo 83.63 % 72.58 % 77.38 % 90.97 % 8.67 % 9.03 %
LidarHisto 86.55 % 81.13 % 90.71 % 82.75 % 2.76 % 17.25 %
HybridCRF 88.53 % 80.79 % 86.41 % 90.76 % 4.65 % 9.24 %

Ours 89.10 % 80.53 % 86.13 % 92.29 % 4.84 % 7.71 %
URBAN ROAD

Algorithm MaxF AP PRE REC FPR FNR
RES3D-Velo 86.58 % 78.34 % 82.63 % 90.92 % 10.53 % 9.08 %
LidarHisto 90.67 % 84.79 % 93.06 % 88.41 % 3.63 % 11.59 %
HybridCRF 90.81 % 86.01 % 91.05 % 90.57 % 4.90 % 9.43 %

Ours 92.36 % 85.83 % 90.86 % 93.90 % 5.21 % 6.10 %

future work, we intend to integrate visual information like
color or texture to further improve the detection accuracy.

REFERENCES

[1] A. Bar Hillel, R. Lerner, D. Levi, and G. Raz, “Recent progress in
road and lane detection: a survey,” Machine vision and applications,
pp. 1–19, 2014.

[2] J. Alvarez, T. Gevers, Y. LeCun, and A. Lopez, “Road scene seg-
mentation from a single image,” Computer Vision–ECCV 2012, pp.
376–389, 2012.

[3] C. Tan, T. Hong, T. Chang, and M. Shneier, “Color model-based real-
time learning for road following,” in Intelligent Transportation Systems
Conference, 2006. ITSC’06. IEEE. IEEE, 2006, pp. 939–944.

[4] P. Y. Shinzato, V. Grassi, F. S. Osorio, and D. F. Wolf, “Fast visual
road recognition and horizon detection using multiple artificial neural
networks,” in Intelligent Vehicles Symposium (IV), 2012 IEEE. IEEE,
2012, pp. 1090–1095.

[5] Y. He, H. Wang, and B. Zhang, “Color-based road detection in
urban traffic scenes,” IEEE Transactions on intelligent transportation
systems, vol. 5, no. 4, pp. 309–318, 2004.

[6] B. Wang, V. Frémont, and S. A. Rodrı́guez, “Color-based road
detection and its evaluation on the kitti road benchmark,” in Intelligent
Vehicles Symposium Proceedings, 2014 IEEE. IEEE, 2014, pp. 31–
36.

[7] H. Kong, J. Y. Audibert, and J. Ponce, “Vanishing point detection for
road detection,” in Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 96–103.

[8] H. Kong, J. Y. Audibert, and J. Ponce, “General road detection from a
single image,” IEEE Transactions on Image Processing, vol. 19, no. 8,
pp. 2211–2220, 2010.

[9] Z. Hu and K. Uchimura, “Uv-disparity: an efficient algorithm for
stereovision based scene analysis,” in Intelligent Vehicles Symposium,
2005. Proceedings. IEEE. IEEE, 2005, pp. 48–54.

[10] K. Wang, L. Qu, L. Chen, Y. Gu, and X. Zhang, “Non-flat road de-
tection based on a local descriptor,” arXiv preprint arXiv:1609.08436,
2016.

[11] M. Kellner, M. E. Bouzouraa, and U. Hofmann, “Road curb detec-
tion based on different elevation mapping techniques,” in Intelligent
Vehicles Symposium Proceedings, 2014 IEEE. IEEE, 2014, pp. 1217–
1224.

[12] F. Moosmann and C. Stiller, “Joint self-localization and tracking of
generic objects in 3d range data,” in Robotics and Automation (ICRA),
2013 IEEE International Conference on. IEEE, 2013, pp. 1146–1152.

[13] W. S. Wijesoma, K. S. Kodagoda, and A. P. Balasuriya, “Road-
boundary detection and tracking using ladar sensing,” IEEE Transac-
tions on robotics and automation, vol. 20, no. 3, pp. 456–464, 2004.

[14] H. Cramer and G. Wanielik, “Road border detection and tracking in
non cooperative areas with a laser radar system,” in Proceedings of
German Radar Symposium. Bonn, Germany, 2002, pp. 24–29.

[15] A. Y. Hata, F. S. Osorio, and D. F. Wolf, “Robust curb detection
and vehicle localization in urban environments,” in Intelligent Vehicles
Symposium Proceedings, 2014 IEEE. IEEE, 2014, pp. 1257–1262.

[16] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, et al., “Stanley:
The robot that won the darpa grand challenge,” Journal of field
Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[17] W. Zhang, “Lidar-based road and road-edge detection,” in Intelligent
Vehicles Symposium (IV), 2010 IEEE. IEEE, 2010, pp. 845–848.

[18] L. Chen, J. Yang, and H. Kong, “Lidar-histogram for fast road and
obstacle detection,” in Proc. International Conference on Robotics and
Automation (ICRA). IEEE, 2017.

[19] P. Y. Shinzato, D. F. Wolf, and C. Stiller, “Road terrain detection:
Avoiding common obstacle detection assumptions using sensor fu-
sion,” in Intelligent Vehicles Symposium Proceedings, 2014 IEEE.
IEEE, 2014, pp. 687–692.

[20] R. Fernandes, C. Premebida, P. Peixoto, D. Wolf, and U. Nunes, “Road
detection using high resolution lidar,” in Vehicle Power and Propulsion
Conference (VPPC), 2014 IEEE. IEEE, 2014, pp. 1–6.

[21] X. Hu, F. S. A. Rodriguez, and A. Gepperth, “A multi-modal system
for road detection and segmentation,” in Intelligent Vehicles Sympo-
sium Proceedings, 2014 IEEE. IEEE, 2014, pp. 1365–1370.

[22] L. Xiao, B. Dai, D. Liu, T. Hu, and T. Wu, “Crf based road detection
with multi-sensor fusion,” in Intelligent Vehicles Symposium (IV), 2015
IEEE. IEEE, 2015, pp. 192–198.

[23] J. Fritsch, T. Kuhnl, and A. Geiger, “A new performance measure
and evaluation benchmark for road detection algorithms,” in Intel-
ligent Transportation Systems-(ITSC), 2013 16th International IEEE
Conference on. IEEE, 2013, pp. 1693–1700.

[24] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[25] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[26] L. Xiao, R. Wang, B. Dai, Y. Fang, D. Liu, and T. Wu, “Hybrid
conditional random field based camera-lidar fusion for road detection,”
Information Sciences, 2017.



Robot navigation balancing safety and time to goal in dynamic
environments*

Marı́a-Teresa Lorente and Luis Montano1

Abstract— This work addresses a technique for robot motion
planning and navigation in dynamic environments. First, a
model to represent the future evolution of the moving obstacles
in the environment is defined in a robocentric reference, which
maps the obstacle motion on the control space, the velocity-time

space, of the robot. Second, a planning technique working on
that model for navigation and maneuvering in this scenario
is performed. The planned motion commands balance safety
and time to goal criteria, applying every control sampling time
a velocity command satisfying the criteria from the planned
strategy. Unlike other classic reactive strategies, the novel
method developed allows to plan and execute safe motions
according to the further evolution of the moving objects in the
robot field of view. The robot maneuvers among the obstacles
using the concepts of time to collision and time to escape

from the perceived moving objects. The technique is evaluated
in randomly generated simulated scenarios, based on metrics
defined using safety and time to goal criteria.

I. INTRODUCTION

Optimal techniques for navigating robots in changing, dy-
namic, and unforeseen scenarios, where autonomous robots
have to coexist with other robots and humans in a friendly
way (for example in crowded scenarios such as airport or
hospital halls), require using planning and navigation strate-
gies different from the techniques used for static scenarios.
Many efforts during the last years have been dedicated to
improve planning and reactive navigation algorithms for
static scenarios, some of them also applied to dynamic
environments. However, the use of pure reactive techniques
jointly with classical global planners for navigation leads to
unexpected, avoidable collisions, and even robot blocking.

In this work we develop a model to represent the envi-
ronment dynamism on the control space of the robot. The
model informs about the further evolution of the moving
objects or people, in such a way that planning and navigation
techniques using it can exploit all the represented informa-
tion. We name this model DOVTS (Dynamic Object Velocity-
Time Space), in which the forbidden and free robot velocities
are represented as a function of the time. The kinodynamic
constraints of the robot are also taken into consideration
to compute a feasible motion, implicitly represented in the
model.

In dynamic environments, the free space for moving
the robot changes every sampling time, which leads to a
more reduced effective free space for a motion planner. So,

*This work was partially supported by Spanish projects DPI2016-76676-
R-AEI/FEDER-UE and T04-DGA-FSE.

1Instituto de Investigación en Ingenierı́a de Aragón, University
of Zaragoza, C/Mariano Esquillor s/n 50018, Zaragoza, Spain.
mlorente@unizar.es, montano@unizar.es

planners and navigation techniques have to be tailored to the
dynamism of the scenario. The work presented here develops
a robocentric motion planner, which works on DOVTS model
to compute safe and near-optimal motions towards the goals.
The planner evaluates on the model the time to collision or
to escape from collision among the surrounding objects. This
way the time to reach a goal can be optimized. Every control
sampling time the planner computes the motion action that
optimizes a hybrid criterion balancing safety, measured from
the free velocity space, and time to goal, manoeuvring among
the moving obstacles.

The three major contributions of this work are:
• A model that incorporates to a Velocity-Time space

DOVTS the dynamic information and further evolution
of the obstacles in the scenario.

• A planner that, working on the DOVTS space, plans
motions for a midterm horizon in the field of view of
the on-board sensors by optimizing a hybrid safety/time-
to-goal criterion, re-planning the motion every sampling
time.

• The model exhibits a lower computational complexity
when compared with other modelling techniques in the
literature.

Section II summarizes some of the related works found in
the literature. In section III the model used to represent the
dynamic environment is formally defined. Section IV intro-
duces the planning and navigation algorithm, and section V
evaluates the method through simulations. Finally, section VI
presents some conclusions and future work.

II. RELATED WORK

Iterative motion planners, such as [1], [2], [3], [4], [5],
[6], and [7], combine global planning towards the goal and
reactive avoidance of obstacles to navigate a robot. However,
safe motion planning in dynamic environments requires
explicitly computing the motion evolution of the obstacles
and the kinodynamics of the robotic system. Consolidated
approaches found in the literature refer to the Velocity
Obstacle (VO) [8], expanded in [9], and the Inevitable
Collision States (ICS) introduced by [10]. VO computes the
set of velocities from the current state that would provoke
a collision between a holonomic robot and an obstacle at
a time in the future. Planning of collision-free trajectories
using this model requires looking ahead, simulating several
steps forward. ICS computes the robot states which lead to
inevitable collision, i.e., there is no control the robot can
apply to avoid a collision for a set of evasive manoeuvres.



A different approach is carried out in [11], where authors
deal with motion planning through a B-spline parametriza-
tion. The method exploits B-splines properties to replace
constraints over the entire time horizon by finite sets of
constraints, suitable for real time optimization.

In [12] the authors generalize the VO concept so that
dynamic constraints can be easily addressed. Recently, [13]
presented a new VO-based approach (OVVO) which improves
the velocity selection compared to the VO approach. The
method defines a grid from the velocity window and uses a
cost function to decide on the best velocity for the robot. In
[14] the authors extend relevant work addressing multi-robot
systems based on VO, generalizing the reciprocal collision
avoidance for robots with different kinematic constraints.

Motion safety has been formally studied with the ICS
concept. Several criteria are defined in [15] to address motion
safety for autonomous robotic systems, which establish that
the robotic system should consider i) its own dynamics, ii)
the environment objects’ future behaviour, and iii) to reason
over an infinite time-horizon, in order to compute its future
motion. Computationally costly, an approximation of ICS is
thus used in practice. In [16], [17], [18], [19] and [20] the
ICS concept is exploited in different ways.

Motion safety issue in the VO framework using the ICS is
addressed in [21] by calculating the proper time horizon as
the minimum time for the robot velocity to exit the velocity
obstacle. An adaptive computation of the time horizon is
proposed in [22], which changes with respect to the relative
information of the environment and the robot. In [23], the
authors adapt the DWA approach ([24]) to consider moving
obstacles, represented as moving cells in a grid map. Cells
intersecting robot trajectories are considered forbidden.

The work presented in this paper extends the model
defined in a preliminary work [25] to represent the dynamic
information in the environment, and develops a robot motion
planner based on this model, which is evaluated in different
dynamic scenarios. An environment model is developed,
the DOVTS (Dynamic Object Velocity-Time Space), which
computes trajectories determining the set of free velocities
which leads the robot to the goal without collision within
the space horizon given, e.g. the sensor’s field of view. In
this method, there is no need for an imposed time horizon as
in the referenced techniques, given that it is implicit to the
DOVTS model definition. Moreover, when planning the next
motion action for the robot, DOVTS provides a look-ahead
of the trajectories with respect to the evolution of the moving
objects, hence helping the decision process for searching the
best motion.

III. DOVTS ENVIRONMENT MODEL

The developed environment model computes the relative
dynamic information between the robot and the moving
obstacles. Unlike other methods referenced in the litera-
ture, the method does not represent the Workspace-Time or
Configuration-Time spaces, but the maximum and minimum
velocities and associated times for reaching or escaping
from the collision band, respectively, in the Velocity-Time
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, and collision points P1j and P2j
in the robocentric (R) Configuration Space; (c) multiple paths � through
the collision band; (d) robocentric representation for an obstacle moving
following a circular curve (blue), and the robot circular trajectories (green).

space. The collision band is the configuration space swept
by an obstacle while moving on a trajectory. We develop
the method for a non-holonomic robot, thus circular trajec-
tories for planning are computed, which are controlled from
angular and linear velocities (!, v).

Figure 1 shows the basic idea. In Figure 1a the robot
Workspace and a moving object are depicted. Fig. 1b shows
the Configuration Space for this situation in the robocentric
reference, in which the object moves in a straight line
trajectory. A circular robot trajectory �

j

intersects the limits
of the collision band, corresponding to P1j(x1j , y1j) and
P2j(x2j , y2j) which represent the robot locations for col-
lision or escape in the Configuration Space. Then, the times
for the obstacle to get to those points are computed, t1j and
t2j , which, in turn, represent the collision and escape times
for the robot. The associated velocities for the robot to reach
those points after or before the obstacle are thus computed.
The velocities refer to the control variables for the robot,
i.e. the angular and linear velocity, which are obtained from
Eq. (1). The resultant calculations, as illustrated in figure 2,
lead to an obstacle in the Velocity-Time Space (V ⇥ R) of
the robot, the DOVT (Dynamic Object Velocity-Time). This
computation is extended to a set of n circular trajectories �

, so �
j

2 �, j = 1..n (see Fig. 1c). Note that hereinafter, �
j

is used indistinctly to refer to both a circular trajectory and
its radius.
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This method for modelling is completely general for dif-
ferent trajectories of the objects. See figure 1d as an example
of an object following a non-linear trajectory. Details for
the computation process can be found in [25] for obstacles



(a) (b)

Fig. 2: (a) Velocity-time space DOVTS for one moving obstacle; the
surface represents the corresponding velocity-time obstacle DOVT including
the dynamic information. (b) DOVTS for two obstacles; free velocities can
be selected between both surfaces representing the DOVT obstacles.

moving in linear trajectories, and in Appendix for obstacles
moving in circular trajectories.

A. Formal definition of DOVTS space

The DOVTS model is formally defined as follows. Let be
R(v

j

, t) the robot state, (x, y, ✓), under the control action
v
j

= (!, v) applied at time t.
Definition 1 (Dynamic Object Velocity-Time): The Dy-

namic Object Velocity-Time (DOVT) for a particular moving
object O

i

with respect to the set of feasible trajectories of
the robot � is defined as the set of velocities that produce a
collision with O

i

at time t,

DOV T (O
i

,�) = {(!, v, t) 2 V ⇥R | 9�
j

2 �,

v

!
= �

j

, v
j

= (!, v), R(v
j

, t) \O
i

(t) 6= ;} (2)

Accordingly, DOVT(O,�) represents DOVT for all the
obstacles in the environment,

DOV T (O,�) = [O
i

DOV T (O
i

,�) (3)

As a consequence, velocities belonging to DOVT are unsafe,
leading to collision at a future time.

Definition 2 (Free Velocity-Time): The Free Velocity-
Time (FV T ) is the set of velocities outside DOV T ,

FV T = {(!, v, t) 2 V ⇥R | v
j

= (!, v, t) /2 DOV T,

R(v
j

, t) \O(t) = ;} (4)

Any velocity inside FVT will be safe in the long term
or, if it lies under the DOVT surface, during the time until
collision, given that the initial conditions remain.

Definition 3 (Dynamic Object Velocity-Time Space):
The Dynamic Object Velocity-Time Space (DOVTS) is
defined as the control space of the robot which contains
controls belonging to DOVT and FVT,

DOV TS = {DOV T [ FV T} (5)
In short, velocities in FVT can be selected by a motion

planner to compute safe motions without collision during a
time horizon according to their collision time. Figure 2 shows
DOVTS for one (a) and two (b) moving obstacles. Choosing
velocities in between dynamic objects DOVT, time to goal
could be improved.

Algorithm 1 Compute Goal in the Velocity Space
Require:

1: (x, y)
g

, goal position relative to robot in workspace
2: function COMPUTEVELOCITYGOAL((x, y)

g

)
3: �

g

= GetRadiusGoal((x, y)
g

);
4: v

g

= GetVelocity((x, y)
g

, �
g

) : Equation 1
5: return v

g

6: end function

IV. ROBOCENTRIC PLANNER ON DOVTS

Any planner that exploits the information included in
DOVTS could compute safe and quick trajectories towards
the goals. This section introduces a motion planning and nav-
igation technique that works directly on the DOVTS model
explained in the previous section. As said before, using path
planners for static environments in dynamic scenarios can
lead to unsatisfactory robot behaviours, and in general to
no optimal trajectories, due to the need of avoiding moving
obstacles reactively. We claim that a motion planner using
DOVTS model, which plans further robot motions based
on the dynamism of the obstacles instead of acting in a
pure reactive way, can strongly improve the performance of
navigation in such kind of scenarios.

A. The planner

As the planner works in the Velocity-Time space, the
goal location to be reached in the workspace has to be
projected in DOVTS as a velocity goal, v

g

. From the current
robot location in the configuration space, a circular trajectory
towards the goal is computed, which is modeled into DOVTS
as the set of velocities which leads to the goal following
Eq. (1), and bounded by the velocity constraints. The maxi-
mum velocity in the set refers to the velocity the robot should
have to reach the goal at the next sampling step. Then, v

g

corresponds to the maximum reachable velocity in the set
within the bounds. Algorithm 1 reproduces the computation
in pseudo-code. Then, the planner searches for a plan towards
v
g

along the whole available time horizon.
In order to manoeuvre the robot, extremal controls can

provide near time-optimal trajectories in environments with
obstacles. In [26], time-optimal trajectories were calculated
as extremal controls in free space for differential-drive and
car-like robots with bounded linear and angular velocities
but without acceleration limitations. In this work, either
maximum angular or linear acceleration are selected as
extremal controls to navigate, leading to clothoid or anti-
clothoid trajectories ([25]).

The kinodynamic constraints are also considered in the
planner (a rhomb for a differential drive robot in figure 3).
A velocity window VW is defined according to the maximum
angular and linear accelerations (↵

m

, a
m

). Formally, VW =

{(!
c

±↵
m

T, v
c

±a
m

T )}, where (!
c

, v
c

) is the current robot
velocity, and T the sampling time in the algorithm. These
maximum accelerations are thus used as the cell size in the
grid explored by the planner.



(a) (b)

Fig. 3: Two alternative velocities for the robot, VW1 and VW2, in (a)
DOVTS and (b) its projection into the velocity space DOVS. They represent
the kind of velocities eligible when planning, i.e. velocities which do (VW2)
and do not (VW1) have a bounded time of application given by the time
until collision with the obstacle. The planner will combine safety and time
to goal criteria to select the best motion.

The planner developed uses information mapped on
DOVTS to select the more suitable commands. These com-
mands are velocities v = (!, v) applied every sampling
time to the robot. The planner searches for safe velocities
in FVT, the free Velocity-Time space in the model, and
executes every sampling time to adapt to changes in the
scenario. Simple circular trajectories are considered when
planning, which may lead to non optimal solutions if they
are applied in the long term. In addition, the DOVTS model
offers a look-ahead at an instant which is valid while velocity
conditions remain invariable. Not allowing the planner to be
executed to update the changes observed in the environment
would result in sub-optimal trajectories and be unsafe for the
robot, requiring a forward simulation of the system, which
is costlier. However, it could be taken into consideration,
if some safety guarantees could be found. The selection of
the best velocity command is conducted by safety and near-
optimal time to goal criteria. To illustrate the idea, figure
3a shows a situation where an obstacle and two candidate
velocities defining the robot in DOVTS are plotted, VW1 and
VW2. These represent two examples of velocities eligible for
planning. The projection of this situation into the velocity
space DOVS is also shown in figure 3b to clearly state that
VW2 can only be temporally applied, as it lies under a DOVT.

For computing near-optimal time commands among safe
velocities, an A*-like algorithm in the 3d-space DOVTS
is proposed. The planner constructs a tree by expanding
velocity-time safe nodes in the search space ordered by a
cost function f(n) = g(n) + h(n), which estimates the cost
to reach the velocity goal, v

g

. g(n) is the cost to reach the
current node n, and h(n) is a heuristic cost which estimates
the cost to get to the goal from n. In our method, the
search space is defined as a velocity-time grid obtained from
DOVTS, and the nodes of the tree correspond to the cells in
the grid, n = (!

n

, v
n

, t
n

). The cost function g(n) reflects
the number of velocity changes taken and their closeness to
the velocity goal. The algorithm selects commands that get
the robot away from the obstacles, but as little as possible
from the velocity goal. The heuristic term h(n) is the time
to goal, measured as the number of sampling steps to reach
the goal velocity in absence of obstacles.

Algorithm 2 Compute Robot Motion
Require:

1: DOVTS, Velocity-Time space of the robot
2: v

c

, current velocity of the robot
3: v

g

, velocity goal
4: s, strategy used for planning (Conservative, Time-Aware)
5: function COMPUTEMOTION(DOVTS, v

c

, v
g

, s)
6: mapGrid = ComputeGrid(DOVTS)
7: cell

r

= CellGrid(v
c

)
8: cell

g

= CellGrid(v
g

)
9: mapGrid = mapGrid [ cell

r

[ cell
g

10: velP lan = MotionPlan(mapGrid, s)
11: (!, v) = FirstElement(velP lan);
12: return (!, v)
13: end function

Formally, for a node n = (!
n

, v
n

, t
n

) being evaluated,

g(n) = g(parent(n)) + 1 +OpCost(n)

h(n) = tv
g

� t
n

OpCost(n) = 1+

+ dist(cell
n

, cellv
g

)

� dist(cell
parent(n), cellv

g

)

The cost function g(n) is interpreted as follows: the unity
cost represents one velocity change opportunity at maximum
acceleration (hence making shorter plans better); OpCost
models an opportunity cost of staying as close to the velocity
goal as possible, with the euclidean distance between cells
given in grid coordinates (which represent velocity changes
at maximum acceleration) used to prefer velocities closer to
the goal and the 1 term used to ensure an always positive
increase in cost.

In other words, the planner minimizes the velocity changes
while trying to stay close to the velocity goal, simultaneously
avoiding Velocity-Time collision configurations. The heuris-
tic, in turn, represents the minimum possible remaining steps
in the plan given the height in time steps of the search space,
used to accelerate the search without having an influence in
the optimal solution.

Algorithm 2 represents the process to compute the motion
command (!, v) to be applied for the robot during a sampling
time, for the plan found at every sampling step.

Figure 4 depicts an example of different navigation so-
lutions proposed. The workspace with two obstacles fol-
lowing linear trajectories (the collision bands are plotted),
the trajectory of the robot, the corresponding DOVTS and
velocity-time grid at several instants are represented. The
coloured grid cells correspond to the obstacles in DOVTS,
i.e., forbidden velocity-time commands for the robot.

B. Navigation strategies

The planning and navigation algorithm can be applied
using different strategies. We consider here two of them: the
Conservative strategy, in which the velocities lying under
any DOVT are considered as always occupied, thus they are



(a) Conservative strategy. Any velocity under any DOVT is forbidden for
planning, i.e. any velocity which leads to collision at any future time. Thus,
the planner computes motions above the first DOVT and around the second
one. As a result, the robot has to deviate and wait until the obstacles pass
to move towards the goal, leading to longer trajectories.

(b) Time-Aware strategy. Velocities between the DOVTs can be selected
for planning. The planner selects free cells in between the DOVTs to plan
motions which lead the robot to pass before both obstacles.

Fig. 4: a) Conservative and b) Time-Aware strategies. The workspace,
which shows the trajectory followed by the robot and the moving obstacles,
and the situation represented both in DOVTS and in the velocity-time grid
are shown at different instants during navigation. The sequence of velocities
computed in FVT from the current node (R) towards the goal are also
plotted (blue line). Using information about time to collision (Time-Aware
strategy) allows the robot reaching the goal in near-optimal time.

not eligible (see figure 4a); and the Time-Aware strategy,
in which all the possible free velocities are considered
for planning, even those that could lead to collision at a
future time (see figure 4b). Both strategies are evaluated in
Section V.

C. Grid parameters

The size of the cells in the grid is also an important
issue, because it will determine the precision of the velocity
obstacles in the grid, and the smoothness of the trajectories
obtained from the command application. The computation

time will fix also the minimum time step needed for planning.
In the current implementation the sampling time is T =

250ms. This parameter, jointly with the maximum available
robot velocities and the desired precision, determine the 3d
velocity-time grid size. In this work, we have chosen to di-
vide the velocity space V considering the maximum angular
and velocity accelerations for the sampling time used, and
the time dimension with respect to the sampling time. The
time horizon considered during simulation (20s) is not a
time horizon imposed in the method, it corresponds to the
workspace horizon considered for modelling the obstacles in
the field of view of the sensors. The maximum velocities for
the robot are v

max

= 1.5m/s and [w
min

, w
max

] = [�1, 1]
rad/s.

D. Model complexity

The process to model the dynamic environment is ana-
lyzed and compared with respect to the referenced VO and
ICS approaches.

Computing the set of ICS of a robot for different control
trajectories and several obstacles involves a complexity of
O(mnt

max

o), where m is the number of obstacles, n the
number of evasive manoeuvres, t

max

the time considered
for computing ICS states, and o the sum of the number
of vertices of the robot and the most complex object,
which are involved in the Minkowski difference operation
required between each pair robot-obstacle. By using Graph-
ics Processing Unit (GPU) the complexity can be reduced to
O(mnt

max

) (see [27]).
The VO approach concerns mainly three operations: com-

puting each individual V O
j

for j = 1..m obstacles, the
multiple velocity obstacle MVO, and the set of safe ve-
locities. The most complex operation is the second one,
because it requires updating the points of each V O

i

, i =

j + 1..m, with the intersection points between V O
j

and
each V O

i

, and ordering them clockwise, which leads to a
complexity of O(m2

). This can be reduced to O(m logm)

by storing the points within a more efficient structure (see
[28]). However, this approach does not provide information
about future motion actions beyond the next sampling time,
usually needing an exhaustive exploration of the search space
for planning the best motion. The need for a t

max

parameter
to consider a look-ahead is also present in this approach.

In our technique, the complexity of modelling each mov-
ing object in its DOV T

j

, j = 1..m, for a set of n robot
planned trajectories (�), is O(mn), where m is the number
of obstacles. The set of trajectories selected for computing
a DOV T

j

depends on the position of the obstacle and
its motion with respect to the robot, and on the desired
discretization, focusing the calculation on the area where the
obstacle will be moving. Thus, several robot trajectories are
considered for each obstacle. Modelling objects moving in
non-linear trajectories (circular paths have been developed
in this work) implies the same order of complexity, because
only intersection points with the collision band are needed.
This approach provides enough information for computing
plans in the defined workspace horizon, and it is not affected



by the parameter t
max

of the other methods given that the
time for which obstacles are considered is implicit within the
model construction.

V. SIMULATION RESULTS

Several simulations in randomly generated scenarios have
been performed to test robot navigation under different
conditions. The performance of the planner is evaluated in
terms of safety and time to goal criteria. A video showing
different simulations can be downloaded from 1.

Two scenarios have been chosen for evaluation: the first
one more structured, the road-crossing, in which the robot
crosses an area where obstacles moving in linear trajectories
traverse the scenario from one extreme to the other in both
directions; in the second one, the non-linear, the obstacles
move in random directions following non-linear trajectories.

In addition, the number of moving obstacles and their
velocities are changed so that we cover a range of condi-
tions to generalize the evaluation performed. The density of
moving obstacles is kept during all the simulations, in order
to maintain the complexity of the scenario for navigation.
For each condition we run 10 simulations, and for each
same scenario we execute both Time-Aware and Conservative
strategies of Section IV-B, to emphasize the improvement
when time to collision is available for planning. For the road-
crossing scenario, where obstacles move with non-zero linear
velocity, the conditions defined are V 1 = {! = 0, v = 0.2}
and V 2 = {! = 0, v = 0.5}. In the non-linear scenario,
the conditions established are V 1 = {! = �0.15..0.15, v =

0.2} and V 2 = {! = �0.38..0.38, v = 0.5}. In both cases,
the number of obstacles considered are 5 and 10.

Figure 5 shows several snapshots during simulation of the
two scenarios designed. The trajectory followed by the robot
and the collision band of each obstacle in the workspace
are plotted, together with the obstacles modeled in DOVTS
and the velocity-time grid used for planning. Once the
information about the environment is modelled in DOVTS,
it is mapped into the velocity-time grid.

Figures 6 and 7 show the time needed to traverse the
scenario with respect to the optimal case, i.e. in absence
of obstacles, comparing both Time-Aware and Conservative
strategies, for each kind of scenario considered. Figures 8
and 9 illustrate the profiles for linear velocity and distance
to the obstacles. As expected, Time-Aware strategy leads to
quicker trajectories and lower time to goal than the other
strategy. The mean distance to obstacles is similar with
both strategies for few obstacles, although as the number of
obstacles increases, this distance decreases. This is because
in scenarios with fewer obstacles there is more free space
for the robot to move.

In general, collisions may appear during navigation. Table
I shows the number of collisions produced out of the total
simulations performed (10). The number of collisions using
Conservative strategy are in general higher than with Time-
Aware strategy. This is because, even though the method

1http://robots.unizar.es/data/videos/simulations-dovts.mp4

(a) Road-crossing scenario.

(b) Non-linear scenario.

Fig. 5: (a) Road-crossing scenario and (b) Non-linear scenario. Simula-
tions with 5 obstacles moving with velocities in set V 1 and executing
Time-Aware strategy. The workspace with the robot trajectory and the
collision bands of the obstacles, the DOVTS space and the velocity-time
grid at different instants during robot navigation are illustrated. The planner
searches for commands in FVT which lead the robot towards the goal. The
circular trajectory which leads to the goal is represented in DOVTS as the
set of velocities which describe the circumference arc towards the goal
(magenta line in the images). The goal velocity v

g

is the maximum value
of the set within bounds. The colour of the cells in the grid identify the
time to collision with an obstacle.

restricts the velocities which may lead to collision, this fact
produces a great reduction of the free space to plan safe
commands. In the road-crossing environment appear more
collisions than in the non-linear case. In such a structured
scenario, the robot has little room for crossing among the
obstacles, mainly in the case of high density of obstacles
and relative high obstacle velocities. It may get blocked in a
situation where there is no opportunity for the robot to cross
and reach the goal, ending in collision.

It can be concluded that, in general, the Time-Aware
strategy performs better in the considered scenarios than
the Conservative one, both in terms of safety and lower
time to goal. This is because this strategy considers more



Fig. 6: Road-crossing environ-
ment. Time cost with respect to
optimal case.

Fig. 7: Non-linear environment.
Time cost with respect to optimal
case.

(a) (b)

Fig. 8: Road-crossing environment. (a) Linear velocity and (b) distance
to obstacles during simulation, comparing Time-Aware and Conservative
strategies.

(a) (b)

Fig. 9: Non-linear environment. (a) Linear velocity and (b) distance
to obstacles during simulation, comparing Time-Aware and Conservative
strategies.

velocity commands that can be selected to move among
the obstacles. However, in very dense dynamic scenarios,
the Time-Aware strategy may result more risky than the
Conservative strategy, leading to more collisions. During
robot navigation, unnatural motions, as spinning or turning
back, are observed sometimes. This is due to the fact that
the robot needs time to reach a velocity given its dynamic
constraints, especially when linear and angular velocities are
high and the robot has to decelerate, and complete rotation
is allowed when linear velocity is zero in order to explore
potential free velocities to escape. This behaviour could be
reduced by limiting the set of highest velocities and the
turning angle of the robot in this exploration. But it may

TABLE I: Number of collisions during simulation.

Scenario Road-crossing Non-linear
Obstacles 5 10 5 10

v1 v2 v1 v2 v1 v2 v1 v2
Time-Aware 0 0 1 4 0 0 1 1
Conservative 2 2 3 2 0 2 1 2

result in the robot not finding ways of escape due to this
limitation. Further work will be devoted to analyse and
improve all these issues.

VI. CONCLUSIONS

The work presented in this paper develops a robocentric
motion planner for dynamic environments. A model of the
dynamic environment in the Velocity-Time space, DOVTS,
is built. This model describes information about the future
evolution of the obstacles. Minimum and maximum robot
velocities for passing before the obstacles or for decelerating
until the obstacles pass before the robot, and time to collision
are used for motion planning.

The technique implements an A*-like algorithm in the
DOVTS space. Two alternatives of the algorithm, Time-Aware
and Conservative are compared. The first one uses explicitly
the remaining time until collision, providing quicker trajec-
tories towards the goal among the obstacles. The second
strategy avoids selecting any velocity which leads to collision
at any time, thus restricting the set of velocities to plan a
motion. The technique optimizes a function that balances the
time to goal and the time to collision to obtain a motion plan
for the robot’s field of view horizon, applying the first motion
command of the plan every sampling time, and resuming the
planning procedure. The model exhibits lower computational
complexity than other techniques proposed in the literature
for dynamic environments.

Improving the technique to reduce the number of collisions
in difficult situations found in the experiments, and extending
this work to a multi-robot decision-making context, are some
subjects for future work.

APPENDIX
Computation of the robot collision velocities: Obstacle cir-
cular trajectories

Figure 10 illustrates a moving object positioned at
O

i

(t0) = (x
obj

, y
obj

) and describing a circular trajectory.
Positions O1

i

and O2
i

refer to the instants at which the robot
reaches points P1j(x1j , y1j) and P2j(x2j , y2j), following a
circular trajectory �

j

. Points P1j and P2j are the intersection
points between the circular robot trajectory �

j

and the
circular collision band swept by the obstacle, delimited by
C
in

and C
out

(6). P1j is the position at which the robot
should arrive after the object has just passed it, at time t1j
(O

i

(t1j) = O2
i

), whereas P2j is the position at which the
robot should arrive just before the object reaches it, at time
t2j (O

i

(t2j) = O1
i

).
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O1
i

and O2
i

are the object positions for computing the
collision times t1j and t2j . Applying tangency conditions
between robot trajectory �

j

and the circles corresponding to
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Fig. 10: Collision band, path �
j

with curvature radius r
rob

and collision
points P1j and P2j with a circular object that moves along a circular
trajectory in the robocentric (R) Configuration Space.

the object in both positions, these positions can be computed
(7). The times to collision are calculated from the angular
displacements ✓

ij

and the angular velocity of the object !
obj

(8).

✓
cij

= atan2(2x
obj

i

y
obj

i

, x2
obj

i

� y2
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i

)

t
ij

= ✓
cij

/w
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, i = 1, 2 (8)
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Introduction and Initial Exploration to an Automatic Tennis Ball
Collecting Machine

Jialiang Zhao, Hongbin Ma⇤, Jiahui Shi , Yunxuan Liu

Abstract— This paper describes a preliminary development
to an automatic tennis ball collecting machine. The framework
adopts a roller to collect tennis balls when moving. Tennis
balls are detected and tracked automatically by computer vision
while hardware acceleration is used to improve efficiency. For
navigation, fuzzy control and 6 ultrasonic sensors are used to
avoid obstacles when approaching the targets. A web-based
monitoring and teleoperation system is added for human-robot
interaction.

I. INTRODUCTION

There are more and more people start playing tennis
nowadays [1]. According to statistics [2], there are more
than 17 million tennis players in US. When playing tennis, a
player commonly spend hours in practicing, however, during
which collecting balls all around the tennis court can be
a very tedious and time-consuming work. Some tools are
invented to alleviate this problem.

A. Prior Work
There are some passive tennis ball collecting devices that

can help players to pick tennis balls up. The most common
tennis ball collecting tools can be seen in the market are
passive tube-like gadgets, commonly called Tennis Tube.
This kind of device is composed of a tube, used as the handle,
which is also a container of tennis balls, and an end cap
installed in the front end of the tube, used to collect balls.
When working, users should hold the tube, approach a tennis
ball, and push the tube towards the tennis ball and force
it to be squeezed into the tube via the end cap. This kind
of device is convenient and cheap, however, drawbacks of
this design are obvious. For convenience and portability, its
capacity is too limited, thus users should regularly empty the
tube manually. What’s more, users need to approach every
tennis ball in the field, while there may be hundreds of them
during practice. Thus this design can only free users from
stooping down, but can’t thoroughly solve this problem.

Mobile gadgets generally are more efficient than tube-like
gadgets. This kind of device has a roller in its front end, and
a handle is used to manipulate. The roller is used to collect
tennis balls, one common design of which is shaped like a
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squirrel cage. The distance between two neighboring beams
is slightly smaller than the diameter of a tennis ball. During
working, user pushes this mobile gadgets, and the roller starts
rolling because of friction of the ground. Tennis balls in front
of the roller will be squeezed into it and will not go out
because of the beams. The drawback of this design is that,
users still need to approach every tennis ball, and it’s still a
time-consuming process, although much more efficient that
tube-like gadgets. Thus the problem still remains unsolved.

There are also some research on autonomous or semi-
autonomous electrical active tennis ball collectors, like
RapidBallBoy, Har-Tru Ball Mower, and TENNIBOT. Rapid-
BallBoy and Har-Tru Ball Mower both have electrical col-
lectors. When it approaches a tennis ball, these devices will
collect it automatically. Users still need to push these devices
around the court. TENNIBOT is based on Computer Vision.
It can automatically detect a tennis ball, approach it and
finally pick it up. The main problem is that this robot doesn’t
have the ability to avoid obstacles and navigate itself.

B. Our Contribution

In this paper, we present a novel design of a fully
autonomous tennis ball collecting machine, which can auto-
matically detect, track, collect tennis balls and navigate itself
in tennis court. The visual part is achieved by a RGB camera.
The navigation part is achieved by 6 ultrasonic distance
sensors. A web sever is built for human-robot interaction.

The framework of this robot is described in Section
II. Software part, including the visual algorithms and the
web server, is described in Section III. Control strategy is
presented in Section IV. Performance and tests of different
configurations are discussed in Section V.

Arch Linux is chosen as the operating system. The de-
sign approach of the development team follows the KISS
principle (”keep it simple, stupid”) as the general guideline,
and focuses on elegance, code correctness, minimalism and
simplicity [3]. It is easy for developers to customize their
system to the maximum [4].

The open source robotic framework, Robot Operating
System (ROS) [5], is adopted as the communication tool
in this system. This framework provides a low-latency com-
munication platform, many useful tools and protocols [6].
Indigo Igloo is the first Long-term Support (LTS) distribution
of ROS, thus it is chosen for stability.



Fig. 1: Schematic of the tennis ball collecting machine. Part
[1] is the roller, which is used to collect tennis balls. Part [2]
is the ball container, which has a capacity of about 20 tennis
balls. Part [3] is the chassis. During working, the roller starts
rolling when it approaches a tennis ball, and the brushes
installed on it will sweep the balls into the container. The
outer shell is made by acrylic. A camera is installed on the
front of it, and 6 ultrasonic sensors are installed around it.

II. FRAMEWORK

A. Mechanical Structure

Carbon fibers (CF) are popular in mechanical structures
for their high stiffness, high tensile strength, low weight, and
high temperature tolerance [7]. Thus the main mechanical
framework is based on CF.

The framework consists of 3 main components, a roller, a
chassis, and a tennis ball container.

1) Roller: The roller illustrated in Fig.2 is used to collect
tennis balls. There are 6 brushes, made by nylon, installed
on it, which are used to sweep tennis balls. When the robot
approaches a tennis ball, the roller starts rolling. The brushes
will sweep the target into the container.

The roller is driven by a 12V DC 60RPM motor installed
on the chassis. They are connected via a pair of pulleys and
a drive belt.

Fig. 2: The roller has a length of 400mm, and a diameter of
350mm. In order to guarantee that the tennis ball won’t be
missed, the front end of the bottom brush touches the ground
when it’s in a position.

2) Chassis: The chassis is made by two CF plates, which
are connected to each other with some copper pillars. It is
shaped like a character U. The mouth is used to install the
roller. The two side bars of the mouth are used to place the
two front motors. These two bars are narrow, in order to
make a larger mouth, which will improve efficiency during

working. Dynamic system, control boards and batteries are
placed between the two plates.

Fig. 3: The chassis. Part [1] is the U-shaped CF plate. Part
[2] is the dynamic set. Part [3] is a motor used to drive the
roller. Part [4] is an universal driven wheel.

3) Container: The container is made by acrylic, which is
lite, cheap and beautiful. It is installed behind the roller and
on the chassis. When a ball is collected, it will go into the
container with the force of the brushes.

B. Dynamic System
The robot is powered by two T-shaped 12V DC motors.

This kind of motor is widely used. Some manufactures,
like TAMAGAWATM , maxon motorTM , and CM motorsTM

produce them. In this robot, 31ZY from CM motorsTM are
used. Two encoders are installed in each motor for velocity
measurement. These two electrical motors are separately
installed on each of the side bar of the chassis. In the rear
end of the chassis, a driven wheel is installed. Thus both
direction and speed are determined by the two front driving
wheels.

The physical robot is shown in Fig.4.

Fig. 4: The physical robot.

III. SOFTWARE

This section consists two parts, the visual detection part
and the web-based human-robot interaction part.

A. Visual Detection
In order to detect tennis balls and find their position,

a high-speed and low-latency tennis ball detecting system
is needed. What’s more, this system should be able to
accurately locate several tennis balls at a time.



Tennis balls can be detected by a variety of methods, e.g.
wireless modules that are inserted in tennis balls in order
to send coordinates; however, this kind of modules need
power, and charging them frequently is unrealistic. Also,
installing this kind of module in every tennis ball costs much.
There are also researchers who let the collecting machine
run randomly to traverse the target field, which is of low
efficiency. Especially in tennis courts, traversal costs too
much time [8].

Vision-based detecting system needs only a processor and
a camera, and an efficient set of algorithms can locate tennis
balls immediately. With the rapid development of CV, more
and more efficient algorithms arise.

Before the recognition algorithm, some pre-processing
procedures are necessary.

1) Convert Color Space: The native color space of the
video stream captured by camera is the RGB color space.
Because the color of a tennis ball is one of its most significant
features, we need to do color splitting in the following step.
HSV color space is more efficient in extracting a color
block’s hue, and less sensitive to different light conditions
[9], so we convert the video stream from RGB to HSV.

After that, three thresholds are set to Hue, Saturation
and Value respectively. It’s obvious that the performance
of detection is hugely influenced by these color thresholds.
Thresholds with larger range will provide better performance
in different environments with different light intensities, but
will decrease the accuracy.

2) Blur: After picking the possible color blocks out, we
obtain a gray-scale mask. In this mask, shade of a block
indicates the possibility of this block to be a component
of a tennis ball. Because of the uncontrollable quality of
cameras, light conditions, and mottle on a tennis ball, a noise
elimination procedure is needed. We add a median blur filter
into the mask. Median blur can protect the image edges and
is very effective in smoothing sharp noise [10].

3) Shape Identification: A pixel is treated to be a possible
block if it’s white, while dark means it belongs to back-
ground. Next we determine whether a cluster of possible
blocks indicates a tennis ball by measuring its shape. Two
algorithms are adopted in this procedure: Suzuki85 and
Hough Transform.

• Suzuki85: Suzuki85 algorithm determines the surround-
ness relations among the borders [11] of a binary image.
Firstly we use this algorithm to find every contour of
the mask image. A result is shown in Fig.5.

Fig. 5: Contours extracted from the mask.

Then we calculate the area of every contour picked from
the mask. In this procedure, Green’s Theorem is used.
Green’s Theorem gives Eq.1.
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where C is a simple close curve, D is a double integral
over the plane region, L and M are functions of (x, y)
defined on D that have continuous partial derivatives
[12]. From Green’s Theorem, the area of C is given by
Eq.2.
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= 1 [13]. Ideally, the contour of a tennis
ball is a circle whatever the shooting angle is, so the
area and the perimeter have a relationship of Eq.3;
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where C denotes perimeter and S denotes area.
Algorithm.1 is adopted to identify a contour.

Algorithm 1 Contour Identification
Input: sample contours {⇠

k

} of a total of n contours
Output: Con{⇠

k

} that indicates whether {⇠
k

} is a circle
1: for k = 1 to n do
2: if C{⇠

k

} and S{⇠
k

} is consistent with Eq.3 then
3: Con{⇠

k

} = true

4: else
5: Con{⇠

k

} = false

6: return Con{⇠
k

}

• Hough Transform: Hough Transform is another algo-
rithm to determine a contour’s shape. It is a method to
detect curves by exploiting the duality between points
on a curve and parameters of that curve [14]. We use
function from OpenCV to apply this algorithm.

Compared with Hough Transform, Suzuki85 algorithm
runs faster but is less accurate. We use Suzuki85 first, and
when a contour is detected to be a circle, we use Hough
Transform on this small region to confirm it. One result in
medium light intensity is shown in Fig.6, and the target tennis
ball is labeled.

Fig. 6: The closest (biggest) tennis ball is marked, while the
green cup is ignored.



B. Hardware Acceleration

Our image processing procedure takes lots of computing
resources. This procedure is highly repeatable, thus parallel
computing can significantly improve the performance [15].
Open Computing Language (OpenCL) is used in this system.
OpenCL is a framework for writing programs that are
executed on across heterogeneous platforms [16]. We use it
to run some of our image processing algorithms in Graphics
Processing Units (GPUs).

Several computing kernels are set up to compute inde-
pendently. Hough Transform and median blur are computing
with hardware acceleration.

After hardware acceleration, the performance is signifi-
cantly improved compared with computing only with CPUs.
Some experiment results are listed in Table I. With each
computing method, three different scenes are tested. The
test environment is 64-bit Intel Atom E3826 (dual-core, 1.46
GHz) with Intel HD Graphics Integrated, 2GB DDR3 RAM.
OpenCL 2.0 and OpenCV 2.4.13.

TABLE I: Results of Hardware Acceleration

Scene No. CPU GPU FPS

Scene 1
1

p
⇥ 73

2
p p

137

Scene 2
1

p
⇥ 47

2
p p

110

Scene 3
1

p
⇥ 24

2
p p

89

C. Web-based Human-robot Interaction

To have better interactions with this robot, we designed
a web-based interface to control and monitor it. A python
micro web framework, namely flask, is chosen to build the
server for it’s light and convenient.

The remote monitoring system should be real-time and
of low-latency, to achieve that, we choose Socket.IO as the
transmission media. Socket.IO is the cross-browser Web-
Socket for real-time applications, it enables real-time bidirec-
tional event-based communication [17]. By using Socket.IO
the system will be able to communicate between front-end
and back-end in real-time. The whole process is shown in
Fig.7. Based on C/S framework, Socket.IO is driven by event.

Fig. 7: Remote Monitoring System

In our system, when users open the web the first time, a
request for images will be sent from front-end to back-
end. When receiving the request, the back-end server will
collect images from the camera. After encoding them in
Base64 format, image codes will be sent to the front-end

Fig. 8: Image Streaming Fig. 9: Controlling Buttons

by Socket.IO. Then the Base64 codes will be decoded and
displayed at the front-end, and a new request for next frame
will be sent to server. The whole communication process will
last until users close the web. The request-reply design makes
full use of the characteristics of Socket.IO, which guarantee
the low latency in transmission. Another advantage of this
design is that the server sends images only if users visit the
web. The transmission will be shut down when users close
the web.

Based on the real-time images, users can teleoperate
robots via buttons (shown in Fig.9) on web. The left five
buttons send moving commands (in four directions) and
stop command. The right button is used to start or stop the
collecting roller. When a button is pressed, the corresponding
color will be changed and a ”post” request will be sent from
the front-end and detected at the back-end. Commands will
then be sent to ROS and robots will move accordingly.

IV. NAVIGATION

We adopt 6 ultrasonic sensors and fuzzy control algorithm
to navigate.

A. Sensors
One of the major challenges of the autonomous navigation

for mobile robots is to detect obstacles during the robotic
navigation task. Considering the main obstacles are humans
and chairs on tennis court, we choose to use ultrasonic
sensors because they are cheap and accurate enough in this
specific environment. We use 6 ultrasonic sensors separated
by 36� to get the real-time distance information. For each
sensor, it can measure distance between 2cm to 4m with
15� measuring angle. The distribution of ultrasonic sensors
is shown in Fig.10.

Fig. 10: Sensors Distributions

B. Fuzzy Control
In real-time navigation systems, controllers must be robust

enough to deal with different situations, fuzzy control is
therefore introduced in our system. Fuzzy control systems
are rule-based or knowledge-based systems containing a



collection of fuzzy IF-THEN rules based on the domain
knowledge or human experts [18]. The process of fuzzy logic
is shown in Fig.11.

Fig. 11: Fuzzy Controller Structure

1) Fuzzyfication: In our fuzzy control system, variables
are shown in Table II. The fuzzyfication process is to trans-
form the continuous values variables into linguistic variables,
which is implemented by member functions shown in Fig.12.
TableIII shows the meaning of each linguistic variables.

TABLE II: Variables defined in fuzzy control

Variable Input/Output Description
LD Input Distance from left
FD Input Distance from front
RD Input Distance from right
✓ Input Angle to destinations

LV Output Output velocity for left wheel
RV Output Output velocity for right wheel

TABLE III: Linguistic Variables

Continuous Value
Variables

Linguistic
Variables Description

Distance
N Distance is near
M Distance is middle
F Distance is far

Angle
P Angle is from 0� to 60�
Z Angle is from 60� to 120�
N Angle is from 120� to 180�

Velocity

S Velocity is very slow
MS Velocity is slow
MF Velocity is fast
F Velocity is very fast

2) Fuzzy Rules: Fuzzy rules are built based on knowledge.
To simplify the control rules, we make a transformation to
the sensor information.

LD = min(Sensor[1], Sensor[2])

FD = min(Sensor[3], Sensor[4])

RD = min(Sensor[5], Sensor[6])

(4)

For each input variable, it is divided into three parts, so the
total number of rules can be reduced to 34 = 81. One part
of rules is shown in Table IV. Taken rule1 as an example, it
can be expressed as ”If (LD is F) and (FD is F) and (RD
is F) and (Theta is N) then (LV is MS)(RV is F)” in fuzzy
logic rules, which means if distance from 3 directions are all

Distance MF Theta MF

Left Velocity MF Right Velocity MF

Fig. 12: Member Function

big enough and the destination angle lies between 120� and
180 �, we will set LV to be slow and RV to be very fast, so
the robot will turn left to reach the destination.

TABLE IV: Variables defined in fuzzy control

Number LD FD RD ✓ LV RV
1 F F F N MS F
2 F F F Z F F
3 F F F P F MS
4 F F M N MS F
5 F F M Z F F
6 F F M P MF F
... ... ... ... ... ... ...
81 N N N P MS S

C. Defuzzification
We use centroid method [19] to defuzzify the member

functions for outputs, the output velocities are defined by

v =

R 200
0 vµ

D

(v)dv
R 200
0 µ

D

(v)dv
(5)

where µ

D

(v) is the output member function.

V. EXPERIMENTAL RESULTS

We tested different sets of configuration in the detecting
system and the navigation system. Stability and regulating
speed are used as criterion during tests.

A. Detecting System
The sensitivity of the detecting system is fundamentally

determined by the color threshold and the area threshold.
As mentioned early, the color threshold is used to determine
whether a color block is a part of a tennis ball. The wider
color threshold will show better performance in different
conditions with different light intensities. As a result, the
detecting accuracy will decrease. The area threshold indi-
cates the minimum area of a possible contour. Smaller area
threshold will show better performance when a tennis ball
is far away from the robot. However, if this threshold is
too small, noises may be erroneously treated as tennis balls.
We tested different sets of these two parameters. The best
parameters are shown in Table V



TABLE V: Values of HSV threshold

Parameter Hth sub Hth sup Sth sub Sth sup

Value 43 55 107 240
Parameter Vth sub Vth sup Areath sub Areath sup

Value 30 250 200 1800

Fig. 13: Simulation Results

B. Navigation System
Webot Pro simulation software is used to test the con-

troller. We build a world and a model for this robot, which
is equipped with 6 ultrasonic sensors ranging from 0 to
350mm. Control program is written in MATLABTM to drive
the simulation.

Fig.13 lists some of the most common situations on tennis
court, the gray ball is set as destination and the blue footprint
is the track of robot’s movement. Red lines on robot is
the range for ultrasonic sensors. We can see that this robot
can collect the ball successfully without running into the
obstacles.

VI. FUTURE WORK

This machine can now collect tennis balls by one camera.
In the future, we are going to add more cameras and extend
the collecting functions to other balls.

A. Collecting in Various Ball Games
This vision-based automatic control system can be applied

into different ball games, like table tennis, golf and bad-
minton. Theory behind these different functions are similar,
thus we are going to make the image processing node able
to detect other balls.

B. Multi-camera Support
Now this collecting machine only has one camera in-

stalled, and only the scenes in front of this machine can
be observed. We are going to add multi-camera support,

for example, one camera in each direction, to improve the
efficiency. If the collecting machine can observe scenes from
every direction at a time, its decision will be more intelligent
and the collecting process will be faster.

VII. CONCLUSIONS

In this work, we have established a basic vision-based
automatic tennis ball collecting system. This system is able to
detect tennis balls and control the collecting machine to move
towards them and then pick them up. Hardware acceleration
and timing synchronization are applied to improve the per-
formance. A web-based remote monitoring and controlling
system is used for users to monitor the collecting machine’s
working state and environment. This web page also provides
a method of manual intervention. Such a system may help
tennis participants to collect tennis balls and save their
time. In future work, we will make this system capable of
collecting more balls rapidly in various ball games and add
multi-camera support to improve efficiency.
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On Solution of the Dubins Touring Problem
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Abstract— The Dubins traveling salesman problem (DTSP)
combines the combinatorial optimization of the optimal se-
quence of waypoints to visit the required target locations
with the continuous optimization to determine the optimal
headings at the waypoints. Existing decoupled approaches
to the DTSP are based on an independent solution of the
sequencing part as the Euclidean TSP and finding the optimal
headings of the waypoints in the sequence. In this work, we
focus on the determination of the optimal headings in a given
sequence of waypoints and formulate the problem as the Dubins
touring problem (DTP). The DTP can be solved by a uniform
sampling of possible headings; however, we propose a new
informed sampling strategy to find approximate solution of the
DTP. Based on the presented results, the proposed algorithm
quickly converges to a high-quality solution, which is less than
0.1% from the optimum. Besides, the proposed approach also
improves the solution of the DTSP, and its feasibility has been
experimentally verified in a real practical deployment.

I. INTRODUCTION

Curvature-constrained path planning aims to provide a cost
efficient path for a non-holonomic vehicle such as Dubins
vehicle [1] that models car-like or aircraft vehicles with the
minimal turning radius ⇢ moving with a constant forward
velocity. Probably the most utilized problem formulation for
surveillance missions with Dubins vehicles is the Dubins
traveling salesman problem (DTSP) [2], [3] which is a
variant of the NP-hard combinatorial optimization TSP. The
DTSP stands to find a closed shortest path to visit a given
set of target locations in a plane while the path satisfies the
motion constraints of Dubins vehicle [4]. The DTSP is also
NP-hard [5] as it includes a solution of the TSP; however,
it includes additional challenge related to the determination
of the optimal heading of the vehicle at each target location.
The total tour length depends not only on the sequence of the
visits but also on the vehicle heading at each target location.

The difficulty of simultaneous determination of the head-
ings with finding the optimal sequence of the visits motivated
researchers to address the DTSP by relaxing the mutual de-
pendency of these two subproblems and assume a sequence
of the targets is given, or finite sets of possible headings are
assumed in sampling-based approaches [6]. In this paper, we
focus on the approach that relies on a given sequence such
as, e.g., Alternating algorithm (AA) [4], receding horizon
methods [7], or Local iterative optimization (LIO) [8].

Having the sequence, the problem of determining the
optimal headings can be called the Dubins touring problem
(DTP). Although the DTP can be considered as a subproblem
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(GAČR) under research project No. 16-24206S.

1

4

3

2

7

6 5

(a) Uniform sampling – N = 224,
L = 19.8, LU = 13.8, t = 128 ms
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(b) Proposed sampling – N = 128,
L = 14.4, LU = 14.2, t = 76 ms

Fig. 1. A solution of the DTSP for a given sequence of the targets (the
green disks) with the total number of samples N , final path length L, and
lower bound LU . The found solution is the blue curve, and the red curve
is its lower bound determined as a solution of the Dubins interval problem
(DIP) with the cost LU . The uniform sampling utilizes 32 heading values
per each target. The required computational time is denoted t.

of the DTSP, we believe the DTP is the fundamental building
block of routing problems with Dubins vehicle, and thus
it deserves a dedicated formulation. For example in the
recently introduced Dubins orienteering problem (DOP) [9],
a solution of the DTP is a part of the target insertion/deletion
step, and the solution of the DOP depends on the sum of the
collected rewards, and thus it may not necessarily depend
only on the final tour length as in the DTSP. Therefore, in
this paper, we focus on the solution the DTP to quickly find
a high-quality solution with the estimation of its gap to the
optimal solution. The presented approach is motivated by
practical needs of the robotic competition MBZIRC [10],
[11], where a high-quality solution found in the shortest time
possible is desirable because of limited time to plan how to
quickly collect as many of high rewarding object as possible.

In particular, we investigate a sampling of the headings
in the DTP to reduce the number of required samples.
Based on the recent results on the so-called Dubins interval
problem (DIP) [12] utilized to establish a lower bound of the
DTP solution, we developed a new informed sampling-based
strategy to quickly determine the most promising headings
for the optimal solution of the DTP. The proposed approach
quickly converges to a solution of high-quality, and it is less
computationally demanding than using a uniform sampling
of the headings utilized in [13]. The practical influence of
the guided sampling is demonstrated in Fig. 1.



II. RELATED WORK

One of the first DTP-based approaches to the DTSP
is the AA [4] in which headings are first established for
even edges of the sequence by straight line segments, and
then, the optimal Dubins maneuvers are determined for the
odd edges. Later on, this approach has been improved by
a metaheuristic procedure based on a greedy randomized
adaptive search [14]. In [15], the same authors consider a
distance between two consecutive targets to improve the
basic idea of the AA. Only two consecutive targets in the
sequence are considered in all these approaches, and thus
these algorithms are computationally efficient and their time
complexity for n targets can be bounded by O(n).

A look-ahead approach based on more targets in the
sequence has been proposed in [7] where three consecutive
targets are considered, and the authors report improved
results over the simple AA. The idea has been further
investigated in [16] for a combination of the k-look-ahead
technique with the local improvement of the 2-Opt heuristic;
however, the authors do not report on the number of utilized
headings per each target and also do not report on the
computational time.

An optimal solution of the DTP based on the convex
optimization has been proposed in [17] for instances where
each pair of consecutive targets are more than four times the
minimal turning radius apart. The authors reduce the DTP to
a family of n-dimensional convex optimization sub-problems
where the number of sub-problems can be bounded by 2

2n�2.
The aforementioned heuristic approaches provide a solu-

tion of the DTP, but none of them provides a tight-lower
bound. The first systematic procedure to provide both a
solution and its lower bound has been presented in [18] and
further evaluated in [13], but without presenting computa-
tional requirements. The herein proposed informed sampling
strategy directly builds on the results of the lower bound
presented in [13] and also on the solution of DIP introduced
by the same authors in [12]. The main contribution of the
current paper is in the increased computational efficiency by
avoiding dense uniform sampling of the headings, and thus
a better solution can be found for a limited computational
time than for the uniform sampling.

III. PROBLEM STATEMENT

The Dubins touring problem (DTP) stands to determine a
shortest curvature-constrained tour to visit a given sequence
of n target locations, P = (p1, . . . , pn), pi 2 R2. The state q
of Dubins vehicle [1] is represented as a triplet q = (x, y, ✓)
and q 2 SE(2), where (x, y) 2 R2 is the vehicle position in
a plane and ✓ 2 S1 is the vehicle heading at (x, y). Dubins
vehicle is constrained to move only forward at the constant
speed v and has the minimum turning radius restricted to ⇢.
The motion of the vehicle can be described as:

2

4
ẋ
ẏ
˙✓

3

5
= v

2

4
cos ✓
sin ✓

u

⇢

3

5 , |u|  1, (1)

where u is the control input.

In the DTP for the DTSP, Dubins vehicle is requested to
visit a given sequence of n target locations P and return to
the starting location. Since the order of the targets is given,
the problem is to find a particular heading for each target
while the tour constructed from Dubins maneuvers [1] is the
shortest possible. This can be formulated as an optimization
problem for n variables representing particular headings T =

{✓1, . . . , ✓n} with the piecewise continuous cost function:

L(T,P) =

n�1X

i=1

L(q
i

, q
i+1) + L(q

n

, q1), (2)

where L(q
i

, q
j

) is the length of the shortest Dubins maneuver
between the configurations q

i

and q
j

. The optimization
problem can be stated as follows.

Problem 3.1 (DTP):

minimize
T

L(T,P) =

n�1X

i=1

L(q
i

, q
i+1) + L(q

n

, q1)

subject to q
i

= (p
i

, ✓
i

), p
i

2 P, i = 1, . . . , n

The proposed approach for the optimal solution of the DTP
is based on a solution of DIP, which is detailed in Section III-
A. Therefore, we further distinguish a particular value of the
heading ✓ and an interval of heading values ⇥ in this paper.
Moreover, based on the heading intervals we can establish
a lower bound of the optimal solution of the DTP, while a
feasible solution represents an upper bound.

A. Dubins Maneuvers and Dubins Interval Problem (DIP)

In [1], Dubins shows that for two states q
i

and q
j

the
optimal path for a vehicle with the minimal turning radius
⇢ is one of the six possible maneuvers that consist of the
straight line segment S and a part of the circle with the radius
⇢ denoted by the C-segment, which is further distinguish
based on the orientation of the circle as L and R. Each
optimal path can have at most three segments (zero length
segments are allowed) which provide two types of paths:

• CCC type: LRL, RLR;
• CSC type: LSL, LSR, RSL, RSR.

The optimal path connecting two states is called Dubins
maneuver, and it can be computed by a closed-form ex-
pression. The optimal path is easy to compute if headings
at the locations are prescribed. However, the length of
Dubins maneuver is only a piecewise continuous with the
discontinuity between CCC and CSC maneuvers, depending
on the mutual distance of the states and headings.

A generalization of this simple Dubins planning for in-
tervals of possible headings at the locations instead of a
single heading value at the particular state has been proposed
in [12]. The authors call the problem as the Dubins interval
problem (DIP), and it is detailed in the next paragraph.

DIP stands to find the shortest Dubins maneuver for two
locations p

i

and p
j

for which the departure angle from p
i

is in the given interval ✓
i

2 ⇥

i

and the arrival angle at
p
j

must be in ✓
j

2 ⇥

j

, where ⇥

i

= [✓min

i

, ✓max

i

] and
⇥

j

= [✓min

j

, ✓max

j

], see Fig. 2. The authors of [12] provide



RSR maneuver

Fig. 2. An instance of the Dubins interval problem to connect pi and pj
using the departure angle ✓i 2 ⇥i and the arrival angle ✓j 2 ⇥j

a list of all possible Dubins maneuvers for particular cases
of the departure and arrival angles. The types of Dubins
maneuvers S, R, and L are further classified as special cases
of R and L if parts of the circling maneuver are longer (in
an angular distance) than ⇡ and they are called as R

 

and
L
 

, respectively. The optimal solution of DIP is one of the
following nine maneuvers according to the particular values
of the headings ✓
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2 ⇥
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2 ⇥

j

:
1) S or L

 

or R
 

1

2) LSR for ✓
i

= ✓max

i

and ✓
i

= ✓max

j

;
3) LSL or LR

 

L for ✓
i

= ✓max

i

and ✓
j

= ✓min

j

;
4) RSL for ✓

i

= ✓min

i

and ✓
j

= ✓min

j

;
5) RSR or RL

 

R for ✓
i

= ✓min

i

and ✓
j

= ✓max

j

;
6) LS or LR

 

for ✓
i

= ✓max

i

and ✓
j

2 ⇥

j

;
7) RS or RL

 

for ✓
i

= ✓min

i

and ✓
j

2 ⇥

j

;
8) SR or L

 

R for ✓
i

2 ⇥

i

and ✓
j

= ✓max

j

;
9) SL or R

 

L for ✓
i

2 ⇥

i

and ✓
j

= ✓min

j

.

The particular optimal maneuver can be selected regarding
the shortest Dubins maneuver for these nine cases, which is
a bit more complex than a solution of the original Dubins
maneuver for single heading values, but the optimal solution
of DIP is still determined by a closed-form expression.

Notice, if we allow a full range of heading values, i.e.,
⇥

i

= ⇥

j

= [0, 2⇡), the solution is the CSC maneuver with
the zero length circle parts and the length of the straight line
segment equals to the Euclidean distance between p

i

and p
j

.

IV. PROPOSED SAMPLING STRATEGY FOR THE DTP
Based on the analysis and solution of DIP, we propose

a new iterative sampling-based algorithm to solve the DTP.
The key idea of the proposed approach is to sample heading
at the targets by the informed way using a lower bound of the
DTP [18]. The lower bound solution is utilized for determin-
ing the promising candidates of the heading intervals. Such
candidate intervals are iteratively refined, and the process is
repeated until a selected angular resolution ✏ is reached or
after a finite number of refinements. Moreover, since a more
precise estimation of the lower bound is determined at each
iteration, the iterative refinement can be terminated once the
ratio of the length of the found DTP solution to the value of
the lower bound reaches the requested approximation ratio ↵.
Particular components of the proposed algorithm are detailed
in the following paragraphs.

1Authors of [12] claimed that L R or R L could also be the optimal
solution of DIP, but it is not necessary to consider this case because this is
not locally optimal in any instance of DIP.

A. Heading Intervals

The lower bound of the DTP is computed from a solution
of DIP for which the heading values at the target locations
are constrained to particular intervals [18]. Thus, for each
target location p

i

2 P , a set of heading intervals H
i

is main-
tained. H

i

splits the whole range of possible heading values
✓
i

2 [0, 2⇡) into k
i

not necessarily equally sized heading
intervals H

i

= {[✓1
i

, ✓2
i

], [✓2
i

, ✓3
i

], . . . , [✓ki
i

, ✓1
i

]}. For a better
readability, we denote the symbol ⇥l

i

to a particular heading
interval ⇥l

i

= [✓l
i

, ✓l+1
i

]. Hence, for each target location p
i

,
the set of heading intervals is H

i

= {⇥1
i

, . . . ,⇥ki
i

}. Having
this notation, we consider the problem of finding a solution of
the DTP as a problem to efficiently create a set of particular
heading intervals H = {H1, . . . , Hn

}.

B. Lower Bound Solution of the DTP

For the heading intervals H with up to k intervals per each
target, the lower bound of the DTP solution is determined
by computing an optimal solution of the corresponding
DIP [18]. Since the number of intervals is finite, it is
possible to create an oriented graph with n layers. Each
layer corresponds to one target location p

i

and consists of k
i

nodes, each for one heading interval in H
i

. The graph nodes
are connected by edges representing a solution of DIP, i.e.,
the weight associated with each edge is the length of the
solution of DIP. The graph is visualized in Fig. 3.
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Fig. 3. An example of the search graph for the Dubins touring problem

In this graph, the lower bound L
U

(P,H) is determined for
the current heading intervals H using a feed-forward search
evaluating all possible paths from the starting target p1 with
up to k headings per each target in the sequence P . Since
the problem contains n target locations with up to k heading
intervals for each target, the graph can have up to nk2 edges.
Therefore, the time complexity to find the shortest tour in the
graph can be bounded by O(nk3). Notice, if a single heading
value is used for each heading interval ✓l

i

2 ⇥

l

i

for 1  i  n
and 1  l < k

i

, the same procedure can be used to find a
feasible solution of the DTP.

C. Refinement of the Heading Intervals

The current lower bound solution is a correct estimation
of the minimum tour length; however, it is not necessarily a
feasible solution. In fact, the lower bound solution is rarely
feasible because of a discontinuity in the heading at each
target. Therefore, we introduce the angular resolution ✏ to



denote the size of the intervals which directly limits the
maximal discontinuity of the vehicle heading.

The algorithm starts with a relatively high ✏ and iteratively
refines promising intervals to avoid dense uniform sampling,
and thus decrease the computational burden. Having a lower
bound solution of the DTP for the current H, the algorithm
splits only the intervals presented in the current lower bound
solution without losing candidate headings presented in other
intervals. By repeating this procedure, the length of the lower
bound solution can increase and, eventually, it converges to
the optimal solution. Moreover, a single heading value can be
sampled for each interval and determine a feasible solution
of the DTP for the current H by the same procedure as the
determination of the lower bound.

Notice that even though the solution of DIP may cause
discontinuities in particular heading values at the waypoints,
any heading value from the interval can be selected and fixed
for solving the DTP. Therefore, a feasible solution of the
DTP for such fixed heading values is always determined.

D. Proposed Informed Sampling Algorithm for the DTP

The proposed algorithm for solving the DTP is directly
based on the aforementioned refinement procedure denoted
by refineDTP(P, ✏,H), which refines H up to the angular
resolution ✏. Then, for the refined H, a feasible solution
is found by the solveDTP(P,H) procedure, i.e., using the
forward search graph in Fig. 3. The value of ✏ is gradually
decreased to the requested ✏

req

, and for each ✏, both the
lower and upper bound solutions are determined. Hence, the
proposed algorithm has any-time property, and an updated
feasible solution is available at the end of each iteration.
The refinement procedure is summarized in Algorithm 1.

Algorithm 1: Proposed Iterative Algorithm for the DTP
Input: P – Target locations to be visited
Input: ✏

req

– Requested angular resolution
Input: ↵

req

– Requested quality of the solution
Output: T – A tour visiting the targets

1 ✏ 2⇡ // initial angular resolution

2 H createIntervals(P, ✏) // initial intervals

3 L
L

 0 // init lower bound

4 L
U

 1 // init upper bound

5 while ✏ > ✏
req

and L
U

/L
L

> ↵
req

do
6 ✏ ✏/2
7 (H,L

L

) refineDTP(P, ✏,H)

8 (T,L
U

) solveDTP(P,H)

9 end
10 return T

The algorithm is terminated after reaching the requested
angular resolution ✏

req

, which guarantees a termination after
a finite number of iterations because there is a finite number
of the heading intervals for ✏

req

. Alternatively, the refinement
can be terminated when the solution quality of the feasible
solution is below ↵

req

. However, this may not properly
stop the algorithm in a reasonable time for very small ↵

req

if the solution requires very fine sampling. Therefore, it
is convenient to combine both conditions together. If the
anytime property of the algorithm is utilized, the refinement
loop can be terminated after a given computational time as
the first solution is found in a few milliseconds.

V. RESULTS

The performance of the proposed algorithm has been
evaluated in randomly generated instances of the DTP and
compared with the uniform sampling strategy to verify if
the sampling strategy guided by the solution of the lower
bound of the DTP provides better solutions with lower com-
putational requirements than the uniform sampling. Then, the
proposed DTP solver has been deployed in solving the DTSP
for a given sequence of visits to the targets and compared
with the existing heuristics for the DTSP in instances with
increasing number of target locations n. For brevity and
without loss of generality, we consider Dubins vehicle with
v = 1 m.s-1 and ⇢ = 1 m in the evaluated problems. Finally,
a feasibility of the solution found by the proposed solver
has been verified in an experimental deployment with the
real vehicle that follows the planned path. All the evaluated
algorithms have been implemented in C++, and the presented
results have been obtained using a single core of the AMD
Phenomtm II X6 1090T CPU running at 3.2 GHz, and thus
the required computational times can be directly compared.

A. Computational Requirements of the DTP Solvers
The DTP can be directly used in the solution of the

DTSP, and therefore, we studied computational requirements
of the sampling-based solvers of the DTP for randomly
generated DTSP instances for which the sequence of the
targets is determined as an optimal solution of the Euclidean
TSP found by Concorde [19], e.g., similarly as for the AA
approach [4]. It is known that a solution of the DTSP and
also DTP depends on the mutual distance of the targets
with respect to the minimal turning radius ⇢. Therefore,
we generate random instances of the DTSP according to
the relative density of the targets d inside an area with the
dimensions s ⇥ s, where s is determined as s = (⇢

p
n)/d.

Due to the limited space, d = 0.5 is considered in the
presented results, and 20 random instances are created for
n 2 {10, 20, 50, 70, 100}, which gives 100 instances in total.

The real computational requirements of the proposed al-
gorithm are mostly related to the number of headings for the
current intervals H. It can be expected that for a finer angular
resolution or a low requested ratio ↵, the computational
time will increase. Therefore, we consider the any-time
property of the algorithm and evaluate its computational
requirements as the quality of found solutions ↵ for the given
computational time. The value of ↵ is the ratio of the feasible
path length L and the length L

u

of the lower bound solution,
↵ = L/L

U

.
Summarized results are shown in Fig. 4, where the solution

quality is presented as average values from 20 trials of the
sequences with 50 target locations and the error bars denote
the standard deviations. The results indicate the proposed
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Fig. 4. Average solution quality ↵ computed as the ratio of the solution
cost to its lower bound cost determined by the proposed algorithm according
to the given computational time. Notice both axes are in log-scale.

algorithm is able to find solutions that are less than 0.1%
from the optimal solution (lower bound) in about 10 seconds.
Further improvement of the solution for more computational
time can be observed; however, from a practical point of
view, a solution closer than 0.01% from the optima might
be considered as the optimum.
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Fig. 5. Average solution quality ↵ according to the given computational
time. The results are average values of 20 trials of the DTP instances with
n = 50 targets and the relative density d = 0.5. Notice both axes are in
log-scale.

The proposed approach has been compared with the uni-
form sampling utilized in [13], where the authors use 128
samples of the heading values per each target location to
uniformly split possible heading intervals (two times each
step). Since a solution of the DTP with 128 samples per
each of 50 targets can be computationally demanding, we
incrementally increase the number of samples (two times
each step) and solve the problem for each individual number
of uniformly distributed headings up to the resolution for
which the solution of the DTP is found in less than 100
seconds. The results of the evaluation depicted in Fig. 5
indicate that even though the uniform sampling with a high
number of samples provides high-quality solutions, from the
practical point of view, the proposed refinement converges to

the optimal solutions much faster. In particular, the proposed
refinement strategy provides solutions in less than 10%
from the optimal solution in less than one second, while
the uniform sampling needs about 10 seconds. Moreover,
the proposed refinement strategy is capable of providing
solutions that are less than 1% from the optima in less
than 10 seconds on the utilized computer, and it is even
capable of providing solutions that are less than 0.1% from
the optima. To find such high-quality solutions with uniform
sampling, a high number of samples is needed, and the com-
putational requirements are significantly higher. Therefore,
for high-quality solutions, e.g., in solving the Orienteering
problem [9] where the evaluation of the Dubins tour is
used to add or remove particular targets to/from the current
reward collecting tour, it is preferable to utilize the proposed
refinement strategy.

B. Performance of the Proposed Algorithm in the DTSP

The proposed algorithm has been compared with the
existing heuristic solvers for the DTSP, where the sequence
of the visits to the targets is determined by a solution
of the underlying Euclidean TSP. We consider the same
problems as in the previous evaluation and the AA [4] and
LIO [8] heuristic algorithms for this evaluation. In addition,
the Memetic algorithm for the DTSP [20] is considered to
evaluate an influence of the high-quality solution of the DTP
provided by the proposed algorithm with the DTSP algorithm
that does not rely on the sequence of the visits to the targets.
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Fig. 6. Average solution length (from 20 trials) for the DTSP instances with
n targets and d = 0.5. The computational time for the proposed algorithm
has been restricted to 10 seconds and for the Memetic algorithm to 1 hour.

The heuristic algorithms AA and LIO found solutions in
less than few seconds for a given sequence, and the solutions
are not further improved if more computational time is
available. On the other hand, the Memetic algorithm can pro-
vide high-quality solutions at the cost of high computational
requirements. Therefore, we restrict its computational time
to 1 hour per each trial and use a computational grid (with
the Intel Xeon CPUs). The results are presented in Fig. 6.

It can be observed that the proposed algorithm provides the
best solution of the underlying DTP of the DTSP instances.
Regarding the lower bound and the feasible solution provided
by the proposed algorithm, the found solutions are very close



to the optimal solution of the DTP, albeit the computational
time of the proposed algorithm has been limited to 10 sec-
onds. Moreover, quite surprisingly, the solutions provided by
the proposed DTP algorithm are very close to the solutions
provided by the computationally very demanding Memetic
algorithm, which in addition optimizes the sequence of the
visits to the targets. This is a source of motivation to employ
the proposed DTP solver in the DTSP to further improve
the solution once a sequence is determined, especially for
instances with high values of the targets density d.

C. Real Experiment
A feasibility of the found solution has been experimentally

verified with the hexacopter Unmanned Aerial Vehicle (UAV)
with forwarding velocity limited to v = 4 m.s-1, the minimal
turning radius ⇢ = 6 m, and limited acceleration a

max

=

2.67 m.s-2. The scenario is motivated by a visual inspection
of objects of interest that have to be captured by a downward-
looking camera in the MBZIRC competition [10]. A visu-
alization of the real deployment is shown in Fig. 7, where
the objects of interest can be seen as small light regions
inside the disk-shaped target locations with the diameter
corresponding to the field of view of the used camera.

Fig. 7. Planned path (in black) and real executed path captured by the
DGPS (in red) of the hexacopter UAV in the DTSP problem with 10 targets

VI. CONCLUSION

In this paper, we investigate the Dubins touring problem
(DTP) as the fundamental building block of routing problems
with Dubins vehicle. The DTP is an important subproblem
of the DTSP approaches that rely on a sequence of visits to
the targets. A new informed sampling-based algorithm for
the DTP has been proposed. It uses an iterative refinement
of the possible heading intervals where the optimal headings
can be found, and it provides high-quality solutions of the
DTP. The proposed algorithm utilizes a tight lower bound of
the DTP to guide sampling of the suitable heading intervals,
and thus the algorithm can provide a quality guarantee of the
found solution. The presented results support the feasibility
and quick convergence of the proposed algorithm. Moreover,
the comparison with the Memetic algorithm indicates that a
near-optimal solution of the DTP can significantly improve
a solution of the DTSP, albeit a single sequence is utilized in

the DTP-based approaches. Based on the presented results,
our further work aims to use the proposed algorithm in a
solution of the DTSP, where it can provide a quick evaluation
of the candidate sequences of the visits to the targets.
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Review of Integrated Vehicle Dynamics Control Architectures

Moad Kissai1, Bruno Monsuez1, and Adriana Tapus1

Abstract— Most of the chassis systems are developed by

automotive suppliers to improve a specific vehicle performance.

Drivers, and consequently vehicle manufacturers, are more

concerned by the overall behaviour of the Vehicle. Many

coordination architectures have been proposed in the literature

in order to integrate different chassis systems in a single vehicle.

In this paper, these architectures are compared and discussed.

Two major classes are proposed: Downstream and Upstream

Coordination. The purpose of this classification is to help car

manufacturers and suppliers standardize an Integrated Vehicle

Dynamics Control architecture for faster and more flexible

designs.

Index Terms— Control Architectures, Chassis Systems, Sys-

tems Coordination, Vehicle Dynamics Control, Control Alloca-

tion.

I. INTRODUCTION

In today’s automotive sector, driving experience, vehicle
safety, and environmental protection are key competition
criteria between automakers. In this context, Original Equip-
ment Manufacturers (OEMs) offer constantly new attrac-
tive subsystems. Advances in automotive Electronic Control
Units (ECUs), sensors, and actuators make the cost of vehicle
embedded systems constantly decreasing. The number of
chassis control systems grows rapidly as well as the number
of competing systems in a single vehicle [1].

However, each vehicle subsystem has an independent
control logic to accomplish a specific objective. These ob-
jectives compete and may implement contradictory logic:
if a brake-based yaw control is used to reduce oversteer
or understeer, the longitudinal acceleration demand in a
cornering operation will deteriorate. Since new hardware
is always expensive, improvements must be provided by
the synergies that already exist between subsystems [2]. If
instead of implementing competing systems, subsystems get
coordinated, over-actuation would offer new opportunities
to improve the overall system’s safety and performance
[3]. This could be done by developing a supervised overall
vehicle control system, where information is shared by many
subsystems, less resources are required, and computational
costs are decreased therefore avoiding unnecessary duplica-
tion [2]. This has been given the name of interoperability in
[4].

This will influence the vehicle’s overall behavior. Thus,
the high-level control architecture should be designed by car
manufacturers. As different suppliers are concerned, a stan-
dardization of actuators, sensors, and software components

1Moad Kissai, Bruno Monsuez, and Adriana Tapus are
with ENSTA ParisTech, Department of Computer and System
Engineering, 828 Boulevard des Marchaux, 91762 Palaiseau
Cedex, France {moad.kissai, bruno.monsuez,

adriana.tapus}@ensta-paristech.fr

interfaces is crucial. The development of this architecture
requires a close collaboration between vehicle manufacturers
and their suppliers. Therefore, any proposed solution should
respect the intellectual property rights (IPR) of both sides [5].
In this context, three essential capabilities have been cited in
[2]:

• Adaptability and dynamic reconfiguration to face envi-
ronment changes, drivers behaviors, and failures [6],

• Plug-and-play extensibility to rapidly insert additional
technologies without redesigning the whole architec-
ture,

• Openness to support various systems from different
sources.

The main purpose of this work is to propose a new classi-
fication of integrated control architectures to help designers
choose a combination approach for a specific need or for
the overall system. This would not be the first try, as in
[4] a classification of integrated control methodologies for
road vehicles has been made. The architectures have been
differentiated as centralized, supervisory, hierarchical, and
coordinated control. However, no discussion is provided so
as to assign an architecture to a specific goal. Another recent
classification was proposed in [7], where the classification
has been simplified to affect the architectures to the desired
goals. Two classes have been proposed: single-criterion and
multi-criterion integration motion control. In the single-
criterion integration motion control approach, the integrated
systems are combined to improve one single aspect of the
vehicle. In the multi-criterion integration motion control
approach, the combined systems aim to manage different
concurrent vehicle dynamics. However, for each class, we
could find different combination methodologies depending
on the problem’s complexity.

A main difference if not the main difference that we
distinguished from the different architectures reviewed, is
the position of the coordination layer in the control flow
[8]. Two main approaches could be adopted to deal with
the subsystems combination problem: either we treat the
interactions and the eventual conflicts after the subsystems’
operations or we control the commands distribution to the
different subsystems in order to generate the desired syner-
gies and avoid conflicts. We call the first approach systems
downstream coordination, and the second, systems upstream
coordination.

We start with a presentation of the downstream coor-
dination approach in Section II and we explain why it
was preferred by auto-makers until these days. We then
give a presentation of the upstream approach and justify



why it should be investigated and replace the downstream
coordination approach (see Section III). In Section IV, we
propose a general architecture where the different researches
seem to converge to and we discuss the open challenges
arising from its use. Finally, conclusion is be drawn and
some future works are outlined (see Section V).

II. SYSTEMS DOWNSTREAM COORDINATION

We choose the appellation “systems downstream coor-
dination” because this approach consists of studying the
stand-alone chassis systems interactions after the commands
generation by these subsystems. The coordination is made
downstream. To schematize this approach, in Fig. 1 we
reproduce the simple structure given by [8], where this
approach is called the “bottom-up approach”.

Fig. 1. Structure of the downstream coordination approach (adapted from
[8]).

In [4] and [9], this is rather called a decentralized control.
It follows a parallel structure where each subsystem works
separately. Controllers have to work simultaneously. They
have their own information system and Electronic Control
Unit (ECU), which require more costs and space [10]. The
only way to add “integration” in the process is by allowing
additional communications between the controllers as the
Fig. 2 shows.

Fig. 2. Decentralized control structure (adapted from [4]).

This architecture is more suited for some manufacturing
systems [9]. where it is called heterarchical. The fact that
there is no global supervision makes this architecture partic-
ularly less suitable for vehicle safety control.

In order to develop a coordination strategy, interactions
between the subsystems are studied. Automakers engineers

use their “expert knowledge” to develop handling controllers.
This is achieved through a rule-based controllers arbitration
deduced from the subsystems interactions studies [8]. In this
context, four coordinator types have been distinguished in
[4]: Pure Subsumption, Largest Modulus Activation, Artifi-
cial Neural Network, and Fuzzy Logic Control.

A. Pure Subsumption

Regarding the pure subsumption approach, the highest
level non-zero command takes precedence over of the other
sub-commands (see Fig. 3).

Fig. 3. Pure Subsumption coordination (adapted from [4]).

In this context, the work in [11] used Active Differen-
tial (AD), Electronic Stability Control (ESC), and Torque
Vectoring (TV) to improve the vehicle lateral performances.
A simple method based on prioritizing one system over
another has been used. If the yaw torque demand can be
satisfied by the AD, then the ESC and TV will not be
activated. Otherwise, the rest of the yaw torque demand will
be equally shared between the ESC and the TV systems.
Both vehicle performance and safety have been improved
within this method.

B. Largest Modulus Activation

In the largest modulus activation, several high level com-
mands are considered, and the one with the highest modulus
takes precedence over the rest (see Fig. 4).

Fig. 4. Largest Modulus Activation coordination (adapted from [4]).

Both pure subsumption and largest modulus activation
methods are characterized by modes switching. These
switches generate undesirable transients that could destabi-
lize the overall system. In this context, the Artificial Neural
Network and the Fuzzy Logic Control were introduced.



C. Artificial Neural Network
The Artificial Neural Network consists of simple averaging

or via a non-linear interpolation function weights (see Fig.
5).

Fig. 5. Artificial Neural Network coordination (adapted from [4]).

These functions could be chosen to ensure smooth transi-
tions between coordination modes, actuator saturation avoid-
ance, etc. [12].

D. Fuzzy Logic
The Fuzzy Logic uses “easily understood” rule-based co-

ordination functions (see Fig. 6).

Fig. 6. Fuzzy Logic coordination (adapted from [4]).

Here again, the highest level predominates but smooth
transitions are ensured [4]. In [13] for example, a fuzzy
logic scheme and weighting factors are used to coordinate the
different systems. The controller agents computes combined
control signals for the steering angle and the wheel torque
depending on the targeted performances priority. The main
advantage is the conflict mitigation, for example, when the
braking controller has to track simultaneously the yaw rate
reference and the longitudinal acceleration demand.

E. Architecture’s Compatibility
From the examples in the previous subsections, it appears

that the downstream coordination approach is more suitable
for single objective coordination control. For multi-objective
control, Other coordination algorithms could be cited as the
Linear Quadratic Regulator (LQR), Lyapunov functions, slid-
ing mode control, adaptive control, etc. These optimization
methods have the major advantage of dynamic coordination,
which ensure dynamic transitions. They offer possibilities for
robust and fault-tolerant vehicle control systems without a-
priori knowledge of anticipated failure modes [4]. Thus, the
redundancy (that could be very expensive) only concerns the
basic hardware needs. These methods are rather used in an
upstream coordination approach.

III. SYSTEMS UPSTREAM COORDINATION

Here, the coordination is carried out upstream the sub-
systems. The commands are distributed in a way to avoid
the conflicts downstream the subsystems. A multivariable
controller is placed between the driver/pilot commands and
the chassis systems. The controller design is based on a
coupled nonlinear vehicle model that give insights about the
possible conflicts before reaching them. In [8], this approach
is called “top-down approach”. To illustrate this approach,
we reproduce the structure given in [8] (Fig. 7).

Fig. 7. Structure of the downstream coordination approach (adapted from
[8]).

In accordance to this approach, three architectures have
been distinguished in [4] and [9]: centralized control, su-
pervisory control, and decentralized control. As we have
mentioned, the decentralized control rather corresponds to
downstream coordination. We present only the centralized
control (A) and the supervisory control (B).

A third class could be distinguished, which is more of an
extension of the supervisory control, called the multi-layer
architecture (C).

A. Centralized Control

A central global controller is responsible of taking all
the control decisions. In general, this controller follows the
global multivariable control formalism as it has been realized
in [14]-[17]. Fig. 8 illustrates this concept.

Fig. 8. Centralized control structure (adapted from [4]).

However, it has been pointed out in [18] that any desired
fail-safe redundancy of micro-controllers or power converters
increases rapidly the cost of the control components. For



that matter, a distributed control method has been preferred,
which can be assimilated to a supervisory control [4].

B. Supervisory Control

Supervisory control represents an intermediate between
the centralized and decentralized control. Indeed, a supervi-
sory layer is added to a decentralized structure to add more
information in the process. Fig. 9 illustrates this approach.

Fig. 9. Supervisory control structure (adapted from [4]).

Three advantages could be deduced from this architecture:
• Fault-tolerance: it ensures a minimum of operations

safety even if the high-level controller fails,
• Extensibility: it can be evolved to a multi-layer hierar-

chical structure to add more functionalities,
• Modularity: it allows manufacturers and suppliers de-

velop independently complementary control algorithms.
Using this structure, [10] used three main layers with two

levels of abstraction:
1) Decision Layer: Identifies the current driving situation

first, then decide how to coordinate the subsystems
actions,

2) Control Layer: Transforms the control objectives gen-
erated by the Decision Layer to references for each of
the local controllers,

3) Physical Layer: Contains simply the different actuators
and sensors.

It should be noted that the decision layer plays a major
role to ensure the overall system safety. It is responsible of
two main tasks: classifying the current driving situation and
deciding how coordination should be made. For example, in
[10], a k-means data-based algorithm and a decision logic
module based on a set of heuristic rules have been used1.

C. The Multi-layer architecture

For more flexibility and more comprehensive control, the
functional requirements should rather be separated while
ensuring a supervised control. Fig. 10 illustrates this method.

Each layer has a specific function [19]:
1) Layer 1: Generation of vehicle motion reference,
2) Layer 2: Decision on the control mode based on the

vehicle state recognition,

1Comparison of decision techniques is beyond the scope of this paper.

3) Layer 3: Calculation of the generalized forces and
moments at the vehicle’s center of gravity through the
high-level controllers,

4) Layer 4: Distribution of the commands to the available
actuators in an optimal or sub-optimal way through
control allocation logic,

5) Layer 5: Control of stand-alone subsystems to follow
the commands that comes from the layer 4,

6) Layer 6: Execution of the various operations through
smart actuators composed of low-level effectors (e.g.
electric motor, hydraulic valve ...etc.) and their own
controllers.

D. Architecture’s Compatibility
This approach can be used for single objective coordi-

nation control. For example, lateral performances have been
improved by integrating Active Front Steering (AFS) and the
brake-based Dynamic Yaw Control (DYC). In this context,
model predictive control [20], model-following control [21],
and even fuzzy logic control in an upstream coordination
structure [22], [23] were used. These studies showed not only
improvement of lateral stability, but also manoeuvrability
and agility were enhanced. However, the current cost of this
architecture do not justify the achieved gains.

Most of interesting studies carried out using this approach
concern the multiple objective coordination control. In this
context, various integration methods have been adopted. For
example, to deal with lateral and vertical integration, active
suspension has been combined with brake-based control in
[24]. A Linear Parameter Varying (LPV) design with fault-
tolerant control has been used. The commands distribution
is made by using three weighting functions for lateral
acceleration, heave acceleration, and suspension deflection.
The results showed attractive improvements in rough surface
conditions.

In the past years, control allocation techniques became
more preponderant, e.g. [19], [25]-[27]. For example the
authors of [26] used an Integrated Chassis Control (ICC)
strategy to improve cornering performance in high speed
by combining the ESC, the 4-Wheel Drive (4WD) and the
Active Roll Control (ARC) systems. The control architec-
ture is composed of thee parts: a supervisory controller
that determines the target vehicle motions, the upper-level
controller that calculates the target forces and moment and
the lower-level controller that optimally distributes the ac-
tuator inputs. The same architecture has been adopted in
[27]. The subsystems coordination algorithm uses restriction
weights that changes according to the performances targeted.
The investigations were carried out by a hardware-in-the-
loop test rig, which demonstrated potential enhancement for
different performances. Regarding the optimization methods,
we can cite 3 approaches [28]: Update laws [29], Repeated
optimization [30], [31] and Precomputed laws [32].

However, as pointed out by [7], all the results are made by
simulation only. There is a clear lack of experimental results
and benchmark requirements that allow comparison between
the different methods.



Fig. 10. Multi-layered control architecture [19].

IV. COMPARISON AND CHALLENGES

A. Relevance of the new classification

We recall that two enriching reviews of integrated archi-
tectures have already been proposed in [4] and [7]. In [4],
emphasis has been put on the architectures’ topology. The
authors pointed out two major extremes, the fully decentral-
ized control and the fully centralized control, considering the
supervisory control as an intermediate between them. This
allowed the authors to highlight the benefits of a multi-layer
architecture and to draw specific requirements related to the
architecture topology: modularity, simplicity, fault-tolerance,
and openness. However, no relations were proposed between
the different structures and control objectives. As “simplicity”
should be one of the architecture’s requirements, a multi-
layer architecture may seem exaggerated for single-objective
control problems.

The authors of [7] focused rather on control objectives.
Two classes have been proposed: single-criterion and multi-
criterion. They studied a large amount of examples for
both classes, but conclusions were limited to the control
methods and challenges. They particularly highlighted that
most single-criterion solutions are using rule-based methods
(e.g. fuzzy logic control), while recent researches around
multi-criterion control are using optimization methods, es-
pecially control allocation. Unlike [4], no discussion about
the architectures topology is provided. We recall that fuzzy
logic could be used downstream the stand-alone subsystems
for single-objective control [8], or upstream the stand-alone
subsystems for multi-objective control [22].

In order to gather the different stakeholders to start think-
ing on the standardization of integrated vehicle dynamics
control architectures, we have to make a bridge between the
two types of classifications. For this reason, we believe that
the architecture topology should be related to the control
objective. As we are interested in subsystems coordination,
the topologies classification should be linked to the coordi-
nation layer position with respect to stand-alone subsystems.
In this context, two approaches have been distinguished

in [8]: the “bottom-up” approach (which is called in this
paper downstream coordination) approach, and the “top-
down” approach (referred to the upstream coordination).
However, in [8], only the centralized control structure was
given to the top-down approach. The concluding remarks
were that the top-down approach is unfavourable from an
industrial perspective for its difficulty and cost2. The bottom-
up approach was then chosen and Fuzzy Logic with �-
phase plane control was selected. The main differences that
we provide with respect to [8] are a broader distinction of
each approach and their suitability for control objectives.
Therefore, the control designer would be able to automat-
ically choose a standardized architecture depending on its
objectives. The new classification proposed in this paper
seems to be relevant within this framework. Upstream or
downstream coordination not only designate where, but also
how the coordination is managed. This has allowed us to link
each approach to control objectives. When the coordination
is made downstream, rule-based control design is used. This
technique can handle well single-objective control problems.
As more interactions are added, it is hard to foresee the
different couplings induced, so it is more complicated to
formalize additional rules to achieve safe coordination. When
the coordination is made upstream, the control design is
based on a coupled vehicle model. Different interactions
could be predicted. With an adapted optimization technique,
multi-objective control problems could be handled.

B. Comparison of the two approaches

1) Complexity: The main advantage of the downstream
approach is the low complexity as long as the number
of interactions between competing systems are low. The
design methodology consists on first studying the interactions
between two or more systems and then establishing adequate
rules to benefit from their potential synergies. This could be
done for example by using a fuzzy logic approach or the
�-phase plane control [8]. On the other hand, complexity

2This has changed today.



is the main drawback of the upstream approach. Firstly,
the coordination lies on a MIMO (Multiple Inputs Multiple
Outputs) controller based on a coupled non-linear vehicle
model. Then, optimization techniques are used to solve
the problem, in real-time. However, the more complex the
interaction between the competing systems get nonetheless
with regards to emerging behaviour prediction, the more this
upstream approach is pertinent.

2) Cost: Here, also the downstream approach is more
attractive. In fact, without modifying the structure of the
subsystem control logic, automobile manufacturers can pro-
ceed to bulk purchasing from OEMs taking advantage from
the economy of scale. Moreover, the architecture does not
require additional controllers, but simply a coordination
strategy made downstream. Unfortunately, this is not the case
for the upstream approach. Not only additional high-level
controller(s) is needed, but it may also require additional
sensors or estimators [42]. For these reasons, auto-makers
are reluctant to implement this approach in real vehicles.

3) Potential: The downstream approach is based on “ex-
pert knowledge” methods [8]. This consists in using some
preliminary use-case studies and control designers’ expertise
to develop arbitration strategies. This approach is not well
formalized because, theoretically, we cannot cover all the
possible use-cases. It is hard to measure this approach
potential, so we are not able to know if optimal results
are achieved, or at least if better results could be obtained.
Another issue is the fact that the subsystems control laws
may then be based on different reduced vehicle models3.
For instance, the development of an Active Rear Steering
(ARS) is based on just the simple bicycle model [14]. As a
result, putting together different systems based on different
behaviour models does not ensure proper operation of the
overall vehicle system. In contrast, the upstream approach
depicts mathematically the dynamic interactions, which is
more suitable for numerical processes. Couplings can be
quantified, so we can have some insights about the possibility
of finding an optimum solution, a sub-optimal solution or no
solution at all. The conflicts are rather prevented than miti-
gated. For this reason, upstream coordination techniques have
more potential in handling multi-objective control problems.

C. Summary
It appears that a compromise should be made between

complexity, cost, and potential. To avoid complexity, the
control designer could prefer a downstream approach as long
as the problem consists on a single-objective control. As
more interactions are added, upstream approach becomes
necessary for safety matters.

Although the upstream approach may seem expensive, the
ECUs have became faster, less cumbersome, and cheaper
in the past years. Moreover, various algorithms have been
developed and tested. According to [19], [33], [34]-[37],
control allocation methods are more suitable for this prob-
lem, especially for over-actuated vehicles. These methods

3This is certainly the case when produced by different suppliers but may
also be the case for a single supplier.

have been reviewed and compared in [30], [38]. Linear
Programming (LP) and Quadratic Programming (QP), could
be executed in a few milliseconds with a limited number
of iterations, which real-time computations require. These
advances may finally convince auto-mobile manufacturers to
adopt this approach.

As the main aim of this paper is to invite auto-makers
and suppliers to standardize one overall architecture, one
approach should be put on the spotlight. With the arrival
of autonomous vehicles, the virtual pilot should take into
account multiple objectives at the same time. As we have
mentioned, downstream coordination is more suitable for
single objective control where the human pilot deals with the
other performances. For example, in a high speed cornering
manoeuvre, the driver controls the longitudinal accelera-
tion while the active steering could be combined with the
brake-based yaw control to control the lateral dynamics
and stabilize the vehicle. In autonomous driving, these two
objectives should be fulfilled by the virtual pilot. Interactions
should be predicted, and conflicts should be avoided rather
than mitigated. Consequently, as we are moving towards the
autonomous driving, the upstream coordination approach will
become necessary.

For this reason, vehicle manufacturers and suppliers
should prepare a common overall architecture. This archi-
tecture should have the following criteria:

• Adaptability to face environment changes and drivers
behaviors [2],

• Fault-tolerance to propose some degraded modes and
ensure a minimum of safety,

• Dynamic reconfiguration to ensure soft switching and
prevent loss of stability [6],

• Extensibility to rapidly insert additional technologies
without redesigning the whole architecture [2],

• Modularity to ensure flexibility,
• Openness to support various systems from different

sources without jeopardizing the intellectual property
rights of the different stakeholders [2].

As a consequence, the multi-layer architecture with the
control allocation method seems to be a better choice
to fulfill these criteria [25]-[28], [39]-[43]. For example,
the advanced approach presented in [40]-[43] uses vehicle
state estimator based on extended Kalman filter, high-level
controller of vehicle general motion, middle-level control
allocation and lower-level controllers for each subsystem as
the Fig.11 shows.

It should be noted that this architecture has been validated
in a Hardware-In-the-Loop (HIL) procedure [42]. For all
these reasons, we believe that this architecture is worth
investigating and should be implemented in a real vehicle.

D. Open challenges
1) Real vehicle implementation: As we mentioned, the

first challenge is to be able to implement this architecture
in a real vehicle. Real-time computation of an optimization
method is usually a challenging task. In Integrated Vehicle
Dynamics Dynamics Control, the challenge gets bigger as



Fig. 11. General architecture of Integrated Motion Control [42].

the coordination technique is located in an inner loop.
Consequently, a higher rate is required (around 100 Hz
according to [30]). Control allocation with linear or quadratic
programming could be the solution [30], [38]. Another issue
is to bring together manufacturers and suppliers to collabo-
rate. That goes beyond the scope of our work. Nevertheless,
attractive results for both sides could be the first step.

2) “Adaptability”: As long as over-actuated systems are
concerned, multiple solutions could be found for an opti-
mization problem. Secondary objectives could therefore be
achieved. Allocation can be used to favour one solution over
another according to the desired behaviour of the vehicle.
Consequently, different ”feelings” can be generated to realize
the same manoeuvre. While controlling the yaw rate using
the 4-Wheel Drive system could give the vehicle a sporty
behaviour, using the 4-Wheel Steering system for the same
manoeuvre could rather give a comfortable behaviour. This
is of major importance for autonomous vehicles where the
challenge is not only the trajectory following but also how the
vehicle follows this trajectory. Control allocation introduces
new opportunities to make drivers accept autonomous vehi-
cles. Using specific weighting functions to favour different
subsystems combinations could be used to generate feelings
of comfort and security, and therefore make drivers trust
more their vehicles. However, the intra and inter-individual
variability between the drivers is also a challenge. Motions
that generate excitement for some people could generate fear
among others. So allocation should be adaptable and change
over time and maybe even learn from its driver’s preferences.
Evolutionary algorithms and artificial intelligence could be
an interesting approach to investigate in this field too.

V. CONCLUSION AND FUTURE WORKS

In this paper, a new classification of integrated vehicle
dynamics control architectures has been proposed. Two
major classes related to the coordination logic have been
outlined: the downstream coordination architecture and the
upstream coordination architecture. These two classes have

been compared. The downstream coordination requires less
cost and less complexity but it is limited to single-objective
control coordination. In contrast, the upstream coordination
can handle multi-objective control coordination but it is more
complex and requires more costs. These last drawbacks could
be overcame by the advances made in electronic and software
engineering.

The literature shows that the integrated vehicle dynamics
control architectures are still an object of research. There
is a clear lack of benchmark standards and common test
procedures to validate the integrated subsystems coordination
methods. This paper aims to invite auto-mobile manufac-
turers and suppliers to adopt an upstream approach and to
standardize its structure.

We recognize that more evidence are needed to convince
the different stakeholders to favour one architecture over
another. That is why our future works will concern the
development of the multi-layer architecture with control al-
location methods and their comparison with the downstream
approach.

The first step of control synthesis is modelling. Regarding
ground vehicles, tires are the sole effectors. Distribution of
control commands is mainly constrained by tires’ potential.
As far as combined slip is concerned, this potential varies.
Tires’ stiffness and maximum efforts should be updated
on-line. In this way, we can favour the tires with greater
potential. For these reasons, a new tire model is under
development. This model is linear in order to facilitate
control synthesis, and parameter varying to depict combined
slip.
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Extrinsic 6DoF Calibration of 3D LiDAR and Radar

Juraj Peršić, Ivan Marković, Ivan Petrović

Abstract— Environment perception is a key component of

any autonomous system and is often based on a heterogeneous

set of sensors and fusion thereof, for which extrinsic sensor

calibration plays fundamental role. In this paper, we tackle the

problem of 3D LiDAR–radar calibration which is challenging

due to low accuracy and sparse informativeness of the radar

measurements. We propose a complementary calibration target

design suitable for both sensors, thus enabling a simple, yet reli-

able calibration procedure. The calibration method is composed

of correspondence registration and a two-step optimization. The

first step, reprojection error based optimization, provides initial

estimate of the calibration parameters, while the second step,

field of view optimization, uses additional information from

the radar cross section measurements and the nominal field

of view to refine the parameters. In the end, results of the

experiments validated the proposed method and demonstrated

how the two steps combined provide an improved estimate of

extrinsic calibration parameters.

I. INTRODUCTION

Robust environment perception is one of the essential
tasks which an autonomous mobile robot or vehicle has to
accomplish. To achieve this goal, various sensors such as
cameras, radars, LiDAR-s, and inertial navigation units are
used and information thereof is often fused. A fundamental
step in the fusion process is sensor calibration, both intrinsic
and extrinsic. Former provides internal parameters of each
sensor, while latter provides relative transformation from one
sensor coordinate frame to the other. The calibration can
tackle both parameter groups at the same time or assume
that sensors are already intrinsically calibrated and proceed
with the extrinsic calibration, which is the approach we take
in the present paper.

Solving the extrinsic calibration problem requires finding
correspondences in the data acquired by intrinsically cali-
brated sensors, which can be challenging since different sen-
sors can measure different physical quantities. The calibra-
tion approaches can be target-based or targetless. In the case
of target-based calibration, correspondences originate from
a specially designed target, while targetless methods utilize
environment features perceived by both sensors. Former has
the advantage of the freedom of design which maximizes
the chance of both sensors perceiving the calibration target,
but requires the development of such a target and execution
of an appropriate offline calibration procedure. The latter
has the advantage of using the environment itself as the
calibration target and can operate online by registering struc-
tural correspondences in the environment, but requires both
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sensors to be able to extract the same environment features.
For example, calibration of a 3D-LiDAR and a camera can
be based on line features detected as intensity edges in the
image and depth discontinuities in the point cloud [1]. In
addition, registration of structural correspondences can be
avoided by odometry-based methods, which use the system’s
motion estimated by individual sensors to calibrate them
[2], [3]. However, for all practical means and purposes,
the targetless methods are hardly feasible due to limited
resolution of current automotive radar systems, as the radar
is virtually unable to infer the structure of the detected object
and extract features such as lines or corners. Therefore, we
focus our research on target-based methods.

Target-based 3D LiDAR calibration commonly uses flat
rectangles which are easily detected and localized in the
point cloud. For example, extensive research exists on 3D
LiDAR-camera calibration with a planar surface covered by a
chequerboard [4]–[7] or a set of QR codes [8], [9]. Extrinsic
calibration of a 2D LiDAR-camera pair was also calibrated
with the same target [10], while improvements were made by
extracting centerline and edge features of a V-shaped planar
target [11]. Furthermore, an interesting target adaptation to
the working principle of different sensors was presented in
[12], where the authors proposed a method for extrinsic
calibration of a 3D LiDAR and a thermal camera by ex-
panding a planar chequerboard surface with a grid consisting
of light bulbs. Concerning automotive radars, common oper-
ating frequencies (24 GHz and 77 GHz) result with reliable
detections of conductive objects, such as plates, cylinders,
and corner reflectors, which are then used in calibration
methods [13]. In [14] authors used a metal panel as the target
for radar-camera calibration. They assume that all radar
measurements originate from a single ground plane, thereby
neglecting the 3D nature of the problem. The calibration is
found by optimizing homography transformation between the
ground and image plane. Contrary to [14], in [15] authors
take into account the 3D nature of the problem. Therein,
they manually search for detection intensity maximums by
moving a corner reflector within the field of view (FoV).
They assume that detections lie on the radar plane (zero
elevation plane in the radar coordinate frame). Using these
points a homography transformation is optimized between
the radar and the camera. The drawback of this method is
that the maximum intensity search is prone to errors, since
the return intensity depends on a number of factors, e.g.,
target orientation and radar antenna radiation pattern which
is usually designed to be as constant as possible in the FoV.
In [16] radar performance is evaluated using a 2D LiDAR as
a ground truth with a target composed of radar tube reflector



and a square cardboard. The cardboard is practically invisible
to the radar, while enabling better detection and localization
in the LiDAR point cloud. These complementary properties
were taken as an inspiration for our target design.

While the above described radar calibration methods pro-
vide sufficiently good results for the targeted applications,
they lack the possibility to fully assess the placement of the
radar with respect to other sensors.Therefore, we propose
a novel method which utilizes a 6 degrees of freedom
(DoF) extrinsic calibration of a 3D LiDAR-radar pair. The
proposed method involves special calibration target design,
correspondence registration, and two-step optimization. The
first step is based on reprojection error optimization, while
the second step uses additional information from the radar
cross section (RCS), a measure of detection intensity. RCS
distribution across the radar’s FoV is used to refine a subset
of calibration parameters that were noticed to have higher
uncertainty.

The paper is organized as follows. Section II elaborates
the calibration method including calibration target design
II-A and data correspondence registration II-B. Section III
explains two steps of optimization: reprojection error op-
timization III-A and FoV optimization III-B. Section IV-A
provides details on the setup of experiment conducted to test
the method, while the results are given in IV-B. We give final
remarks and propose future work in section V.

II. EXTRINSIC RADAR-LIDAR CALIBRATION METHOD

The proposed method is based on observing the calibration
target placed at a range of different heights, both within and
outside of the nominal radar FoV. It requires the 3D LiDAR’s
FoV to exceed the radar’s vertical FoV, which is the case in
most applications. In addition, due to the problems associated
with radars such as ghost measurements from multipath
propagation, low angular resolution etc., data collection has
to be performed outdoor at a set of ranges (2 � 10m) with
enough clear space around the target.

A. Calibration Target Design

Properties of a well-designed target are (i) ease of detec-
tion and (ii) high localization accuracy for both sensors. In
terms of the radar, a target with a high RCS provides good
detection rates. Formally, RCS of an object is defined as the
area of a perfectly conducting sphere whose echo strength
would be equal to the object strength [13]. Consequently, it
is a function of object size, material, shape and orientation.
While any metal will suffice for the material, choosing other
properties is not trivial. Radars typically estimate range and
angle of an object as a centroid in the echo signal. Therefore,
in order to accurately localize the source of detection, the
target should be as small as possible, but which implies a
small RCS. Thus, a compromise between the target size and
a high enough RCS has to be considered. Radar reflectors,
objects that are highly visible to radars, are used not only
in intrinsic calibration, but also as marine safety equipment
resulting in numerous designs. Given the previous discussion,
we assert that one of these designs can be considered as

(a) Calibration Target

a

c

l

(b) Corner reflector

Fig. 1: Constructed calibration target and the illustration
of the working principle of the triangular trihedral corner
reflector

a good compromise and we chose the triangular trihedral
corner reflector which consists of three orthogonal flat metal
triangles.

The constructed radar calibration target and an illustration
of the working principle is shown in Fig. 1a. It has an
interesting property that any ray reflected from all three sides
is returned in the same direction as illustrated in Fig. 1b. The
reason behind this is that normals of the three sides form
an orthonormal basis. Namely, reflection causes direction
reverse of incident ray’s component parallel to the surface
normal, while the component parallel to the surface tangent
plane remains the same. After three reflections, which form
an orthonormal basis, the ray’s direction is reversed. Due
to this property, regardless of the incident angle, many rays
are returned to their source, i.e., the radar. Unlike a single
flat plate, which has a high RCS but is highly sensitive to
orientation changes, trihedral corner reflector provides a high
and stable RCS. When the axis of the corner reflector, a

c

,
points directly to the radar, it reaches its maximum RCS
value:

�

c

=

⇡l

4

3�

2
, (1)

where l is a hypotenuse length of a corner reflector’s side
and � is radar’s operating wavelength.

Analytical description of the reflector RCS as a function
of the orientation is nontrivial. However, from experiments
presented in [13], it can be seen that orientation changes
of ±20

� result in a slight decrease of RCS, which can be
approximated as a constant, while ±40

� causes a decrease
of �3dBm

2. Furthermore, authors in [17] show that all the
rays which go through multiple reflections travel the same
length as the ray which is reflected directly from the corner
centre. This results in a high localization accuracy.

Corner reflector is visible to the LiDAR, but is difficult
to accurately localize it at greater distances due to its small
size and complex shape. This problem is solved by placing
a flat styrofoam triangle board in front of the reflector.
Styrofoam is made of approximately 98% air resulting with
low permittivity (around 1.10) and nonconductiveness. These
properties make it virtually invisible to the radar, but still
visible to the LiDAR. However, instead of a common rectan-
gular shape, we choose a triangular shape with which we can
solve localization ambiguity issues caused by finite LiDAR



resolution. Namely, LiDAR azimuth resolution is commonly
larger than the elevation resolution, which results with the
‘slicing’ effect of an object; thus, translating the rectangle
along the vertical axis would yield identical measurements
until it becomes visible to the next LiDAR layer (which is
not the case for the triangle shape). This effect has a stronger
impact on localization at greater distances which are required
by our method.

Finally, target stand should be able to hold the target at
a range of different heights (0–2 m). Additionally, it must
have a low RCS not to interfere with the target detection and
localization. We propose a stand made of three thin wooden
rods which are fixed to a ground wooden plane and connected
with a plastic bridge (Fig. 1a). Target attached to the bridge
can be slided and tilted to adjust its height and orientation.
B. Correspondence Registration

Correspondence registration in the data starts with the
detection of the triangle in the point cloud. The initial step
is to segment plane candidates from which edge points are
extracted. Afterwards, we try to fit these points to the triangle
model. Levenberg–Marquardt (LM) algorithm optimizes the
pose of the triangle by minimizing the distance from edge
points to the border of the triangle model. A final threshold
is defined based on which we accept or discard the estimate.
Position of the corner reflector l

x

l

1 origin is calculated
based on the triangle pose estimate and the known target
configuration.

Radar data of interest is a list of detected objects described
by the detection angle r

�

r,i

, range r

r

r,i

and RCS �

r,i

.
The i-th object from the list is described by the vector
r

m

i

= [

r

�

r,i

r

r

r,i

r

�

r,i

] in the radar coordinate frame, F
r

:

(

r

x,

r

y,

r

z). The only structural property of detected objects
is contained within the RCS, which is influenced by many
other factors; hence, it is impossible to classify a detection as
the corner reflector based solely on the radar measurements.
To find the matching object, a rough initial calibration is
required, e.g., with a measurement tape, which is used to
transform the estimated corner position from the LiDAR
coordinate frame, F

l

: (

l

x,

l

y,

l

z), into the F
r

, and eliminate
all other objects that fall outside of a predefined threshold.
The correspondence is accepted only if a single object is left.

The radar correspondence groups are obtained as follows.
The target is observed at rest for a short period while the
registered correspondences fill a correspondence group with
pairs of vectors r

m

i

and l

x

l

. Variances of the radar data
(r�

r,i

,

r

r

r,i

,

r

�

r,i

) within the group are used to determine the
stability of the target. If any of the variances surpasses a
preset threshold, the correspondence is discarded, since it is
likely that the target detection was obstructed. Otherwise,
the values are averaged. In addition, we create unregistered
groups where radar detections are missing. These groups are
used in the second optimization step where we refine the FoV.
Hereafter, we will refer to the mean values of the groups as
radar and LiDAR measurements.

1In the article, we use left superscript r and l to denote that the value
belongs to the F

r

and F
l

, respectively

III. TWO-STEP OPTIMIZATION

A. Reprojection Error Optimization

Once the paired measurements are found, alignment of
sensor coordinate frames is performed. To ensure that the
optimization is performed on the radar measurements origi-
nating from the calibration target, we perform RCS threshold
filtering. We choose the threshold ⇣

RCS

close to the �

c

so that we encompass as many strong and reliable radar
measurements while leaving out the possible outliers.

The optimization parameter vector includes the transla-
tion and rotation part, i.e., c

r

= [

r

p

l

⇥]. For transla-
tion, we choose position of the LiDAR in the F

r

, r

p

l

=

[

r

p

x,l

r

p

y,l

r

p

z,l

]

T . For rotation, we choose Euler angles
representation ⇥ = [✓

z

✓

y

✓

x

] where rotation from F
r

to
F

l

is given by:
l

r

R(⇥) =

l

2Rx

(✓
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)

2
1Ry

(✓

y

)

1
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R
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(✓
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). (2)

Figure 2 illustrates the calculation of the reprojection error
for the i-th paired measurement. As discussed previously,
radar provides measurements in spherical coordinates lacking
elevation r

s

r,i

= [

r

r

r,i

r

�

r,i

⇠], i.e., it provides an arc r

a

r,i

upon which the object potentially resides. On the other hand,
LiDAR provides a point in Euclidean coordinates l

x

l,i

. Using
the current transformation estimate, LiDAR measurement
l

x

l,i

is transformed into the radar coordinate frame:
r

x

l,i

(c

r

) =

l

r

R

T

(⇥) · lx
l,i

+

r

p

l

, (3)

and then r

x

l,i

is converted to spherical coordinates r

s

l,i

=
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l,i

r
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l,i

]. By neglecting the elevation angle r

 

l,i

, we
obtain the arc r

a

l,i

upon which LiDAR measurement resides
and can be compared to the radar’s. Reprojection error ✏

r,i

is then defined as the Euclidean distance of points on the arc
for which r
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Using the LM algorithm, we obtain the estimate of the
calibration parameters ĉ

r

by minimizing the sum of squared
reprojection errors from N measurements:

ĉ

r

= argmin

c

r

✓
NX

i=1

✏

2
r,i

(c

r

)

◆
. (5)

Optimization of described reprojection error yields unequal
estimation uncertainty among the calibration parameters.
Namely, translation in the radar plane and rotation around it’s
normal causes significant changes in the radar measurements.
Therefore, parameters r

p

x,l

,rp
y,l

and ✓

z

can be properly
estimated. In contrast, the change in the remaining param-
eters r

p

z,l

,✓
y

and ✓

x

causes smaller changes in the radar
measurements, e.g. translation of radar along r

z introduces
only a small change in the range measurement. Therefore,
these parameters are refined in the second step.

Due to the filtering in the correspondence registration,
not many outliers are present in the data. The remaining
outliers are removed from the dataset by inspection of
the reprojection error after the optimization. Measurements
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Fig. 2: Illustration of reprojection error calculation. Green:
LiDAR’s measurement; blue: radar’s; red: reprojection error.

that surpass the radar’s accuracy are excluded from the
dataset and optimization is performed again on the remaining
measurements.

B. FoV optimization

To refine the parameters with higher uncertainty we
propose a second optimization step which uses additional
information from RCS. We try to fit the radar’s nominal FoV
in the LiDAR data by encompassing as many measurements
with high RCS as possible. Definition of RCS is such that
it is independent of the radar’s radiation. However, radar
estimates the object RCS based on the intensity of the
echo which is dependent on the radiated energy. Intrinsic
calibration of a radar ensures that RCS is correctly estimated
only within the nominal FoV where it is fairly constant. As
the object leaves the nominal FoV, less energy is radiated in
its direction, which then results in decrease of RCS until the
object becomes undetectable. This effect is used to estimate
the pose of the nominal FoV based on the RCS distribution
across the LiDAR’s data.

Vertical FoV of width 2 

f

is defined with two planes that
go through the origin of F

r

, P
U

and P
D

, with elevation
angles ± 

f

. We propose an optimization in which we
position radar’s nominal FoV, so that as many as possible
strong reflections fall within it, while leaving the weak
ones out. The optimization parameter vector consist of a
subset of transformation parameters and an RCS threshold,
c

f

= [

r

p

z,l

✓

y

✓

x

⇣

RCS

], whereas other parameters are kept
fixed.

After transforming a LiDAR measurement l

x

l,i

to F
r

, the
FoV error of i-th measurement ✏

f,i

is defined as:
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where

d = min{dist(P
U

,

r

x

l,i

), dist(P
D

,
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)}. (7)

Error is greater than zero only if the LiDAR measurement
falls inside the FoV when it should not according to the

(a) Mobile robot
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(b) Sensor placement

Fig. 3: Mobile robot and sensors used in the experiment.

threshold, and vice versa. Function dist(P, x) is defined as
an unsigned distance from plane P to point x.

An estimate of calibration parameters is obtained by
minimizing the following cost function:

ĉ

f

= argmin

c

f

✓
NX

i=1

✏

2
f,i

(c

f

)

◆
. (8)

Dependence of the cost function is discrete with respect to
the RCS threshold, since change of the threshold does not
affect the cost function until at least one measurement falls
in or out of the FoV. This results in many local minima and
the interior points method was used for optimization, since
it was found to be able to converge in majority of analysed
cases.

IV. EXPERIMENT

A. Experiment Setup

An outdoor experiment was conducted to test the proposed
method. A mobile robot Husky UGV, shown in Fig. 3, was
equipped with a Velodyne HDL-32E 3D LiDAR and two
short range radars from different manufacturers, namely the
Continental SRR 20X and Delphi SRR2.

Commercially available radars are sensors which provide
high level information in the form of detected object list.
Raw data, i.e., the return echo, is processed by proprietary
signal processing techniques and is unavailable to the user.
However, from the experiments conducted with both radars,
we noticed that they follow the behaviour as expected from
our calibration method. The only noticed difference is that
the target stand without the target was completely invisible to
Continental, while the Delphi was able to detect it at closer
ranges (rr

r,i

< 5 m). This effect was present because the
Delphi radar accepts detections with lower RCS. However,
this did not present an issue, because the stand has a
significantly lower RCS than the target and it was easily
filtered out. Since the purpose of the experiment is evaluation
of the method and not radar performance, in the sequel we
only present results for the Continental radar.

Continental radar technical data of interest is given in
Table I. Based on the analysis of the reprojection error, radar
measurements outside of the azimuth angle range of ±45

�

were excluded from the reprojection error optimization, be-
cause they exhibited significantly higher reprojection errors



TABLE I: Continental SRR 20X specifications

Continental SRR 20X Value
HFoV ⇥ VFoV 150� ⇥ 12�
Range Accuracy 0.2m

Azimut Accuracy @ HFoV ±2�@±20�; ±4�@±60�; ±5�@±�75
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0
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Reprojection error [m]

Reprojection error optimization
FoV refinement
2D optimization

Fig. 4: Histogram of reprojection errors for the two steps of
the calibration and the 2D calibration

than those inside the range. Considering FoV optimization,
we noticed that outside of the azimuth angle range ±60

�

radar detections were occasionally missing. Therefore, they
were excluded from the FoV optimization.

The calibration target was composed of a corner reflector
with side length l = 0.32m with a maximum RCS of �

c

=

18.75 dBm

2. Based on vertical resolution of the Velodyne
HDL-32E LiDAR (1.33�) we used styrofoam triangle of
height h = 0.65 m. It ensured extraction of at least two lines
from the target, which is a prerequisite to unambiguously
determine the pose. Data acquisition was done by driving a
robot in the area up to 10 m of range with target placed
at 17 different heights ranging from ground up to 2 m
height. In total, 880 registered radar-LiDAR measurements
were collected, together with 150 LiDAR measurements
unregistered by the radar.

B. Results

To assess the quality of calibration results we conducted
four experiments. First, we examined the distribution of the
reprojection error after both optimization steps and compared
it to a 2D optimization, which minimizes reprojection error
by optimizing only the calibration parameters with lower
uncertainty, i.e., translation parameters r

p

x,l

and r

p

y,l

, and
rotation ✓

z

. Secondly, we inspect FoV placement with re-
spect to the distribution of RCS over the LiDAR’s data.
Afterwards, we examine the correlation between RCS and
the elevation angle. Lastly, we run Monte Carlo simulations
by randomly subsampling the dataset to examine reliability
of the estimated parameters and potential overfitting of data.

Parameters estimated by reprojection error optimization
are ĉ

r

= [�0.047,�0.132, 0.079m;�2.07, 3.58,�0.02

�
],

while FoV optimization estimates ĉ

f

=

[0.191,m; 4.19,�0.84

�
; 12.85dBm

2
]. Carefully

measured translation by hand between the sensors
r

p̃

l

= [�0.08,�0.14, 0.18]

T m is given as a reference.
Figure 4 shows distribution of the reprojection error and

is composed of three histograms, where we can see how the
reprojection error of both steps of calibration is compared
to the case of 2D calibration. We notice that neglecting
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Fig. 5: RCS distribution across LiDAR 3D data and place-
ment of the radar’s FoV.
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Fig. 6: RCS distribution across radar’s VFoV. Red: reprojec-
tion error optimization; blue: FoV optimization.

the 3D nature of the problem causes higher mean and
greater variance of the reprojection error which implies poor
calibration. Furthermore, the FoV optimization is bound to
degrade the overall reprojection error because it is not a part
of the optimization criterium. However, resemblance between
the distributions after the first and the second optimization
steps implies low degradation of reprojection error.

In Fig. 5, distribution of the RCS across LiDAR’s data
is shown. LiDAR’s measurements are color-coded with the
RCS of the paired radar measurement, accompanied with
the black-dyed markers which indicate the lack of registered
radar measurements. We can see that within the nominal FoV,
target produces a strong, fairly constant reflections. As the
elevation angle of the target leaves the radars FoV, the RCS
decreases until the point where it is no longer detectable.

To examine the effect of decrease in the target’s RCS as a
function of the elevation angle after both optimizations, we
use Fig. 6. It shows elevation r

 

l,i

of each LiDAR measure-
ment transformed into the F

r

and RCS of the paired radar
measurement. In the ideal case, i.e. if the transformation
was correct and the axis of corner reflector always pointed
directly to the radar, the data would lay on the curve which
describes radar’s radiation pattern in respect to the elevation
angle. The dispersion from the curve is present in the both
steps due to the imperfect directivity of the target in the



TABLE II: Monte Carlo Analysis Results

Reprojection Error Optimization FoV optimization
rp

x,l

N (�0.047m, 1.53⇥ 10�5 )
rp

y,l

N (�0.132m, 6.12⇥ 10�5 )
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N (0.078m, 2.53⇥ 10�3 ) N (0.174m, 9.10⇥ 10�4 )
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x
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Fig. 7: Monte Carlo Analysis histograms. Red: calibration
after reprojection error optimization; blue: with FoV opti-
mization

measurements. In addition, we notice a higher dispersion
using only reprojection error optimization which indicates
miscalibration.

Lastly, Monte Carlo analysis is done by randomly sub-
sampling our dataset to half of the original size and per-
forming 1000 runs of optimization on different subsampled
datasets. The results follow a Gaussian distribution whose
estimated parameters are given by the Table II. As expected,
distributions of parameters r

p

x,l

, r

p

y,l

and ✓

z

obtained by
the reprojection error optimization have a significantly lower
variance than the rest. Figure 7 illustrates how the FoV
optimization refines parameters r

p

z,l

, ✓
y

and ✓

x

. We can
see overall decrease in variance, as well as the shift in the
mean. Estimation of parameter r

p

z,l

using reprojection error
optimization is clearly further away from the measured value,
unlike the FoV optimization’s estimate.

V. CONCLUSION

In this paper we have proposed an extrinsic calibration
method for a 3D-LiDAR-radar pair. A calibration target was
designed in a way which enabled both sensors to detect
and localize the target within their operating principles. The
extrinsic calibration was found by a two-step optimization:
(i) reprojection error optimization, which was the followed
by (ii) FoV optimization which used additional information
from RCS to refine the estimate of the calibration parameters.
Results of the experiments validated the proposed method
and demonstrated how the two steps combined provide an

improved estimate of extrinsic calibration parameters. In the
future work, we plan to include a camera in the extrinsic
calibration. In addition, we plan to improve the results of
the calibration by introducing the sensor uncertainty models
as radars typically have variable accuracy across the FoV.
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People Tracking and Re-Identification by Face Recognition
for RGB-D Camera Networks

Kenji Koide∗1, Emanuele Menegatti2, Marco Carraro2, Matteo Munaro2, and Jun Miura1

Abstract— This paper describes a face recognition-based
people tracking and re-identification system for RGB-D camera
networks. The system tracks people and learns their faces online
to keep track of their identities even if they move out from the
camera’s field of view once. For robust people re-identification,
the system exploits the combination of a deep neural network-
based face representation and a Bayesian inference-based face
classification method. The system also provides a predefined
people identification capability: it associates the online learned
faces with predefined people face images and names to know the
people’s whereabouts, thus, allowing a rich human-system inter-
action. Through experiments, we validate the re-identification
and the predefined people identification capabilities of the
system and show an example of the integration of the system
with a mobile robot. The overall system is built as a Robot
Operating System (ROS) module. As a result, it simplifies
the integration with the many existing robotic systems and
algorithms which use such middleware. The code of this work
has been released as open-source in order to provide a baseline
for the future publications in this field.

Index Terms— RGB-D Camera Network, People Tracking,
Person Identification, Face Recognition.

I. INTRODUCTION AND RELATED WORK

Camera network-based people tracking systems have at-
tracted much attention in the computer vision community.
They have been applied to various tasks, such as surveillance
and human-robot interaction. One of the essential problems
for people tracking is person re-identification. To keep track
of people who left the camera view, systems have to re-
identifies them when they re-appear in the view. In addition
to that, a capability of identifying people over days (Long-
term re-identification) is required in long-term service sce-
narios.

Many works proposed person re-identification methods
for camera networks [1], [2], [3]. By combining appearance
features which are robust to pose, illumination, and camera
characteristics changes and sophisticated feature comparison
methods, they achieved good people identification perfor-
mance over multiple cameras. However, the proposed meth-
ods rely on the RGB information of each subject, thus, on
the appearance of their clothes. Therefore, it is not possible
to identify people over days and not applicable to long-term
service scenarios.

Several soft biometrical features, such as gait [4], [5]
and skeletal lengths [6], have been proposed for overcoming

1Kenji Koide and Jun Miura are with the Department of Computer
Science and Engineering at the Toyohashi University of Technology, Japan

2Emanuele Menegatti, Marco Carraro, and Matteo Munaro are with the
Department of Information Engineering at the University of Padua, Italy

∗indicates the corresponding author, email{koide@aisl.cs.tut.ac.jp}
A supplementary video is available at https://goo.gl/yGRdEZ

this problem. Since such biometrical features are specific to
individuals and invariant over time, they enable to identify
people over days. However, those features may be indis-
criminative when several people have similar physiques. To
reliably identify people, features for person re-identification
have to be discriminative and robust to viewpoint changes.
One of the most discriminative and reliable features to
identify people is the face [7]. However, face features had
not been widely used for person re-identification [2] since
faces are not always visible, and we need to deal with
pose, illumination, and expression (PIE) changes to apply
it to camera networks. Some works used face features for
person re-identification [8]. However, the use of face features
was limited to assist appearance features, and those methods
intended to be applied to short-term re-identification tasks.

It was difficult to solve the PIE issues by using traditional
face features, such as EigenFace [9], Local Binary Patterns
[10], and Scale-Invariant Features Transform [11]. On the
other hand, recent deep neural network-based face represen-
tations [12], [13], [14] provide robust and discriminative face
features and allow to reliably identify a person in presence of
those issues. Although face visibility is still a hard problem,
recent inexpensive consumer cameras allow to have a dense
camera network. A person’s face might be visible to any of
the cameras under such settings.

In this paper, we propose a people tracking and re-
identification system for RGB-D camera networks. The pro-
posed system tracks people by using OpenPTrack [15], an
RGB-D camera network-based people tracking framework,
and learns their faces online to re-identify people who left
the camera view once. For real-time performance, we employ
a distributed people detection and face feature extraction
structure. A PC is connected to each distributed RGB-D
camera, and it detects people, extracts face features, and
sends those data to a master PC. The master PC aggregates
the information to track and re-identify people. This system
also provides a predefined people identification capability:
a set of people names and face images is given to the
system, and it makes the association between tracks and the
predefined people to know the names of the tracked people.

The contributions of this paper are two-fold. First, we pro-
pose a Bayesian inference-based face classification method.
It allows to reliably classify a face according to the confi-
dence of deep neural network-based face comparison results.
Secondly, this work is an open source ROS [16] platform-
based project 1, and it can easily be integrated with robotic

1The code is available at https://goo.gl/ypILr7
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systems. We show the possibility of the integration of the
system and robotic systems through the experiment.

The remainder of this paper is organized as follows. Sec.
II describes an overview of the proposed method. Secs.
III describes the proposed face recognition framework. Sec.
IV describes the integration of the proposed system and a
mobile robot system. Sec. V presents the evaluation and the
experiment of the proposed system. Sec. VI concludes the
paper and discusses future work.

II. SYSTEM OVERVIEW

Fig. 1 shows an overview of the proposed system. The
proposed system tracks people by using OpenPTrack [17],
an RGB-D image-based people tracking framework, and re-
identify people by face recognition based on OpenFace [18],
a deep convolutional neural network-based face representa-
tion.

On each distributed PC connected to an RGB-D camera,
we first perform RGB-D image-based people detection [19].
Then, we calculate ROIs from the detected people positions
and detect faces on the ROIs. Face features are extracted from
the detected face regions by using a deep neural network
provided by OpenFace. In this system, the distributed PCs
do not send raw camera images, but send only the detected
people positions and extracted face features to the master
PC. In this way, since those data is very light, we allow
our system to be efficient and scalable to a large and dense
camera network without bandwidth problems.

While the OpenPTrack master node tracks people from
the detection positions it receives, our proposed system re-
identifies people by face recognition. The re-identification
part takes advantage of the tracks, which connect several
frames from the same (still unknown) person and the face
features associated to those frames. By integrating this in-
formation, the system can build online a descriptor for each
person face. Then, it associates the tracks of the people with
the learned faces. By referring the ID of the face associated
with the track of a person, we can keep tracking the identity
of the person even if he/she leaves and re-enters the camera
view.

This system also provides a predefined people identifica-
tion capability. A set of people names and faces are given
to the system in advance, and the system associates the
predefined people faces with the online learned faces. This
capability allows to know a specific person’s whereabouts

and have a rich human-system interaction for applications
like housework robots [20].

The proposed system is built on top of the Robot Operating
System (ROS), thus, it can be easily combined with other
robotic systems.

III. PROPOSED METHOD

A. People Detection and Tracking

We integrated the face recognition-based re-identification
algorithm with OpenPTrack [15], a people tracking frame-
work for RGB-D camera networks. This framework first
detects people from point clouds obtained from RGB-D
cameras placed in an environment. It removes the ground
plane from a point cloud and then applies euclidean cluster-
ing to extract candidate clusters of human. Then, it judges
whether a cluster is human or not by using an image-based
SVM classifier on HOG features. This detection process is
performed on each PC connected to an RGB-D camera, and
then the detection results are aggregated on a master PC.
The detected people are tracked by the combination of global
nearest neighbor data association and Kalman filtering with
a constant velocity motion model.

Fig. 2 shows a snapshot of OpenPTrack. As long as a
person is visible from any of the RGB-D cameras, it provides
reliable people tracking results. However, once a person
leaves the field of view of all cameras, the system will
assign a new track ID to the person whenever he/she will
re-appear. In such cases, a person re-identification capability
is necessary to recover the track of the person in such case.

B. Face Detection

To detect people faces in real-time, we take a top-down
face detection approach. We first calculate ROIs from the
people detection results provided by OpenPTrack. We project
the rectangle with a fixed metric dimension (e.g., 0.2 m)
to a detected human cluster’s top position in the image. A
HOG and cascaded SVM-based face detector [21] runs on
the ROIs, and face features are extracted from the detected
face regions. Fig. 3 shows an example of the face detection
results. The green and red boxes indicate the ROIs calculated
from the top positions of the detected people clusters, and
the detected face regions, respectively.



Fig. 2. OpenPTrack, a people tracking framework using a RGB-D camera
network, provides robust people tracking. However, person re-identification
capability is necessary to recover the track of a person left from the camera
view. [17]

Fig. 3. An example face detection result. The green boxes indicate the
ROIs calculated from the detected people positions. The red boxes indicate
the detected face regions. Some faces are not detected due to their poses.
However, by integrating the face detection results of multiple cameras, most
faces will be observable from any of the cameras.

C. Deep Neural Network-based Face Features

We utilize OpenFace [18], a face recognition framework,
to extract face features. The framework provides an imple-
mentation of FaceNet [13], a state-of-the-art deep convolu-
tional neural network for face feature extraction. Fig. 4(a)
shows the network architecture of FaceNet. The network first
transforms a face image to a 128-dimensional feature vector
by applying a deep convolutional neural network. Then, the
feature vector is normalized so that its L2 norm becomes 1.
The network is trained to minimize the triplet loss function
[13]. This function takes three training data (i.e., triplet), a
training data to be an anchor, a positive data with the same
identity as the anchor, and a negative data with a different
identity. The triplet loss function minimizes the L2 distance
between the anchor-positive pair and maximizes the distance
between the anchor-negative pair. As a result, faces of the
same person are embedded close together, and face features
of different persons are placed far from each other. Thereby,
we can judge whether two faces have the same identity or not
by calculating the L2 distance between their face features.

D. People Re-identification by Face Recognition

The system learns people faces online and associates the
tracks of people and the learned faces to re-identify people

128 D
VectorDeep CNNFace

Image L2

(a) Network architecture.

minimize maximize

anchor

positive negative

(b) Triplet loss function.

Fig. 4. FaceNet framework [13]. This framework employs a deep convo-
lutional neural network and the triplet loss function to obtain discriminative
face representations.

Algorithm 1 Assign a face ID to the track of a person
face list is a set of (face ID, face images)
track list is a set of (track ID, face ID, face images)
for all track in track list do

add observed face images to track.face images
if track.face ID has not been assigned then

result ← classify(track.face images, face list)
if result.confidence < threshold then

continue
else if result is known person then

track.face ID ← result.face ID
add result.face images to track.face images
remove result from face list

else
track.face ID ← new face ID

end if
end if
if track is not alive then

remove track from track list
add (track.face ID, track.face images) to face list

end if
end for

who left the camera view by means of Algorithm 1. face list
is the list of online learned faces, and track list is the list of
people tracks. We first classify face images observed from the
track of a person into the online learned faces. If the observed
face images are classified as one of the online learned faces
with high confidence, we assign the face’s ID to the track.
If the track is classified as an unknown person, we consider
that he/she is a newly appeared person and give a new face
ID to the track. While the track is alive, the system keeps
the assigned face ID and learned face images. If the track of
a person is lost, the system removes the track from track list
and moves the assigned face ID and images of the track to
face list to make it assignable to new tracks.



E. Bayesian Inference-based Face Classification
The simplest way to classify an observed face into reg-

istered faces is thresholding: if the distance between the
observed face and a registered face is less than a threshold,
the observed face is classified as the registered one. If several
faces have the distances less than the threshold, the observed
face is classified as the face with the minimum distance.
Usually, this classification is performed for a certain number
of observations (e.g., 5 face images) and the decision is
made by majority voting. However, this method ignores the
difference of the distances, and it may affect the classification
accuracy when several faces have similar distances. The
classification method should take into account the difference
of the distances as the confidence of the classification for
robust classification results.

To reliably classify observed faces, we propose a Bayesian
inference-based face classification. Let p(xij) be the prob-
ability that the i-th track has the same identity as the j-th
learned face, p(xi0) be the probability that the i-th track’s
face has not been registered to the face list (the person is a
new person), and p(x0j) be the probability that the person
who has the j-th registered face is not tracked (the person
does not exist in the camera view). From this definition, we
obtain the following constraints.

N∑

k=0

p(xkj) = 1 (j ̸= 0) (1)

M∑

k=0

p(xik) = 1 (i ̸= 0) (2)

The probabilities can be represented as a table (see Fig. 5).
We update this probability table with face images observed
from people tracks. According to Bayesian theorem, the
posterior probability of p(xij) under an observation y is
given as:

p(xij |y) ∝ p(xij)p(y|xij) (3)

We calculate the distances between the observed face image
and the registered faces as follows and consider the distances
as observations.

dij = min
k
∥F (xt

i)− F (xk
j )∥, (4)

where, xt
i is the face image observed from the tracker i at

time t, xk
j is the k-th face image of the j-th learned face,

and F (x) is the feature extraction function. To model the
likelihood function p(y|xij), we randomly sampled correct
and wrong face pairs from the LFW face database [22]. The
number of the correct and wrong pairs are about 30000 and
60000, respectively. Fig. 6 shows the distributions of the L2
distances between the features extracted from the face pairs.
We fit a skew normal distribution to each distribution by
using maximum likelihood estimation and gradient decent
method. The solid lines in Fig. 6 indicate the fitted skew
normal distributions. We denote by Np(x) and Nn(x) the

p(x 01) p(x 02) · · · p(x 0M )
p(x 10) p(x 11) p(x 12) · · · p(x 1M )
p(x 20) p(x 21) p(x 22) · · · p(x 2M )
...

...
...

...
...

p(xN 0) p(xN 1) p(xN 2) · · · p(xN M )

N
 tr

ac
ks

M registered faces

sum up to 1
sum up to 1

sum up to 1

sum up to 1 sum up to 1 sum up to 1

Fig. 5. The posterior probability table. The element at (i, j) is the posterior
probability that i-th track has the same identity as the j-th learned face.
Rows and columns are iteratively normalized so that they sum up to 1 by
using Shinkhorn iteration.

Fig. 6. The distributions of L2 distance of the positive and the negative
face pairs. The solid lines indicate the skew normal distributions fitted to
the distributions.

skew normal distributions of the correct and wrong pairs,
respectively. We calculate the likelihood p(y|xij) from a
distance dij as:

p(y|xij) =

⎧
⎪⎨

⎪⎩

Np(dij) (j = i)

c ·Nn(dij) (j = 0)

Nn(dij) otherwise

(5)

where, c is a constant which models the tendency that an
observed face image is produced from an unknown person.
If we take a large c, the system tends to classify an observed
face as an unknown face. In this work, we just use c = 1,
however, it works well for most cases.

After updating the posterior probabilities, we normalize
the probabilities so that they satisfy the equation (1) and (2)
by using Shinkhorn iteration [23]. It first normalizes every
row and then normalizes every column so that they sum up
to 1. This normalization is repeated until the probabilities
converge. After the normalization, if p(xij) is larger than a
threshold (e.g., 0.95), we classify the i-th track as the j-th
learned face.

F. Predefined People Identification
To allow a rich human-system interaction, the proposed

system provides a predefined people identification capability.
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Fig. 7. Aligning an environmental map made by the robot to the one
made by the camera network. An occupancy grid map is created from point
clouds obtained from the camera network, and then the maps are manually
aligned.

Predefined people data are given to the system as a set of
people names and face images, and the system associates
online learned faces and the predefined people.

We calculate the distance between face images of a prede-
fined person and learned face images, and if the distance is
smaller than a threshold, the system associates the predefined
person and the learned face. The distance is calculated as the
minimum distance of the distances between all combinations
of the predefined person’s face images and the learned face
images.

IV. COOPERATION WITH A MOBILE ROBOT

Since the proposed system has been implemented as ROS
modules, it can easily cooperate with robotic systems. In this
work, we integrate the proposed system with a mobile robot
to demonstrate a human-system interaction service. We use
a Turtlebot2 robot equipped with a laser range finder (see
Fig. 11). By using ROS navigation stack [24], we made the
robot create an environmental map and estimate its current
pose. To operate the robot with the camera network, it is
necessary to know the transformation between the created
map and the camera network coordinates. We first extract
points in a certain height range (e.g., 0.1 - 0.3m) from the
camera network and create an occupancy grid map. Then,
we manually align the map made by the robot to the one
made by the camera network (see Fig.7). Note that this map
alignment can be semi-automated by giving an initial guess
by hand and applying ICP matching between the maps. Fig.
8 shows a snapshot of the integrated system. We can see
the robot, the point clouds obtained by the Kinects, and the
tracked people in the same view.

V. EXPERIMENTS

A. Person Re-identification Experiment

We conducted long-term person re-identification exper-
iments. Two RGB-D image sequences were recorded at
different days. The subjects changed their clothes (and hair

Fig. 8. The integration of the system and a mobile robot. We can see the
robot, the point clouds obtained from the Kinects, and the tracked person
in the same view.

Kinect 1 Kinect 2

Kinect 3

Fig. 9. A snapshot of the experiments. Three Kinects are placed so that
they cover the environment. The dots indicate the tracked people.

styles) between the recordings, thus, appearance-based re-
identification is not effective for this dataset. In each of
the sequences, six subjects are walking in the environment.
Four of them appear in both the sequences. Fig. 9 shows a
snapshot of the experiments. We put three Kinects so that
they cover the environment. Table I shows a summary of
the dataset. The durations of the sequences are 162 and 218
[s]. The subjects often moved out from the camera’s field of
view, and the system lost track of people 49 and 58 times in
the sequence 1 and 2, respectively.

The proposed method is applied to the sequences. For
comparison, we also applied the proposed method with

TABLE I
LONG-TERM RE-IDENTIFICATION DATASET SUMMARY

duration [s] # of subjects # of lost
Seq. 1 162 6 49
Seq. 2 218 6 58



thresholding instead of the Bayesian inference and a tradi-
tional face recognition method with a landmark detection and
SIFT features [25]. In this experiment, the face detection and
the feature extraction took about 15 msec per frame on each
distributed PC, and the re-identification took about 10 msec
on the master PC.

Table II shows a summary of the re-identification results.
success and failure in Table II mean the number of tracks
successfully and wrongly re-identified. Since OpenFace dis-
cards a face image when it couldn’t detect the landmarks of
the face, it yields fewer face features than [25], and it took
much time to re-identify a person from when he/she appears
than the SIFT-based method. However, the recognition ac-
curacy of the proposed methods significantly outperforms
[25]. While the limitation of the face view faces make the
SIFT-based method fail to identify people, the proposed
methods achieve the high identification accuracies thanks
to the robustness of the deep neural network-based face
representation to the face view change.

With the simple thresholding scheme, the system has
to make a decision when it observes a certain number of
face images. This affects the re-identification accuracy when
several registered faces show similar distances to an observed
face image. On the other hand, with the proposed Bayesian
inference, the system can wait to make a decision until a
significant difference of the faces is observed. In addition to
that, once a significant difference is observed, the system
can immediately classify the observed face. As a result,
the proposed method with the Bayesian inference could
improve both the recognition accuracy and the average re-
identification time. Fig. 10 shows examples of the long-
term re-identification results (i.e., re-identification between
the sequence 1 and 2). The system successfully re-identified
most of the subjects even if they changed their clothes
(and hair styles). However, it wrongly identified a newly
appeared person as an existing person due to their similar
face appearances (beards and brows). It was the only failure
case in this experiment. recover rate in Table II shows the
rate of the successfully re-identified tracks among all the
tracks. It shows a limitation of the face recognition-based
re-identification: while it shows a good re-identification
accuracy, it cannot re-identify a person when his/her face
is not visible. One possible way to address this problem is
combining the face recognition-based re-identification with
other re-identification methods, such as appearance-based
and soft biometric-based methods. It allows taking advantage
of the high recognition accuracy of the face recognition and
visibility independence of such methods.

TABLE II
EVALUATION OF RE-IDENTIFICATION ACCURACY

success failure re-id time recover rate
[25] 34 54 2.12 0.318

ours w/o Bayesian 51 7 4.59 0.477
ours w/ Bayesian 60 1 4.24 0.561

NoneSeq.1 Seq.2

Fig. 10. Examples of the long-term re-identification results. The green
boxes indicate that the person is correctly re-identified. The blue boxes
indicate that the right side face is wrongly identified as the left side face.

LRF

Turtlebot

Target position

Deliver a cup

Fig. 11. The cup delivery experiment. The system tells the target person
position to the robot, and the robot delivers a cup to him.

B. Experiment with a Mobile Robot
To show the possibility of the integration of the proposed

system and a mobile robot, we conducted an experiment with
a daily service robot scenario. The task of the robot is to
deliver a cup to a specific target person. A pair of the target
person’s name and a face image is given to the system in
advance. The system identifies the target person among the
others and tells his/her position to the robot. Then, the robot
moves toward the target person’s positions to deliver the cup
to him/her (see Fig. 11).

Fig. 12 shows the experimental setting. The number of
the subjects is three, and each subject stands in front of a
Kinect and stares at it. We give a list of people names and
face images of the subjects and other three people. Thus, the
number of the predefined people is six. We conducted the
experiment three times while changing the target.

Fig. 13 shows a snapshot of the experiment. While the
target person stared at the Kinect, the system successfully
identified him as the target person (Fig. 13 (a)). Then, the
system told his position and name to the robot, and the robot
moved toward him (Fig. 13 (b)). After arriving at his position,
the robot called his name and told him to take the cup (Fig.
13 (b)), and the target person took the cup on the robot (Fig.
13 (d)).

In all the experiments, the system successfully identified
the target person, and the robot delivered the cup to the target
person. The experimental result shows that the proposed
system can be integrated with a mobile robot system, and
it allows to have a rich human-system interaction.

VI. CONCLUSIONS AND FUTURE WORK

This paper has described a face recognition-based people
tracking and re-identification system for RGB-D camera
networks. The proposed system utilizes OpenPTrack and
OpenFace to track and recognize their faces. We proposed



Fig. 12. The setting of the experiment with a mobile robot. A person
stands in front of each Kinect and stare at it. The system identifies a target
person and tells his position to the robot, and then the robot moves toward
him to deliver a cup.

(a) (b)

(c) (d)

Fig. 13. A snapshot of the cup delivery experiment. The target person is
identified by the camera network, and then his position is told to the robot.
The robot moves toward the target person, and after arriving, the robot calls
his name and tells him to take the cup on the robot.

a Bayesian inference-based face classification method for
reliable re-identification. We evaluated the re-identification
performance of the proposed system and conducted an ex-
periment to show the possibility of the integration of the
proposed system with robotic systems.

Face visibility is still a hard problem. The system cannot
identify a person if the person hides his/her face intentionally.
To deal with such situations, we are planning to combine
the face features with features which do not suffer from the
visibility problem, such as appearance and skeletal features.
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Abstract— Multispectral setups have a great potential to
tackle problems such as collision avoidance or pedestrian
detection. However, multispectral odometry is nowadays less
precise than most stereo visible setups, so there is a need
to improve such systems. With this work, we investigate the
fusion of inertial data with visual information to improve the
performance of multispectral setups. Inertial data are included
in the process model of an extended Kalman filter to estimate
the pose of a vehicle. But inertial measurement units drift
rapidly when integrated for a certain period of time. Visual
odometry is used to correct the predicted pose and reduce this
drift. IMU data are also used to provide a pose estimation
when images are too noisy to compute a motion (e.g. motion
blur or low contrast). Therefore, we present a new multispectral
(visible/LWIR) navigation system able to cope with fast motions
and to operate in cold environments, where the contrast of
infrared images is reduced. We demonstrate the robustness of
the setup on a series of semi-urban datasets acquired from a
car. An average error inferior to 3% of the distance traveled
between the estimated trajectory and the GPS track is achieved
on all the datasets.

I. INTRODUCTION

Visual Odometry (VO) and Simultaneous Localization
And Mapping (SLAM) have become an important part of
autonomous navigation research because they provide a
convenient and reliable alternative to classic robot/vehicle
localisation solutions. Indeed, compared to other localisation
sensors, cameras are cheaper and can easily be placed
on a huge variety of transportation systems from ground
vehicles to unmanned air vehicles (UAVs). More accurate
than inertial measurement units (IMUs), VO also possesses
several advantages over GPS navigation. Indeed, the 3D pose
of the camera is estimated for each picture taken which
means that in addition to its position, the orientation of the
vehicle can also be retrieved. Moreover, VO is not prone to
jamming and can be run indoor.

Visual Odometry [1] consists of estimating the pose of
one [2] or several [3]–[5] cameras in motion. Unless SLAM
approaches [6] which are computing and updating a map of
the environment, VO techniques are estimating the vehicle
pose relative to its original pose. Stereo setups are usually
more precise than monocular systems as they are able to
compute the exact 3D position of each feature from the
disparity between images. With a single camera on the other
hand, the depth of features is not known and the trajectory
obtained is only estimated up to a scale. Concerning stereo
systems, two main approaches can be distinguished, dense
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Fig. 1: flowchart of the EKF

and feature-based estimations. The former is maximizing the
photo-consistency in consecutive images [7], whereas the
latter is matching relevant features of the scene (points [3],
[8] or lines [9]).

VO is one of the primary tasks of any driving assis-
tance or autonomous system and is usually used by other
navigation-related applications such as obstacle avoidance or
decision making. In that sense, multispectral setups start to
get investigated as they provide more information about the
scene [10], [11]. However, such systems suffer from the lack
of similarity between images. New techniques have been
developed to match images coming from different part of
the electromagnetic spectrum [2]–[4] but multispectral VO
systems are currently less precise than other standard visible
setups such as [5]. Thermal imaging on the other hand, is
a good solution to tackle one of the main problem affecting
visible cameras: dark illumination conditions. And it is
already used for some specific applications such as pedestrian
detection [11]–[13]. Its performance is yet diminished when
the temperature of the scene is homogeneous or during
fast motion (thermal images are usually blurrier and more
prone to motion blur than visible images due to the bigger
wavelength of infrared light).

The work presented in this paper therefore aims at im-
proving the accuracy of long wave infrared (LWIR)/visible
stereo setups by using additional information from an Inertial
Measurement Unit (IMU). However, this information is not
always reliable and should be used carefully. Acceleration
for example has to be integrated twice to obtain the distance
traveled and can drift very quickly (just a few seconds) which
makes IMU devices not suitable for localization purposes
when used independently. The orientation on the other hand,
is computed from the angular velocity (integrated only once)



Fig. 2: The top row represents an average stereo pair. Bottom
left picture: thermal image subject to motion blur. Bottom
right picture: thermal image in low contrast environment (low
temperature).

and can be estimated more precisely when used in a filter
framework such as a Kalman Filter [14]. Therefore, the
uncertainty of each sensor has to be estimated properly. IMU
data have already been combined with visual information
to create visual-inertial setups (mono [15] or stereo [16])
but it has never been done with multispectral images. To
fuse information from different sensors, an Extended Kalman
Filter (EKF) is used with a similar approach to [17]. As
shown on Fig. 1, the accelerations and angular velocities
obtained from the IMU are included in the input vector of
the process model to predict the state of the system at step
k + 1. VO is then performed independently and estimates
the transformation matrix T

k,k+1 between two consecutive
camera poses. This transformation, made of a rotation R

and a translation t, is then fed to the EKF as observation to
correct the estimated state.

The main objective of this work is to evaluate the limits
of our LWIR/visible stereo setup by testing it in tough
conditions, when the temperature is approaching 0°C and
during fast motions. As a consequence, the quality of thermal
images decreases drastically and VO becomes remarkably
noisy which is critical for relative navigation where the
current pose depends on the previously estimated poses. An
error at any moment will be accumulated. Example of noisy
thermal images can be seen in Fig.2.

The innovation of this work is coming from the combi-
nation of two noisy motion estimation techniques, namely
multispectral VO and IMU to create a new, more robust
multispectral setup able to reduce the drift from IMU data
by correcting the measurements with visual information and
to recover the pose when the VO is too noisy to compute a
motion.

Fig. 3: representation of the different coordinate frames

II. KINEMATICS OF THE VEHICLE

A. coordinate system and notation

In this section the different coordinate systems and no-
tation used in the paper are defined and illustrated in Fig.
3. The vehicle is evolving in a world coordinate system
W (W

x

,W

y

,W

z

). The origin is chosen to match the inertial
frame of the vehicle I0 at the start of the acquisition.
I

k

(I
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z

) represents the inertial frame linked to the
vehicle at step k. Its origin is located at the centre of
rotation of the vehicle and the IMU should ideally be placed
as close as possible to this point. Finally, each camera
possesses its own coordinate frame C0

k
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)
and C1

k

(C1
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z

) at step k. C0 corresponds to the
left camera and C1 to the right one. A value expressed
in the world, inertial or camera frame will be represented
respectively with the indices W , I or C

i

.

B. equations of motion

The inertial sensors studied in this paper are the 3-axis
accelerometer which provides an acceleration (a

x

, a

y

, a

z

)
along each axis and the 3-axis gyroscope which provides an
angular velocity (!

x

,!

y

,!

z

) along each axis. A strapdown
technique is employed to track the orientation and position
of the vehicle from the IMU. First, the orientation is defined
over time by the equation:
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In addition to the forces generated by the movements of
the car, accelerometers are also measuring the gravitational
force created by the earth. This force, represented by the
vector g

W

= (0, 0, 9.81) has to be subtracted to the acceler-
ation values expressed in the world coordinate system. The
formula to track the velocity over time is then:
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Finally, position can be derived from velocity:
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It can be noticed that the acceleration is expressed in
the world coordinate frame but the values obtained from
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Fig. 4: Matching process between two consecutive pairs

the sensor are expressed in the inertial frame. They have
thus to be transposed to the world coordinate frame before
being used. Moreover, time is continuous but the filter is
updated only when a new pair of image is available so the
above equations need to be converted to discrete steps. As
the frequency of acquisition of the IMU data (120Hz) is
much higher than the acquisition of the images (10 Hz), the
acceleration a

I

k

, measured at step k, represents the average
of all acceleration values over the interval d⌧ between
two consecutive frames. This way, the value used is more
representative of the acceleration over the interval of time
than just a single measurement. The discrete equations of
motion are defined as:
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Where R

�1
W,I

is the rotation matrix representing the orien-
tation ✓

W

(k).

C. State representation

To estimate the pose of the vehicle at a certain moment in
time, its position, velocity and orientation are encapsulated
in a state vector:

x

k

= [X,Y, Z, Ẋ, Ẏ , Ż,�, ✓, ]
W

(7)

The state vector is expressed in the world coordinate system.
The orientation is parameterized by the Euler angles along
the 3 axis W

x

,W

y

,W

z

, respectively roll, pitch and yaw.

III. VISUAL ODOMETRY

To compute the motion of the vehicle from multispectral
(LWIR/visible) images the algorithm previously developed in
[3] has been utilized and improved. This technique consists
in finding the same features in two consecutive multispectral
stereo pairs, and then using a bundle adjustment approach, to
estimate the transformation between the two camera poses.
Two types of matching are required to get the same feature

in the 4 images: stereo matching and temporal matching
(see Fig. 4). The multispectral stereo matching is the most
challenging because of the difference in modalities. It is
performed by looking for a stereo corresponding pixel on
the epipolar line (same row when images are stereo rectified).
Each candidate is tested and a similarity score is computed
based on phase congruency and mutual information. It is a
winner takes all approach which means that the candidate
with the highest score is selected as the match. Phase Con-
gruency is an image frequency analysis technique developed
by Peter Kovesi [18] and is used here as an edge detector
for the stereo matching part and as a corner detector during
the feature detection process. Mutual information [19] on the
other side, is a statistical approach derived from information
theory and which evaluates the similarity between images
regardless of their pixel intensities. The combination of the
two techniques produces a robust cross-modality matching
technique [3]. Temporal matching is performed using the
pyramidal KLT algorithm [20]. The method, based on optical
flow, is widely used for visual odometry and robust when
applied to images of the same modality. That is why it has
been chosen to perform the temporal matching, when images
are coming from the same camera. Once all features have
been matched, motion is estimated using a window bundle
adjustment framework. The motion is parameterized by a
rotation and a translation (6 DoF in total):

X = [x, y, z,�, ✓, ]
C0 (8)

The best X vector that minimizes the reprojection errors is
then computed. The minimization problem can be expressed
as follows:

min
X

NX
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k2 (9)

Where N represents the total number of features, p
i

is the
position of the i

th feature in the previous stereo pair and z

i

is the position of the observed feature in the next pair. The
function f is defined as:

f(p
i

, X) = h

�1(R h(p
i

) + t) (10)

Where h corresponds to the function that project a stereo
feature into a 3D point and R and t are respectively the
rotation matrix and translation vector corresponding to the
vector X . To optimize the function f over X , the Levenberg-
Maquart method has been preferred over Gauss-Newton as
it more robust to bad initialization. To initialize X with
values close to the real solution and thus to converge quickly,
the transformation estimated during the prediction step of
the Kalman filter is used as an initial guess. The quality
and speed of the algorithm is also boosted by keeping
the remaining matches after the RANSAC outlier rejection
scheme onto the next iteration. Indeed, those are reliable
matches and so they are used to bring more inliers to
the RANSAC process and help increasing its performance.
Moreover, those inliers contain already matched features so
there is no need to perform the stereo matching again (which
is time consuming compared to the temporal matching).



Also, any new feature detected in a 3px radius from one of
those inliers is discarded as it probably describes the same
physical element and has a risk of being wrongly matched.
Finally, when no motion can be computed because of a lack
of features or because the optimization failed, the motion
provided by the IMU is selected instead of assuming that
the vehicle did not move. This way, the VO will not affect
the filter during the correction step if it fails. However, this
solution only works for short disruptions. The algorithm can
only rely on the IMU information for a short period of time
(few seconds) or it will start drifting.

IV. EXTENDED KALMAN FILTER

The Kalman filter is used to model the uncertainties gen-
erated by each sensor and to fuse the information obtained
from the IMU and the VO. The non-linearities involved in the
motion of the vehicle and the difference of coordinate sys-
tems (IMU data are measured in the inertial frame whereas
the state vector is expressed in the world frame) makes the
standard Kalman Filter inappropriate for this system as it
breaks the linearity assumption. Instead, an extended Kalman
filer is used where the process model is linearized.

A. Process model

As shown in Fig. 1, the process model is including the
IMU data as input to predict the state at the next iteration.
The input vector contains the acceleration and angular ve-
locity information:

u = [a
x

, a
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, a

z

, �̇, ✓̇,  ̇]
I

(11)

This vector represents the evolution of the system from
step k to k + 1 according to the IMU data. Knowing the
state of the system x

k

at step k, the future state can be
estimated by a function depending on u and x

k

:

x̂

k+1 = f(x
k

, u) + w

k+1 (12)

The process model is assumed to be perturbed by a white
gaussian noise w

k

with zero mean. From the equations of
motion derived in section II-B we obtain:
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Where R

k

is the rotation matrix representing the attitude
of the vehicle based on x

k

. Because f is not linear, the
predicted covariance matrix P̂

k+1 is computed using F

k

, the
jacobian of f(x

k

, u):
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Where P

k

is the covariance matrix of the system and Q

k

is
the noise covariance matrix.

TABLE I: camera characteristics

Model mvBlueFOX-ICG Gobi-640
Resolution 752x480 px 640x480 px

Max. frame rate 93 Hz 50 Hz
Spectral band 0.4-0.7 µm 8-14 µm

Fig. 5: experimental setup. Cameras can be seen on each part
of the IMU (orange box)

B. Observation model

As mentioned earlier, VO is providing a measurement
of the pose of the vehicle that is used by the filter to
correct the estimated state. But it is only computing the
motion between two consecutive frames, so it has to be
concatenated to the previous motions in order to obtain a
guess of the state. To do so, the measured position and
orientation are derived from the VO output and the current
state of the system as it represents the pose that results
from all the previous motions. According to section II-B,
the estimated state is only reliable if the current position and
velocity are estimated properly because it depends on the
current state of the system. The velocity estimation is more
important than the position estimation as it is also used to
compute the new position of the vehicle. That is why, even
though the VO algorithm is providing a distance between
two consecutive frames, it is the velocity that is taken into
account in the observation model, to offer a more accurate
velocity estimation, and therefore a better integration of the
IMU data at the next iteration. Thus, the observation model
is the following:
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V. EXPERIMENTS

A. Stereo setup

The algorithm presented in this work has been tested on
different datasets. The images have been acquired with a
multispectral stereo setup made of a BlueFOX-ICG (Matrix
Vision) and a Gobi-640 (Xenics). More information Con-
cerning the characteristics of the cameras can be found in
TABLE I. A wide baseline was used to separate the two
sensors in order to get a good precision during the projection
of features into 3D points and to be able to compute the depth



TABLE II: Errors obtained for all sequences.

Datasets Seq. 1 Seq. 2 Seq. 3 Seq. 4
Distance 97m 122m 879m 330m

Error on final points (VO) 3.71m 64.17m 737.93m 221.21m
Error on final points (EKF) 3.62m 0.89m 41.97m 16.61m

Error in % of the
traveled distance (EKF)

3.73% 0.72% 4.77% 5.04%

Mean error (VO) 1.24m 12.20m 419.08m 58.4m
Mean error (EKF) 2.02m 2.3m 22.64m 8.85m

Mean error in % (EKF) 2.08% 1.88% 2.58% 2.68%

of far features (up to 400m). The calibration of the stereo
setup was performed with a chessboard made of aluminium
and cardboard, two materials with different properties, so
it can be seen in both modalities. Intrinsic and extrinsic pa-
rameters were estimated using the AMCC toolbox [21]. IMU
data acquisition was performed using an MTi-G, GNSS/INS
device manufactured by Xsens. The MTi-G possesses MEMS
solid state inertial sensors and a GPS receiver. It also contains
a navigation system able to track the position and orientation
but only raw data were used here. Accelerometers have a
range of ±50 m/s

2 (5g) and a 0.02 m/s

2 bias stability.
Gyroscopes run at a rate of ±300 deg/s and have a 1 deg/s

bias stability. GPS coordinates were recorded to be compared
with the trajectories estimated by our algorithm. The setup
was mounted on a car that was driven on public roads to
simulate real navigation conditions. The environment where
the experiments took place was mainly semi-urban. Some of
the tests were also carried out on a car park. The images
were acquired with a cloudy weather and cold temperature
(approximately 0°C). Different trajectories have been tested,
including straight lines and loops. 90° and 180° turns have
been taken intentionally to test the robustness and limit of the
proposed solution during fast motion, when the whole image
is moving from one frame to the other. Longer trajectories
than [3] have been experimented.

B. Results

In total, 4 trajectories with different shapes and and
lengths (from 100m up to 900m) are presented. They can
be visualized in Fig. 7. TABLE II shows the different errors
obtained for each trajectory. VO alone (purple trajectories)
offers good performance on straight lines as seen on the first
sequence. A small drift can be perceived but it does not
exceed a few meters. It can however be noticed on the other
datasets that the VO trajectory start drifting considerably
after each important turn. Indeed, most of the corners are not
estimated properly because one or more frames could not be
used to estimate a proper motion, or if it is the case, the poor
quality of the matching is altering the trajectory computation,
which results in a wrong orientation estimation after the turn.
This can be explained by the fast motion involved by the turn.
As illustrated in Fig. 2, thermal images are easily affected
by motion blur, which reduces considerably the number of
features matched and thus the performance of the algorithm.
The failures can be easily visualized on the error graphs
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Fig. 6: Error between the estimated position and the GPS
coordinate. The purple curve represents the error obtained
with VO alone, the green curve represents the error using
the EKF.

(see Fig. 6) as they produce a peak. The Kalman filter
approach, used to fuse IMU data, can compensate for that
drift by providing a motion when VO fails or by correcting
it when images are noisy (motion blur, low contrast, etc...).
TABLE II summarized the overall results. Errors have been
computed by taking the euclidean norm between a state or a
camera pose and the GPS coordinate of the vehicle when the
picture was taken. It shows that the EKF approach reduces
considerably the final and mean errors for sequence 2,3 and
4. It can however be noticed that more error is produced on
Sequence 1 (straight line). Indeed, an average error of 2.02m
is obtained with the EKF whereas 1.24m is acheived with
the visual information alone. This shows that the use of IMU
data produces some drift than can affect the final trajectory
estimation but the difference between the two techniques
is minimal (< 1m) and the EKF still improves greatly the
motion estimation when trajectories become more complex.

VI. CONCLUSION AND FUTURE WORK

Globally, the results obtained are satisfying as the mean
error for each dataset does not exceed 3% of the trav-
eled distance. Combining IMU data with visual information
helped reducing the drift generated by VO when the image
quality is deteriorated due to low contrast in temperature
or fast motions. It is also useful for failure recovery, when
no motion can be estimated from the cameras for a short
period of time. In this paper, we have therefore introduced a
robust multispectral navigation system able to work in tough
conditions. The work presented here was more focused on the
visual-inertial fusion to create a reliable setup. We intend to
improve its accuracy in future works by performing a better
matching process with the help of the IMU. Having a first



(a) Sequence 1 (b) Sequence 2

(c) Sequence 3 (d) Sequence 4

Fig. 7: Experimental datasets. The GPS tracks, VO trajectories and EKF trajectories are represented respectively by green,
red and blue curves.

motion computed from inertial data could help predicting the
location of features on the next stereo pair and thus facilitate
the matching process.
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City-scale continuous visual localization

Manuel Lopez-Antequera1,2, Nicolai Petkov1 and Javier Gonzalez-Jimenez2

Abstract— Visual or image-based self-localization refers to

the recovery of a camera’s position and orientation in the world

based on the images it records. In this paper, we deal with the

problem of self-localization using a sequence of images. This

application is of interest in settings where GPS-based systems

are unavailable or imprecise, such as indoors or in dense cities.

Unlike typical approaches, we do not restrict the problem

to that of sequence-to-sequence or sequence-to-graph local-

ization. Instead, the image sequences are localized in an

image database consisting on images taken at known locations,

but with no explicit ordering. We build upon the Gaussian

Process Particle Filter framework, proposing two improvements

that enable localization when using databases covering large

areas: 1) an approximation to Gaussian Process regression is

applied, allowing execution on large databases. 2) we introduce

appearance-based particle sampling as a way to combat particle

deprivation and bad initialization of the particle filter. Extensive

experimental validation is performed using two new datasets

which are made available as part of this publication.

I. INTRODUCTION

Performing self-localization with a single camera is of
great interest in applications where GPS is unavailable or
imprecise, as is the case in urban environments or indoor
settings. Since it is a thriving research topic, many advances
have been made recently [1], however, there are still limita-
tions when dealing with:

• Unconstrained topology of the database: In order
to develop systems that work online, the localization
problem is usually posed as sequence-to-sequence or
sequence-to-graph matching (especially in the case of
appearance-based methods). Localizing efficiently in a
database of unordered images is an open topic.

• Changes in appearance due to illumination or weather
conditions. This leads to difficulties when comparing the
input images to those from the database. This is partic-
ularly noticeable when using local feature descriptors
such as SIFT.

To improve performance on these situations, we propose
a method that leverages state-of-the-art convolutional neural
network (CNN)-based descriptors to localize an image se-
quence taken from a monocular camera, using as reference an
unordered, GPS-tagged collection of images (such as those
readily available through Google Street View). Our proposal
builds upon Gaussian process particle filters (GPPFs), in
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Fig. 1. Our contributions allow GPPFs to localize image sequences (blue,
Málaga Urban Dataset [6] on large unordered georeferenced image databases
(red, “Málaga Street View 2016” dataset, spanning 8 km2).

which Gaussian processes (GPs) are used as observation
models for particle filters (PFs).

GPPFs were introduced for signal strength-based robot
localization in [2] and other modalities in [3], but their
practical value for visual egocentric localization was limited
at the time, as adequate image processing methods to exploit
egocentric images within the framework were not available
then. Now, recent advances from the computer vision com-
munity can be leveraged to enable egocentric localization
through GPPFs. Specifically, we propose to use on whole-
image descriptors extracted from convolutional neural net-
works trained for place recognition [4]. These representations
are the state of the art in terms of robustness to illumination,
weather, and long-term seasonal changes. An advantage of
some of these features [5] is that they are trained so that
their representations behave smoothly with respect to pose
changes, that is, the distance between descriptors grows with
increasing changes in camera pose. This behavior makes the
descriptors amenable to interpolation over the pose space,
which is desirable when used in a GPPF.

We expand upon previous work [7], in which GPs are used
as an observation model for egocentric visual localization in
an indoor scenario. Here, we introduce significant improve-
ments to allow localization in large outdoor environments
(8 km

2, Fig. 1) at interactive frame rates, while also enabling
the system to handle global localization. Due to the small size
of the image representations (8 kB per image), the system
is scalable and feasible for portable applications. The main
contributions of this paper are thus:

• The use of an approximation for GP regression (sec-
tion III-A), enabling localization using GPPFs on large
environments.

• The introduction of an appearance-based particle sam-
pling scheme to enable the filter to initialize from
an unknown location with a low number of particles



(section III-B).
• The collection of two new datasets: an unordered col-

lection of 172.000 Google Street View images which
serves as a map, and a collection of 50 sequences
gathered from Mapillary1.

We experimentally demonstrate our contributions in sec-
tion IV by performing experiments which highlight the
nature of these contributions and their effect on the success
rate of global localization.

II. RELATED WORK

Pose representations

Space is continuous. However, for practical reasons, it is
common to simplify appearance-based localization problems
(“where am I?”) by replacing them with classification prob-
lems (“in which place am I?”). Representing space as a
discrete collection of places simplifies the problem: given
a measure of image similarity, the most likely location is
the one that is most similar to the current input. With
this philosophy, FAB-MAP [8] is an approach to solve the
place recognition problem by building a probabilistic model
on top of a bag-of-words representation of images. Other
methods exploit the sequentiality of the recorded images in
the database and the live sequence, improving performance.
In this line, SeqSLAM and its extensions [9], [10], [11] pose
the problem as a sequence to sequence matching procedure,
obtaining good results even with drastic appearance changes
due to changing seasons. Similar work in [12] introduces
efficient binary descriptors that allow direct sequence to
sequence matching as a single hamming distance operation.
The CAT-SLAM [13] system performs continuous localiza-
tion: instead of discretizing the world into distinct places,
they model the world as a continuous trajectory on which
localization is performed. Although the probabilistic estimate
of the position is a one-dimensional probability density
function, however, localization is restricted to a sequence.

All of the previous methods constrain the problem to that
of sequence-to-sequence localization, in which the database
is formed by an ordered sequence of images. This restriction
becomes problematic when dealing with scenarios where dif-
ferent trajectories are possible such as in a city, where many
intersections exist and many routes cover the same locations.
Some recent work deals with localization in such scenarios:
In [14], the authors achieve localization of a moving camera
in a city, however, they achieve this by representing the
space as a dense grid, over which a Bayesian filter is
applied. Although they achieve good results, representing the
probability mass as a categorical distribution sets an upper
bound of the size of the map. The authors of [15] achieve
localization of a moving camera in a city by modelling the
location of the vehicle as a categorical distribution on a graph
of the road network. Using a graph representation of the city
instead of a grid representation is advantageous, as memory

1Mapillary offers a crowdsourced collection of videos which are geo-
tagged with poses refined using structure-from-motion techniques

and computation are not wasted on grid cells that represent
non-transitable areas.

Image representations

Extracting representations that are useful for place recog-
nition and visual localization is fundamental for any local-
ization system. As many other applications within computer
vision, visual localization has been improved dramatically
by the use of CNNs, producing image representations that
are robust to changes in illumination, weather and even the
seasons: starting with [16], where the authors explored the
use of internal representations of CNNs trained for object
recognition. Later, [17] and [4] trained networks using semi-
supervised, tripled-based training schemes to improve place
recognition performance. Recently, the authors of [18] push
the state of the art in place recognition by collecting a
massive database of images from stationary webcams to
train a CNN in a fully-supervised manner. Complementary to
these advances, the work in [5] also applies CNNs to extract
image representations that are tied to camera pose changes
by linear transformations.

Gaussian processes for localization

GPs have also been used as an observation model to per-
form indoor Bayesian localization using WiFi signal strength
[2], egocentric omnidirectional images [19] and egocentric
monocular video [7]. More specifically, GPs within a PF-
based localization (GPPFs) were introduced to the field of
robot visual localization in [3], where the pose of a robotic
blimp was tracked from an external viewpoint through a fixed
camera. We build upon these works and extend the approach
to large outdoor environments.

III. GAUSSIAN PROCESS PARTICLE FILTERS

GPPFs are defined in [3] as PFs which use GPs for both
the observation model and the transition model2. However,
for self-localization of vehicles, it is not necessary to learn
the transition model since wheel odometry is more reliable
and is commonly available. Moreover, if the input frame rate
is high enough, visual odometry (VO) can be used. The error
incurred when estimating egomotion through VO is also well
understood and does not need to be learned [20], [21].

GPs are a powerful tool to perform regression. It is out
of the scope of this paper to introduce them3, save for
a short description: An intuitive view of GP regression is
that predictions are calculated as a weighted average of
neighboring points, where the weights are assigned according
to a kernel function which provides a measure of distance or
similarity of the query point to the neighboring training set
points. GPs present two key features:

2In a PF, an observation model predicts the observation for each particle.
This prediction is compared to the real observation and determine the
likelihood of a particle surviving. A transition model moves the particles
according to some motion input. In some cases (for example, several degree
of freedom actuators), the motion model can be learned from data, to help
predict the actual motion from indirect sensing

3See [22] for a thorough reference on Gaussian processes



• GPs are non-parametric: instead of learning model pa-
rameters, the training data is used for regression.

• GPs output a probabilistic estimate of the uncertainty
of the prediction.

As an observation model for a PF, the GP performs
probabilistic regression, obtaining an estimate N (µi,⌃i) of
the image descriptor y 2 RD at any pose pi = (xi, yi, ✓i)

in the plane. To this effect, a kernel function k(pi,pj) must
be defined to yield a measure of similarity. As in [7], we
use the following kernel function to combine rotation and
translation:

k(pi,pj) = � exp

�
� ↵tkxi � xjk22 � ↵rkri � rjk22

�
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where ri = (cos(✓i), sin(✓i)), xi = (xi, yi) and �,↵t,↵r

are the kernel parameters4. The observation model for the
GPPF is the likelihood of the point belonging to the predicted
Gaussian distribution. If all of the D dimensions of the
descriptor y are assumed to be i.i.d, with standard deviation
�, we have:
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In simple terms, particles whose predicted appearance is
similar to the observation score high as long as there is con-
fidence about the predicted appearance. For this observation
model to work properly, the chosen image descriptor must be
amenable to interpolation, that is, the values of the elements
of the descriptor should behave smoothly with small camera
pose changes. Descriptors extracted with CNNs trained to
perform place recognition are well suited for this [7].

To perform localization, the GPPF iteratively carries out
the following steps. 1: Particles are moved, following some
motion input (e.g. wheel odometry). 2: Particles are scored
with the observation model (eq. 2). 3: Particles are resam-
pled: Those with higher score have bigger chances of being
sampled. We now introduce two improvements to this system
to enable online global localization in large environments.

A. Fast GP regression

GP regression becomes intractable when the size of the
database n increases, due to their quadratic and cubic in-
crease on compute time and memory use, respectively. In
the context of outdoor visual localization in a city where
the state can be any pose (x, y, ✓), we can expect that a
certain density of data points will be required to achieve
localization. The value of this density will define an upper
bound on the size of the world that the system can work
in. Several approaches to reduce the time and memory
requirements of GPs are discussed in [22], most of which
reduce the complexity by replacing the training set with
a different, smaller set of points m < n that is used for
inference. We choose the simplest of these, called Subset
of Datapoints approximation in [22]. In this approximation,
only a subset of the datapoints is used to perform inference.

4Although the GP kernel parameters and noise variance can be learned
from data, we have empirically picked the following values for all of the
experiments: ↵t = 12, ↵r = 0.025, � = 0.5, �2

n = 4

Fig. 2. Approximated GP regression allows the filter to work in large
environments. The approximation only uses points that are close (in x, y, ✓)
to the particle being weighted. The value of the GP kernel is used to define
a region from which to select these points. In this illustration, simplified to
two dimensions x, y, only points in the area with kernel values under .05
are included. The shaded database point, as well as any other points in the
database not seen in the figure, are not used to weight this particle.

In the general case, this approximation can be difficult to
implement correctly: the criterion for selecting which subset
of points to use is not always simple. However, for this
application and the selected Gaussian kernel, selecting which
datapoints to use can be done effectively and efficiently, since
that only points that are located close enough to a given
particle will have an effect in the regression of the descriptor
at that particle’s location. This can be seen intuitively: images
that are far away in position or orientation (for example,
rotated more than 90 degrees or 1 km away) have nothing
to contribute to the output. We implement this by indexing
the locations of the images of the database in a k-d tree.
During the execution of the PF, the neighboring datapoints
for each particle are searched (Fig. 2) and used as part of
the GP observation model, while the rest of the database is
ignored. Since the datapoints from the reference database are
evenly spread over the map, the weighting phase of the PF
executes in constant time regardless of the area of operation.
The time of the search does depend on the size of the map,
but it is small and grows, at worst, linearly with the number
of datapoints in the map [23].

B. Appearance-based particle sampling

When the filter is initialized with an unknown position of
the camera, particles are scattered over the map. After that,
at least one particle must be close to the right location for
the filter to be able to converge. If the map is large, this
means that a large number of particles must be used so that
the space x, y, ✓ is densely covered.

Adapting the number of particles so that they are reduced
when the filter converges has been a successful solution
for indoor, laser-based localization systems [24]. However,
on a large outdoor environment like a city, the amount of
memory and computation time required to cover the pose



Fig. 3. Drawing new particles from appearance-based nearest neighbor
proposals allows the filter to perform global localization and to escape wrong
convergence.

space sufficiently makes this unfeasible. Another common
problem with PFs is that they can converge to a wrong
solution, leaving the filter in an unrecoverable state.

Traditionally, these issues have been relieved by introduc-
ing particles at random locations at every evaluation of the
PF. We also propose to sample particles at new locations
not previously represented by the probability mass. However,
instead of sampling randomly, we generate candidates at
locations which are visually similar to the current observation
(see fig. 3), exploiting the fact that descriptors extracted from
CNNs are suitable for appearance-based image retrieval [25].

During the resampling phase of the particle filter, im-
ages similar to the current observation in the database are
searched: The na nearest neighbors of the descriptor z of
the current image are retrieved. Then, with probability pa,
particles’ poses are set to one of these nearest neighbors
(chosen randomly), instead of being resampled from the
existing probability mass. This method allows the filter to
perform global localization and to recover from incorrect
convergence. Another advantage is that the system does not
need to explicitly detect that it is lost: the same operations
are performed at every PF iteration. This search is also
accelerated by means of a k-d tree, so that its time complexity
is, at worst, linear with the size of the image database.

IV. EXPERIMENTAL EVALUATION

In this section, we first introduce the datasets used to
perform our experiments: two new datasets and an already
existing one. We then perform experiments analyzing the
effects of fast GP regression and appearance-based sampling.
Finally, we test our system on a challenging crowdsourced
collection of sequences.

Datasets and image representation

All our experiments are performed with datasets from the
city of Málaga (Spain). We have gathered two new datasets
and also use an existing sequence.

Málaga Street View 2016: In order to have a database
of images covering a large surface in which to localize
video sequences, we collected images in an area of 8 km

2

surrounding the main campus of the university of Málaga
using Google Street View. Four images were collected at
each location where a Street View panorama was available:
facing the vehicle’s orientation, and at 90, 180 and 270
degrees. The database, shown as red points in figure 1, is
composed of 172.000 images from 43.000 locations.

Málaga Mapillary 2017: We downloaded 50 sequences
of images from Mapillary, selected so that they overlap with
the Málaga Street View 2016 dataset (used as reference).
We selected sequences whose ground truth poses met either
one of these criteria: a) Sequences of 20 or more frames in
which at least 80% of the images are within the bounding box
of the reference database. b) Sequences where 100 or more
frames are within the bounding box of the reference database,
regardless of the total length. We discarded sequences with
wrong or no compass information5. This dataset is intended
to be used as a difficult test case for localization, as the
sequences are recorded in uncontrolled conditions: different
cameras, modes of transport, times of day, points of view,
speeds, etc.

Málaga Urban Dataset (2013): We also rely on the
Málaga Urban Dataset [6] as an easier sequence on which
to localize (when compared to the Mapillary sequences), as
it is long and recorded from a forward-facing viewpoint on
a stable platform. It is sourced from video recorded with a
Bumblebee 2 stereo camera mounted on a car. The sequence
was recorded on a single 37 km run and includes precise
ground truth location from RTK GPS.

Image representation: On all our experiments, we extract
NetVLAD [4] descriptors to represent images, following
preliminary results where “off-the-shelf” CNN representa-
tions and other compact descriptors for place recognition
[17] did not work as reliably. The dimensionality of the
NetVLAD descriptors is reduced from 1024 to 128 elements
through principal component analysis (PCA). This reduction
is computed on the reference database (Málaga Streetview
2016) and applied online to the images of the test sequence.

Experiment 1: Fast GP regression

To evaluate the effect of the subset of data approximation,
we select random entries (image descriptors and poses)
from the Málaga Street View 2016 dataset. We then predict
their values through GP regression, using a variable number
of neighboring points as data. We compare the result of
performing GP regression using a small number of points
yfastGP with the result obtained using a large number of
points yGP (since using the whole dataset is not possible on
a normal desktop computer due to memory constraints, we
select a ‘large’ number of points by picking all points within
100 m of the query). We record the normalized euclidean
distance from the result of the approximated GP regression

5We assumed wrong orientation if it differed by more than 30 degrees,
on average, from the orientation of the vectors pointing from the location
of each point to the next one in the sequence



Fig. 4. Using only the neighboring points for GP regression is sufficient
on the Málaga Street View 2016 dataset and enables timely execution.

to that of the ‘full’ GP, ||yfastGP � yGP ||/||yGP || for each
test case. Results are averaged over 100 test samples and
shown in figure 4. As expected, error decreases when the
search radius is increased, also increasing the computational
demand. More importantly, selecting a radius larger than
30 m yields almost no error reduction, validating the use of
this approximation for localization. We fix the search radius
to this value in the following experiments.

Experiment 2: Appearance-based particle sampling

We now test the added value of appearance-based sam-
pling of new particles as introduced in section III-B. We
do this by evaluating the full localization system, using
the Málaga Street View 2016 dataset as reference, and the
Málaga Urban Dataset as the test sequence (both shown in
figure 1). The problem is reduced to 2D localization by
projecting the poses of the database and the test sequences
onto a 2D plane tangential to Earth’s surface at the mean
point of the locations in the reference database. The PF is
initialized by uniformly scattering particles on the map. The
size of the filter is set to 500 particles in all our experiments.
To simulate errors in motion sensing, the ground truth motion
between consecutive frames in the test sequence is perturbed
by noise6 before being used as the odometry input. Particles
are moved with the same motion model doubling the amount
of position and rotation noise that is added to the actual
input. This is done in order to enforce diversity in the
particles’ poses. The particle filter is evaluated (weighting
and resampling) after every 5 m of motion according to this
simulated odometry. The output of the system is calculated as
the mode of the distribution, estimated by running mean shift
on the position of the particles with a Gaussian kernel of � =

20 m. The system is considered to have localized correctly if
this estimate is within 15 m of the ground truth position. In
each run of the simulation, a randomly selected section of the
Málaga Urban Dataset sequence is used, effectively testing
on different subsets of the test sequence. Each simulation is
executed over 1000 consecutive frames.

We test the effect of appearance-based sampling by vary-
ing the values of the parameters pa and na and observing

6Gaussian noise with �d = 0.1d is added to both elements x, y of the
motion vector, where d = ||(x, y)||2. The orientation of the particles is
also perturbed by Gaussian noise with �r = 0.05|r|, where r is the angle
of rotation of the ground truth motion.

Fig. 5. Sampling a few particles from the reference database at each
iteration based on their appearance enables global localization. If too many
particles are sampled this way, the filter degenerates into frame-by-frame
appearance-based place recognition

their effect on the localization performance. In fig. 5, we plot
the fraction of localized frames in the sequence over 100
particle filter simulations for each value of pa. The figure
shows how completely disabling appearance-based sampling
(pa = 0) makes it very difficult for the PF to localize, as it
is highly unlikely that a particle is randomly sampled at the
correct pose during initialization. Enabling appearance-based
sampling by selecting a small value of pa allows the newly
sampled particles to drive the distribution close to the ground
truth location, however, if pa is large, then many particles are
sampled based on image appearance on every step, making
the distribution of particles frequently ‘jump’ from location
to location, discarding any accumulated evidence. The effect
of the value for na is not shown in the figure, since we
found the method to be quite robust to the specific value of
the number of neighbors within a range 2 < na < 10.

Experiment 3: Localization of crowdsourced sequences

We evaluate the localization system using both improve-
ments (fast GP regression and appearance-based particle
sampling) by performing localization of the sequences from
the Málaga Mapillary 2017 dataset. This experiment has
the same structure as experiment 2, fixing pa = 1% and
na = 2. These sequences are more challenging than the
Málaga Urban Dataset [6], since they were captured in
unconstrained conditions and vary in length from 100 m to
5.6 km, the shorter ones being more difficult to localize as
the filter has less chances to accumulate evidence.

We test our system on these sequences and compare
against a baseline where each particle is directly weighted
using the descriptor distance to the closest image in the
database, that is: w = e

�||z�yNN||2 , where yNN is the
descriptor of the image in the database closest to the particle
being weighted7. This baseline uses the same image repre-
sentation as our proposal (PCA-reduced NetVLAD). We also
endow it with appearance-based particle sampling (Sec. III-
B). Otherwise, global localization is nearly impossible on
this dataset. This comparison thus highlights the advantage
of performing probabilistic regression instead of a simple

7we first search for the four closest images and then pick the one with
the most similar orientation



Fig. 6. Fraction of localized frames in sequences 15 to 50 of the Málaga Mapillary 2017 dataset, averaged over 20 runs.

image-to-image comparison when performing localization,
as all other aspects (particle filter, motion model, image
description, resampling scheme...) are the same. Results are
shown in figure 6 as the average number of localized frames
for 20 runs on sequences 15 to 50. Sequences 1 to 14
are shorter (under 700 m) and neither the baseline nor our
method achieved localization.

V. CONCLUSIONS

In large environments, global localization with a stan-
dard particle filter is infeasible using a normal GPPF. The
appearance-based sampling introduced in section III-B en-
ables global localization with a small number of particles
by exploiting appearance-based retrieval techniques. The use
of a subset of data approximation allows evaluating the
observation model in linear time instead of quadratic time,
making GPPFs feasible in large environments.

Experimental validation shows that these advances enable
the use of GPPFs for practical, online localization based
on egocentric images. As part of this publication, we offer
the Málaga Street View 2016 and Málaga Mapillary 2017
datasets online at mapir.isa.uma.es.
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Algorithms for limited-buffer shortest path problems in
communication-restricted environments

Alessandro Riva, Jacopo Banfi, Arlind Rufi, and Francesco Amigoni

Abstract— In several applications, a robot moving from a
start to a goal location is required to gather data along its
path (e.g., a video feed in a monitoring scenario). The robot
can have at its disposal only a limited amount of memory to
store the collected data, in order to contain costs or to avoid
that sensible data fall into the hands of an attacker. This poses
the need of periodically delivering the data to a Base Station
(BS) through a deployed communication infrastructure that, in
general, is not available everywhere. In this paper, we study this
scenario by considering a variant of the shortest path problem
(which we prove to be NP-hard) where the robot acquires
information along its path, stores it into a limited memory
buffer, and ensures that no information is lost by periodically
communicating data to the BS. We present and evaluate an
optimal exponential time algorithm, an efficient feasibility test,
and a polynomial time heuristic algorithm.

I. INTRODUCTION

In several applications, a robot moving from a start to a
goal location may be required to gather data along its path.
This happens, for instance, in some monitoring applications,
where the robot acquires a video feed to be later processed
at a Base Station (BS) [1] or in those civilian or military
settings where a posteriori processing of log files is required
to ensure that the robot has not been hijacked by a malicious
attacker [2].

The robot can have at its disposal only a limited amount
of memory to store the collected information. In civilian
settings, this could be motivated by the need to reduce costs,
while, in military settings, this could be enforced to avoid
that a large amount of sensible data fall into the hands of a
malicious attacker. This memory limitation poses the need of
periodically transmitting data to a BS in order not to overfill
the available memory buffer.

In most application settings, it is unrealistic to assume
the presence of a robust communication infrastructure able
to uniformly cover the environment with the same (high)
transmission rate. Typical settings can instead rely only on
the presence of a limited number of “communication zones”
from where robots can reliably communicate with the BS [1].
Moreover, such zones could display a significant variability
in the data transfer rate, also according to the distance
from the communication device [3]. The combination of re-
quirements imposed by incremental data acquisition, limited
memory, and restricted communication define a challenging
path planning scenario.
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tronica, Informazione e Bioingegneria, Politecnico
di Milano, Milan, Italy {alessandro.riva,
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In this paper, we study a variant of the shortest path
planning problem with the goal of planning high-level
paths (defined in terms of waypoints to traverse) under the
constraints imposed by the above scenarios. Specifically,
the problem we consider is to compute the shortest path
between given start and goal locations in a graph representing
the environment, while (a) accounting for the storage of
the gathered information into a buffer of limited size and
(b) ensuring that no information is lost through periodic
transmissions of data from communication zones to the BS.

In particular, after formalizing the problem and proving its
NP-hardness, we present three original contributions: (i) an
optimal exponential time solving algorithm, (ii) an efficient
feasibility test that can be applied to all problem instances
to check if they admit a solution, and (iii) a polynomial
time heuristic algorithm based on the refinement of a “raw”
feasible solution. Experiments, conducted in simulations,
show that the proposed algorithms can effectively be used
to trade-off optimality of the solution against running time.

II. RELATED WORK

The problem we address in this paper shares some similari-
ties with some optimization problems studied both in robotics
and in other research fields. In this section, we provide a brief
overview of related work.

Planning high-level paths is a fundamental ability that
a mobile robot needs to possess [4]. Without constraints,
this is commonly accomplished by resorting to well-known
algorithms, like Dijkstra’s for graph-based planning [5] or
variants of A* search for geometric planning [6]. In the liter-
ature, different works try to incorporate in the path planning
problem some additional (possibly application-dependent)
constraints. For instance, [7] is one of the first works to
propose a path planning algorithm (inspired to A*) able to
cope with additional constraints, such as time, risk, energy,
and uncertainty. An example of a more recent work is [8],
which studies path planning for a solar-powered robot subject
to time and energy constraints. However, communication
issues in path planning have been mainly investigated for
multirobot systems, especially in the context of maintaining
(more or less periodically) the team of robots globally
connected through a multi-hop network while pursuing a
primary mission objective (see, for instance, the solution
devised in [9] for informative path planning under periodic
connectivity constraints).

The communication paradigm we use in this work is
introduced in [1] in the context of multirobot patrolling. It
assumes the presence of a number of “communication zones”



that robots can exploit to communicate with the BS. In this
paper, we further refine the model by associating different
zones with (possibly) different data transmission rates.

At an algorithmic level, the problem we investigate can
be framed in the class of the shortest path problems with
resource constraints [10]. In particular, it shares similarities
with variants of the Constrained (or restricted) Shortest
Path problem (CSP) [11]. The CSP is a generalization of
the shortest path problem on graphs in which each edge
is associated not only with a distance, but also with an
additional weight, and the objective is to find the shortest
path between given start and target locations subject to a
constraint on the total weight accumulated along the path.
In this regard, the literature offers some particularly relevant
works. The work in [12] investigates a generalization of the
CSP where edges may be associated to binary indicators able
to reset the accumulated weight when the corresponding edge
is traversed. This model is not applicable in our case, since
we have to deal with the possibility of transmitting only a
portion of the accumulated data. Authors of [13], instead,
propose a model that partially generalizes ours in the context
of planning shortest paths with charging stops for electric
vehicles (the filling of our buffer can be naively thought as
dual to the draining of the battery). In particular, their model
is able to cope with continuous, increasing, and concave
functions describing how batteries recharge, even when going
downhill. However, the existence of cycles with negative
cumulative weight, namely the possibility of traveling along
cycles while indefinitely recharging the battery, is clearly
ruled out by the laws of physics. In our case, we must also
contemplate such a possibility (think of a robot which takes
a detour towards a transmission area with an increasingly
higher transmission rate, and then goes back to its original
path). A Fully Polynomial-Time Approximation Scheme
(FPTAS) is presented in [14] for a restricted version of the
model studied in [13].

III. PROBLEM SETTING

We model the environment as a connected, simple,
weighted graph G = (V,E), where V represents physical
locations the robot can occupy and E represents the connec-
tions between those locations. Edges are associated with a
weight function t : E ! N+, called time function and rep-
resenting their traveling time. We assume that time evolves
in discrete steps N+, as well. Between two subsequent time
steps, the robot can either stay still at its current vertex or
move along a graph edge. In the latter case, the robot is
not allowed to interrupt an edge traversal once started, but
it must reach the destination vertex before making another
decision. In any case, at each time step, the robot stacks 1

unit (or, equivalently, any constant amount) of information
into a buffer of size B 2 N+.

The environment has some communication zones modeled
as a set of transmission vertices VT ✓ V . To formalize the
transmission of data, we define a transmission-rate function
r : V 2 ! Q that describes the amount of information a robot
can send to the BS between two consecutive time steps when

moving from a vertex to another one or staying at a vertex.
To consistently model transmissions according to reasonable
assumptions about communication and legal moves in G, we
impose some constraints on r():

1. (vertex transmission capability) r(v, v) > 0 ()
v 2 VT ;

2. (legal moves) r(u, v) = 0 for each u 6= v s.t. (u, v) 62
E;

3. (edge conservativeness) for each (u, v) 2 E, r(u, v) 
max {r(u, u), r(v, v)}.

To compact the notation, we also define the net amount of
information unstacked from the buffer in a time step:

r̄(u, v) = r(u, v)� 1.

If r̄(u, v) > 0 the amount of information transmitted exceeds
the amount of information stacked in a time step and, thus,
the robot is able to unfill information from the buffer while
moving from u to v.

The robot must move from a start vertex s 2 V to a goal
vertex g 2 V , without any constraints on the initial and final
amount of data contained into the buffer. A solution S of
our problem consists of a sequence of k pairs pi 2 V ⇥ N,
representing the number of steps in which the robot remains
still at a vertex. A solution starts from s and ends in g:

S = [p1 = (s, ts), p2, . . . , pk = (g, 0)],

where two subsequent pairs pi = (vi, ti) and pi+1 =

(vi+1, ti+1) implicitly define the traversal of the graph edge
(vi, vi+1) 2 E after having remained still for ti steps at vi.
This solution encoding defines a sequence of pairs of values
[(bI1, b

O
1 ), (b

I
2, b

O
2 ), . . . , (b

I
k, b

O
k )] representing the amount of

data present into the buffer when arriving (I) and leaving (O)
from each of the k vertices composing a solution.

We say that a solution S is feasible iff bIi , b
O
i  B for

each i = 1, 2, . . . , k. The objective is to reach the goal in
the least possible time, i.e., to minimize:

T =

k�1X

i=1

[ti + t(vi, vi+1)] . (1)

We call this problem Limited-Buffer Shortest Path problem
(LBSP).

A. NP-hardness
We now give strong evidence to the fact that LBSP is

a hard problem by proving that the corresponding decision
version, called LBSP-D, is NP-hard. In LBSP-D, the aim is
to decide whether a given instance of LBSP admits a feasible
solution with total time less than a given T , with T 2 N+. To
this aim, we construct a reduction from the decision version
of CSP, which is NP-complete [15]:
CSP-D
INSTANCE: a graph ˆG = (

ˆV , ˆE), an edge length function
l : ˆE ! N+, an edge weight function w :

ˆE ! N+, start
and goal vertices ŝ, ĝ 2 ˆV , positive integers L,W 2 N+.
QUESTION: is there a path from ŝ to ĝ in ˆG that has total
length at most L and total weight at most W ?



Algorithm 1: Graph Transformation
Input: A simple undirected graph G = (V,E), a buffer size

B, the rate function r(), the time function t()

Output: A weighted directed graph GB = (VB , AB , w)

1 function transformGraph(G,B, r, t)

2 VB  {}
3 AB  {}
4 foreach v 2 V do
5 VB  VB [ {v0, v1, . . . , vB}

6 foreach u, v 2 V do
7 for b = 0 to B do
8 x max{0, b� t(u, v)r̄(u, v)}
9 if x  B then

10 AB  AB [ {(ub
, v

x
)}

11 w(u

b
, v

x
) t(u, v)

12 return GB = (VB , AB , w)

Without loss of generality, we consider only CSP-D in-
stances in which l(u, v) � w(u, v), 8(u, v) 2 ˆE. Indeed, any
problem instance can be turned into an instance satisfying
such a constraint by simply multiplying all the lengths by a
proper constant. For the reduction, we set G =

ˆG (implying
V =

ˆV and E =

ˆE), VT = V , B = W , and T = L.
The edge time function t of LBSP-D is set equal to the
edge length function l of CSP-D. The rate function, for each
u 6= v 2 V , is defined as:

r(u, v) =

8
<

:
1� w(u, v)

l(u, v)
if (u, v) 2 E

0 otherwise

Also, for each v 2 VT , the rate function is defined as:

r(v, v) = max {r(u, v) | (u, v) 2 E} .

Notice that all the transmission rates are lower than or equal
to 1. This means that there is no advantage in staying still at
any vertex, since the buffer value would not decrease. More
formally, if there exists a solution of LBSP-D whose stop
time ti at a vertex is not 0, there also exists a not worse
solution whose stop time ti is 0. Also, because l(u, v) �
w(u, v), 8(u, v) 2 E there are no “negative cycles”, i.e.,
cyclic paths allowing to decrease the buffer value when
traveled. More generally, if there exists a solution where the
robot travels along a cycle, then there exists a not worse
solution without cycles.

Given what said above, it is straightforward to check that
the constructed LBSP-D instance admits a yes answer iff the
original CSP-D instance admits a yes answer.

IV. ALGORITHMS

A. Optimal Algorithm

We now present an exponential algorithm for solving to
optimality the LBSP defined in the previous section.

Let us notice that, despite the amount of information
stacked and unstacked could be a rational number Q, any
problem instance can be turned into an equivalent instance
where all the possible buffer states are – arbitrarily large –
integer numbers. In particular, let M be the least common
multiple of all the r̄()’s denominators. From now on, we
assume that all the values of the time function t and the
buffer size B are defined as multiple of M and thus only
integer buffer states are allowed (the original time values can
be obtained, once a solution is found, dividing by M ).

The algorithm leverages a transformation of the input
graph G, whose pseudo-code is reported in Algorithm 1.
The directed graph obtained, GB , is an expanded version of
G in which the state of the buffer is explicitly represented
for each vertex through a set of “buffer-expanded” vertices.
An optimal solution to the LBSP on G is then obtained by
simply finding a shortest path on the new graph GB .

In order to simplify the pseudo-code, it is assumed that,
for each u, v 2 V , t(u, v) = 1 if (u, v) 62 E. Also, we
set t(v, v) = M . The algorithm starts by creating B + 1

vertices {v0, v1, . . . , vB} for each vertex in V (lines 4-5):
these vertices univocally identify the state of the robot, i.e.,
vi means that the robot is at v with buffer state i.

The algorithm then builds the set of arcs, which are of
two types: those connecting vertices of GB corresponding
to the same vertex of G, but with different buffer states
(i.e., connecting vi and vj), and those connecting vertices of
GB corresponding to different vertices in G (and possibly
different buffer states). In the pseudo-code, when u = v, the
first case is handled, otherwise, the second case is covered
(lines 6-11). These arcs correspond to temporal transitions in
the system state. Following an arc, the robot can either stay
still on a vertex of G and change its current buffer state, or
move to another vertex of G (possibly changing his buffer
state too). Notice that, for each vertex in VB , there is exactly
one arc of the first type and at most |V |�1 arcs of the second
type. This means that |AB | is lower than or equal to MB|V |2
(where B is the buffer size).

Once the graph GB is returned, a shortest path algorithm is
applied, e.g., Dijkstra’s algorithm, to find a shortest path from
sb0 to any gx, where s and g are the start and the goal vertices
on G, respectively. (x could be restricted to a set of values,
if additional constraints to the final state of the buffer are
imposed.) The correctness of the algorithm follows from the
fact that we are explicitly representing all the possible buffer
states. The whole computing time of the transformation and
the shortest path seeking is clearly exponential, and both
upper-bounded by O(MB|V |2).

B. Feasibility Test
To decide the feasibility of a given problem instance, one

could apply Algorithm 1 and check whether the obtained
graph GB contains at least an (s, g)-path. If not, the instance
does not admit any feasible solution. However, since the
computing time of such a procedure could be large (recall
the above complexity bound), it could be useful to have at
hand a faster method to decide feasibility.



Algorithm 2: Find Times
Input: A feasible walk w = [v1, . . . , vk] on G, a buffer size

B, the rate function r(), the time function t()

Output: A sequence of times T

1 function findTimes(w, B, r, t)

2 b

I
, b

O
, T  k-length array initialized to 0

3 for i = 0 to k � 1 do
4 b

O
i  max{0, bIi � tir̄(vi, vi)}

5 b

I
i+1  max{0, bOi � t(vi, vi+1)r̄(vi, vi+1)}

6 if bIi+1 > B then
7 updateTimes(T, b

I
, b

O
, i)

8 updateBu↵ers(T, b

I
, b

O
, i)

9 return T

We now present a simple method that leverages two
additional graphs G1 = (V1, E1, w1) (weighted) and G2 =

(V2, E2) (unweighted). To obtain G1, we set V1 = V and
E1 = E. Then, for each (u, v) 2 E1, we set w1(u, v) =

max {0,�t(u, v)r̄(u, v)}. The weights of G1 represent the
amount of stacked data (i.e., the amount of increase of the
buffer value, if any) the robot attains when traversing (u, v).
For what concerns G2, the set V2 is the set of vertices of
G whose transmission rate is strictly greater than 1, plus s
and g. We add an edge (u, v) to E2, with u, v 2 V2, iff the
length of the shortest path from u to v in G1 (with weights
w1) is less than or equal to B. This is equivalent to say that
there exists a u-v path in G such that it is always possible
to travel from u to v without overfilling the buffer (for a
sufficiently low buffer state in u).

Given the graph G2 constructed as above, it can be
easily shown that an (s, g)-path in G2 exists if and only
if the problem instance admits at least a feasible solution.
The computing time of this procedure is bounded by the
complexity of finding a shortest path between each pair of
vertices in G1 (to compute E2), that is, O(|V |3).

C. A Heuristic Algorithm
We now present a heuristic algorithm based on the re-

finement of an initial solution, which can be obtained from
a weighted variant of the graph G2 used above for the
feasibility test. In particular, we start by constructing the
“skeleton” of the heuristic solution as the walk (a sequence
of possibly-repeated vertices) w = [s = v1, v2, . . . , vk = g]
associated to the shortest (s, g)-path on G2 according to a
set of weights w2. Specifically, the weight w2(u, v) of an
edge (u, v) 2 E2 is defined as the traveling time of the path
associated to the satisfaction of the buffer constraint (i.e.,
the traveling time of the path obtained by minimizing the
weights w1 defined previously). We now present a method
to compute the sequence of stopping times for w. (In fact,
this method allows to compute the stopping times for any
given sequence of vertices underlying a feasible solution.)

Formally, in order to obtain a solution S = [p1 =

(s, ts), p2, . . . , pk = (g, 0)], we have to find a sequence
of times T = [t1 = ts, t2, . . . , tk = 0] such that the

Fig. 1: Experimental environment (size 400 ⇥ 300 m). Red
discs represent the communication zones (e.g, areas covered
by RF transceivers).

buffer constraint is satisfied and the objective function (1) is
minimized. To this aim, we use the procedure of Algorithm 2.

The algorithm iterates through the vertices of the walk,
iteratively updating the buffer state bI , bO at each vertex.
The idea is that, at a given vertex vi, if the robot cannot
reach the next vertex vi+1 in the walk, it has to necessarily
transmit a certain amount of information before proceeding
further. Such an amount is transmitted by the updateTimes()

function, which iteratively tries to exploit the vertices with
the higher transmission rates. More precisely, the algorithm
makes use of two functions, which have access to the input
data B, r, t.

• updateTimes(T, bI , bO, i): it starts computing the
amount to transmit q = bIi+1 � B, in order to proceed
further through the walk. This function tries to transmit
q units of information at each already traversed vertex
(index less than i + 1), starting from the one with the
highest transmission rate and considering only those
vertices whose rate is greater than 1. At each transmis-
sion attempt, for each j < i, we check two constraints:
(1) at vertex vj , the robot cannot transmit more than
the current value of bOj and (2) moving backward from
vi+1 to vj (without ever stopping) the buffer has to
never exceed B. At this point, if q units of information
are completely transmitted, the sequence of times T is
updated.

• updateBu↵ers(T, bI , bO, i): given an updated sequence
of times T , it straightforwardly updates the buffer states
bI and bO, up to the vertex vi+1.

The algorithm has a complexity of O(|w|2), since
updateTimes() can be run in O(|w|) by pre-sorting the
vertices in the walk by transmission rates and pre-computing
the distances between each pair of vertices. Therefore, the
whole heuristic complexity (including finding a feasible
solution) is O(|V |3 + |w|2).

V. EXPERIMENTS

We implemented the algorithms described in the previous
section in C++ (using the LEMON graph library [16]) and in
this section we evaluate their performance in monitoring the
simulated military outpost depicted in Fig. 1 (size 400⇥300



m), where we are interested in keeping the buffer size as
small as possible. All the experiments are run on a laptop
equipped with an Intel Core i7@2.70 GHz CPU and 16 GB
RAM.

Planning takes place on the vertices of a uniform 4-
connected grid, where two adjacent vertices are separated
by a length of 4 m. The robot moves at 4 m/s, collecting 8

Mbit/s of data (for instance, a video feed at low resolution),
which will represent our basic buffer unit (i.e., the “+1”
unit of data stacked into the buffer at each time step). The
environment presents three RF transceivers (e.g., WiFi), with
maximum range of 20 cells (80 m) whose bitrate changes
across the different experiments according to the distance
from the transceiver location.

In the first set of experiments, we keep fixed start
and goal locations as shown in Fig. 1 and study how the
solution cost (expressed as number of time steps) and the
runtime of our algorithms vary as a function of the buffer
size B. We model a conservative scenario where the available
bitrate at the center of the communication zone is 32 MBit/s,
and decreases each 4 grid cells of 8 MBit/s: therefore, the
robot can transmit at rates 4, 3, 2, 1 w.r.t. the buffer unit, and
the maximum range is reduced to 16 cells. (When moving
between cells having a different rate, we assume that the
robot can transmit at the minimum of the two rates.)

Fig. 2 summarizes the results obtained. Examining
Fig. 2(a), we can immediately notice how the optimal al-
gorithm behaves significantly better than the heuristic. At
the same time, note that both the algorithms are able to
obtain feasible solutions from a buffer size B = 21. Also, in
both cases, the solution cost decreases for increasingly larger
buffer sizes. While it is expected for the optimal algorithm,
this fact suggests the soundness of the heuristic algorithm.
Fig. 2(b) shows the computing time required by the two
algorithms. Clearly, the heuristic algorithm runs faster, but
its efficiency does not always compensate for the loss in
solution quality. Fig. 4(a) reports three example paths (we
do not explicitly show where the robot stops in a cell for
1 or more steps to transmit data) computed by the optimal
algorithm and corresponding to different buffer size values:
the smallest value for which we obtain a solution (B = 21)
and the two values corresponding to sharp changes in the
solution cost (B = 29 and B = 41). Notice how these
paths vary in length according to the number of different
transmission regions traversed. Moreover, note that the three
paths belong to three different “classes”, taking routes that
cannot be reduced to each other.

In the second set of experiments, we keep fixed the
start and goal locations as before, but we model a less
conservative scenario where the available bitrate at the center
of the communication zones is 32 MBit/s, remains fixed at
this value within a distance of 4 cells from the center, and
decreases of 2 MBit/s for each subsequent cell. Again, we
study how the solution cost and the runtime of the algorithms
vary as a function of the buffer size B.

Fig. 3 shows the results. Looking at the solution costs of
Fig. 3(a), we observe the same trends of the previous set
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Fig. 2: Results of the first set of experiments (conservative
scenario).
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Fig. 3: Results of the second set of experiments (non-
conservative scenario).

of experiments. Compared to the first set of experiments,
the runtime of our algorithms (Fig. 3(b)) increases, but not
dramatically. Fig. 4(b) shows three example paths computed
by the optimal algorithm and corresponding to interesting
buffer size values. The same considerations made before hold
also in this case.

In the final set of experiments, we consider both the
scenarios above and we compare the solution quality of
the optimal algorithm against that of the heuristic one on
100 randomly selected pairs of start-goal locations for each
buffer size. For each instance, we keep fixed start and goal
locations among the two rate scenarios. Figs. 5(a)-(b) show
the number of instances for which the two algorithms return
a solution. (Note that, by construction, both the algorithms
return a feasible solution whenever there is at least one.) In
both scenarios, this number increases with the buffer size,
as expected. Clearly, for a fixed buffer size, we are able to
solve a larger number of instances in the non-conservative
scenario. Figs. 5(c)-(d) show the average gap (in percentage)
between the solution returned by the optimal algorithm and
the heuristic, plotted with 95% confidence interval bars. In
both cases, the average gap increases as the buffer size
increases. Also, note how the average gap of the conservative
scenario is significantly smaller than the gap of the non-
conservative one for a given buffer size, possibly because it
represents a simpler setting.

VI. CONCLUSIONS

In this paper we considered the problem of finding shortest
paths under a limited-buffer constraint, for a robot that ac-



(a) (b)

Fig. 4: Example paths of the first two sets of experiments. (a) Firs set (blue: B = 21, green: B = 29, brown: B = 41); (b)
Second set (blue: B = 17, green: B = 26, brown: B = 40).
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Fig. 5: Results of the final sets of experiments on 100
randomly selected pairs of start-goal locations.

quires data while the time evolves and can transmit them only
from some communication zones. We called this problem
LBSP. We proposed an optimal algorithm and an heuristic
algorithm, which leverages a feasibility algorithm and the
optimal assignment of the transmission times. In the exper-
iments, the cost of the solutions returned by the heuristic
algorithm is comparable with that of solutions found by the
optimal algorithm, but the gap increases with the complexity
of the setting. The computing time of the heuristic algorithm
is consistently shorter than that of the optimal one.

An interesting direction for future research is the investi-
gation of the applicability of the approach proposed by [17]
to our constrained path planning problem. From a theoretical
point of view, it would also be worth it to investigate the NP-
membership of the LBSP-D. Finally, we are planning the
implementation of the proposed algorithms on real robots in
order to further validate the feasibility of our approach.
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Abstract— This paper presents a summary of the current 
state of mobile robotics oriented to perform precision 
agricultural tasks on arable lands. Two approaches of robot 
configurations are identified and some relevant examples are 
mentioned in addition to identifying the trend of robotics in 
agriculture, the current limitations, and the following steps as 
understood by the authors for reducing the gap for increased 
inclusion of robotics in everyday agricultural tasks. 

I. INTRODUCTION 

Recent reports forecast annual growth in the global 
mobile robotics market between 2013 and 2019 [1]. Mobile 
robots have become widely utilized in outdoor applications 
where highly unstructured and rough terrains present a 
challenge to perform difficult tasks while maintaining a high 
level of accuracy, safety and robustness. Some commercial 
robotic systems can be found in this type of environment, 
such as the forestry and mining industries [2], equipped with 
advanced technologies for (1) positioning and orientation, (2) 
navigation and planning, and (3) sensing and identification. 
However, there are very few fully autonomous commercial-
oriented solutions for the agricultural industry and more 
specifically, solutions for arable lands, despite the fact that 
the complexity of the environment is very similar and the 
required technologies are already available. On the other 
hand, the amount of robotics prototypes for precision farming 
tasks or precision agriculture (PA) [3] has been increased 
considerably in recent years. This is due to the latest 
technological advances that have allowed 

• centimeter-level localization of mobile robots in 
outdoor environments (e.g., Real-Time Kinematics 
Global Positioning System or RTK-GPS [4]–[6]); 

• precise identification of field and crop needs by using 
hyperspectral high-resolution cameras (e.g., remote 
sensing [7]–[9]); and 

• decision making and information systems for crop 
management optimization (e.g., farm management 
systems [10]–[12]). 

The advances in the aforementioned technologies have 
helped to apply precision farming techniques in arable lands, 
which have been studied for many years. For example, 
beginning in the 1980's, the benefits of treating crop fields 
selectively began to experience increased study [13], given 
that: 
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• field and crop needs have a considerable spatial 
variability, where the use of conventional techniques 
ceases to be efficient; 

• infestations are found in patches in different areas 
and forms as well as in different types [14]; 

• required nutrients for crops are also distributed 
heterogeneously in diverse quantities throughout the 
field; and 

• heavy machinery has a considerable impact in soil 
quality, and a significant amount of energy and 
resources is required to repair such damage. 

However, until the achievement of the appropriate 
technological level to identify these field needs with the 
required precision and consecutively to act appropriately, the 
fieldwork is performed manually. Likewise, autonomous 
vehicles have demonstrated their potential in recent decades. 
In the early 1990s, initial developments at Carnegie-Mellon 
University demonstrated that an autonomous vehicle could be 
possible even when a Global Navigation Satellite System 
(GNSS) was not used [15]. These preliminary results 
encouraged the Defense Advanced Research Projects Agency 
(DARPA) to continue to support these types of projects by 
funding the DARPA Grand Challenges (DGCs) [16], which 
gradually achieved autonomous cars capable of navigating 
through urban areas while obeying all traffic regulations and 
negotiating other traffic and obstacles. Currently, Google is 
pursuing the Google Self-Driving Car project [17] with 
extraordinary results, and several states in the USA have 
begun to legalize driverless cars since 2011 [18]. This means 
that the relevant technology is ready to be used in urban, 
crowded areas. Therefore, it is ready to be applied in 
agricultural vehicles as well. 

The commercial availability of GNSSs (currently, GPS 
and GLONASS; Galileo and Compass are expected to be 
operative in 2020) has provided easier methods of 
configuring autonomous vehicles or navigation systems to 
assist drivers (note that the DGCs did not allow the use of 
such positioning systems). Today, a large number of 
navigation systems for agricultural vehicles have become 
available, ranging from mere driving assistants that instruct 
the driver whether to move left or right (light bars) to highly 
accurate vehicle steering systems (Autopilot™, Trimble; 
AutoTrac™, John Deere). These systems aid the operator in 
the precise guidance of agricultural tractors using LASER or 
GPS technology (accurate to the centimeter level) but do not 
endow a vehicle or implement with any kind of autonomy; 
they require some kind of intelligence. 

Therefore, the required technology is available today that 
will allow more robotic systems to be incorporated into the 
food industry and more specifically in the production and 
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harvesting of the product in arable lands (outdoor 
environments), with the purpose of 

• reducing the use of herbicides (polluting elements for 
water and soil); 

• applying the required amount of fertilizers 
(representing a significant amount of energy input in 
agriculture) in the required zones; 

• guiding robotic systems into the fields by minimally 
damaging both the soil and the crop; and 

• performing harvesting tasks for both grains and fruits 
in a much more efficient way.  

This article presents the current state of mobile robotics 
for agricultural tasks capable of operating in arable lands as 
well as the latest trends in automation and configuration of 
agricultural vehicles. Furthermore, based on our experience, 
this paper also addresses future guidelines to be followed to 
reduce the gap for the inclusion of robotics technologies on 
agricultural fields. 

II. TRENDS OF AUTONOMOUS VEHICLES FOR 
AGRICULTURE 

A. Automation of conventional vehicles 
The tractor is the vehicle par excellence for the execution 

of most of the work required in a crop field, given its 
robustness and versatility. With the proper tools, this 
machine can till, plant, fertilize, spray, haul, mow, and even 
harvest. Such adaptability makes this vehicle a prime target 
for automation, enabling the productivity to be increased as 
well as improving safety and reducing operational costs. Fig. 
1 presents an example of the technologies and requirements 
for the automation of agricultural tractors. An example of a 
hybrid control architecture is presented Fig. 1a, where the 
different levels of control and communications are illustrated 
(in red for low-level control −steering and speed control−; in 
green for the communications between the tractor and the 
implement; and in purple for high-level perception and sensor 
systems). Fig. 1b presents an example of the basic systems 
(actuators and sensors) to enable a tractor to be completely 
autonomous. 

Several attempts to automate diverse types of tractors 
have been investigated and performed around the world in 
previous decades. At the University of Illinois, USA [19], a 
guidance system for an autonomous tractor based on sensor 
fusion was developed in 1998, including machine vision, 
RTK-GPS, and geometric direction sensor (GDS), achieving 
a lateral average error of approximately 8.4 cm at 
approximately 2.3 m/s. In 2006, on the Department of 
Agricultural and Biological Engineering, University of 
Florida, USA [20] an autonomous guidance system for use in 
a citrus grove was developed based on machine-vision 
(guidance average error of approximately 2.8 cm) and Laser 
Radar (LADAR guidance average error of approximately 2.5 
cm.) and was tested in a curved path at a speed of 
approximately 3.1 m/s. 

Figure 1.  Example of agricultural tractor automation. a) Schematic 
diagram of the control elements and communication interfaces (ECU for 
Electronic Control Unit). b) Schematic diagram of the distribution of the 

diverse sensorial and actuation systems for adapting any agricultural tractor 
into an autonomous robot. 

Other developments of automation of agricultural tractors 
can be found in Table I. Some research work has gone a step 
further and has integrated autonomous vehicles with 
automated tools. One relevant example is the work conducted 
by Nørremark [21], where an automatic intra-row weed 
control system [22] was connected to an unmanned tractor 
[23], linked via a hydraulic side-shifting frame attached to the 
rear three-point hitch of the vehicle. Currently, several 
companies offer the automation of conventional agricultural 
tractors, such as ASI (NAV), ATC (AUTODRIVETM) and 
Precision Makers (X-PERT). Essentially, these systems are 
installed in tractors owned by farmers, and they generally 
consist of a computer (the controller), a device for steering 
control, a localization system (mostly based on RTK-GPS) 
and a safety system (mostly based on a LIDAR). Most of 
these systems are compatible only with the most advanced 
tractors that feature ISOBUS (ISO 11783: Tractors and 
machinery for agriculture and forestry — Serial control and 
communications data network) control technology. Thus, the 
controllers connected to the ISOBUS are able to access other 
subsystems on the tractor (throttle, brakes, auxiliary valves, 
power take-off, linkage, lights, etc.). Another shortcoming is 
their lack of intelligence in solving problems, especially upon 
the detection of obstacles, given that they are not equipped 
with the proper technology to characterize and identify the 
type of obstacle and to estimate their possible behavior. 



  

This information is essential for defining any behavior 
other than simply stopping and waiting for the situation to be 
resolved by itself. A shortcoming of this approach is that the 
conventional configuration of a standard tractor driven by an 
operator is designed to maximize the productivity per hour, 
and thus, the general architecture of the system (tractor plus 
equipment) is only roughly optimized. A conventional tractor 
must cover a wider range of equipment with the same fixed 
unit of a given power/weight. The complexity of the 
conventional tractor is also affected by operator needs with 
regard to ergonomics and safety, and the resultant 
productivity is related to the needs of the operator in terms of 
tiredness and the limited number of working hours in a day. 

B. Specialized mobile platforms 
The second approach to the introduction of mobile robots 

in agriculture is the development of specialized autonomous 
vehicles, where the researchers develop mobile platforms 
more like robots than tractors. One of the most promising 
robotic platforms under development is the BoniRob [28], a 
multi-purpose robotic platform for agriculture applications 
consisting of four independently steerable drive wheels and 
capable of adjusting its track width, making this platform 
adaptable to different scenarios in the agricultural field. The 
platform is equipped with the sensorial systems commonly 
used in robotic applications in agriculture, such as Lidar, 
inertial sensors, wheel odometry and GPS. Moreover, the 
robotic platform can be retrofitted and upgraded with 
exchangeable application modules or tools for crop and weed 
identification, plant breeding applications and weed control. 

Nevertheless, this robot configuration limits the 
intervention area to the space below the robot, restraining its 
flexibility and versatility. Furthermore, given the robot 
morphology, this configuration presents a disadvantage when 
operating in irregular areas with considerable slopes or with 
the presence of ditches and gully erosion, where high stability 
and rollover safety is required. Moreover, articulated 
wheeled robots (AWR) present some drawbacks regarding 
the control of redundantly actuated systems, which exhibit 
complex interactions with the environment, limitations on the 
operational speed, and complex joint designs regarding 
control systems and brakes, making the control motion much 
more difficult than conventional wheeled mobile robots. 
Another drawback of this robot platform is that it is 
completely powered by electrical power, which diminishes its 
autonomy capacity regarding operational working time 
compared to conventional combustion systems. Other 
examples of mobile platforms under development that focus 
on performing precision agricultural tasks, are Rippa [29], 
Ladybird [30], Kongskilde Vibro Crop Robotti [31], and 
AgBot II [32]. Table II shows a summary of the diverse 
robotic platforms. These robots are oriented to fertilizing, 
seeding, weed control and gathering information and have 
similar characteristics between each other in terms of weight, 
load capacity, operation speed and morphology. Fig. 2 
illustrates some pictures of those platforms. Tools, 
instrumentation equipment and intervention mechanisms are 
basically under the robots, and the task is performed in the 
area just below the robot, thereby limiting the maximum area 
of intervention. This feature also prevents these robots from 
intervening in farmlands with considerable (medium to high) 

TABLE I.  SOME EXAMPLES OF TRACTOR AUTOMATION AROUND THE WORLD 

Author, year Country Navigation technology and error 
obtained Application 

O’Connor et al. 
[24], 1996 USA CDGPS-based system. Speed: 0.9 m/s; 

heading error: 1°; lateral error: 2.5 cm Tractor guidance following curved path using a unique Carrier 
Phase Differential GPS (CP-DGPS) sensor Thuilot et al. [25], 

2001 France CDGPS-based system. Speed: 1.7 m/s; 
lateral error: 60 cm 

Blackmore et al. 
[23], 2004 Denmark RTK-GPS and steering potentiometers; 

lateral error: 10 cm 
Automatic steered tractor capable of following a predefined route 
plan 

Bergerman et al. 
[26], 2012 USA 

Laser sensors, driving and steering wheel 
encoders. Speed 0.9 – 1.3 m/s 

Self-driving orchard vehicle for tree pruning and training, blossom 
and fruit thinning, fruit harvesting, mowing, spraying, and 
sensing. 

Kayacan et al. [27], 
2015 

The 
Netherlands 

RTK-DGPS. Speed: 0.6 m/s; lateral error: 
40 cm  Tractor guidance using model predictive control for yaw dynamics 

 

TABLE II.  EXAMPLE OF SEVERAL SPECIALIZED PLATFORMS. 

Vehicle Applications Comments 
BoniRob [28] Crop and weed 

identification, plant 
breeding, weed control 

− It has four independently steerable wheels capable of adjusting its track distance to the crops 
− Its intervention area is limited to the space below the robot, limiting its flexibility and versatility.  
− It must control redundant actuated systems 
− It is powered only by batteries, which diminishes its working time  

Rippa [29] Fertilization, seeding, weed 
control and gathering of 
information 

− The tools, sensors and intervention mechanisms are under the robots 
− The tasks are performed in the area just below the robot, limiting the maximum area of 
intervention.  
− They present difficulties working in farmlands with medium to high slopes, ditches or in the 
presence of gully erosion. 

Ladybird [30] 
Vibro Crop 
Robotti [31] 
AgBot II [32] 
Cäsar [33] Pest and soil management, 

fertilization, harvesting and 
transport  

− It lacks flexibility, adaptability, robustness and intelligence to cope with diverse scenarios 
− Its safety features are basic and unintelligent (unable to reschedule or solve the problem by itself 
after detecting an obstacle) 

Greenbot [34] Fruit, horticulture and arable 
farming, urban sector, 
waterfronts, roadsides 

− It lacks flexibility, adaptability, robustness and intelligence to cope with diverse scenarios 
− It stops functioning when it encounters unknown obstacles in its paths  
− It does not possess any detection system for weed or soil identification 



  

slopes or in the presence of gully erosion. Moreover, two 
examples of commercial autonomous vehicles are the fruit 
robot "Cäsar" (Raussendorf Maschinen [33], Germany) and 
the Greenbot (Precision Makers [34], The Netherlands). The 
Cäsar is a remote-controlled special-purpose vehicle that can 
perform temporarily autonomous operations in orchards and 
vineyards. Pest management, soil management, fertilization, 
harvesting and transport are the tasks that can be performed 
in this specific environment. Meanwhile, the Greenbot is a 
self-driving machine that has been specially developed for all 
professionals in the agricultural and horticultural sectors who 
perform work tasks that are regularly repeated. This vehicle 
can be used for fruit farming, horticulture and arable farming 
but also in the urban sector and even at waterfronts or on 
roadsides. Nevertheless, these systems lack flexibility, 
adaptability, robustness and intelligence to cope with diverse 
scenarios, and their safety features are basic and 
unintelligent. For example, 

• they are focused only on orchard and vineyard 
activities (Cäsar) or exhibit limitations with respect 
to ground clearance (Greenbot); 

• they cease functioning when they encounter unknown 
obstacles in their paths and are unable to recognize 
or interpret what is happening, and thus, they are not 
capable of rescheduling or solving the problem by 
themselves (Cäsar and Greenbot); 

• they must be manually guided to the working area 
rather than being capable of freely and autonomously 
moving to different working areas around the farm 
(Cäsar) and 

• they do not possess any advanced detection system 
for weed or soil identification, thereby limiting their 
use to previously planned tasks related to selective 
treatment (Greenbot). 

III. FLEETS OF ROBOTS 
Although the scientific and technological bases of PA are 

mostly known and robust [35], the commercial application of 
these new technologies is still very limited. To overcome this 
situation, researchers have used existing Information and 
Communication Technologies (ICT) to design and build 
improved weed and crop sensors, enhanced actuators to 
perform proper pest control and autonomous mobile 
platforms to accurately move those sensors and required 
actuators all over the working field. One example is the 
RHEA project (Robot Fleets for Highly Effective Agriculture 
and Forestry Management, founded by the FP7 programme) 
[36][37], which consisted of a fleet of small/medium-sized 
mobile robots equipped with perception systems and 
agricultural tools to perform weed management tasks in 
cereal crops, wide-row crops and woody perennials [38] (see 
Fig. 3). These vehicles were a new generation of robots for 
effective chemical and mechanical management of a large 
variety of crops with the purpose of minimizing the use of 
agricultural inputs and decreasing environmental pollution 
while improving crop quality and safety and reducing costs. 

Figure 2.  Examples of several agricultural platforms. a) BoniRob; b) 
Ladybird; c) Kongskilde Vibro Crop Robotti; and d) AgBot II. 

To accomplish this aim, RHEA conducted research in (1) 
advanced perception systems to detect and identify crop 
status, including crop row detection, and (2) innovative 
actuation systems to apply fertilizers and herbicides precisely 
as well as to remove or eliminate weeds directly. Additional 
research was focused on the development of (3) a fleet of 
small, safe, reconfigurable, heterogeneous, and 
complementary mobile units to guarantee the application of 
the procedures to the entire operation field. This scientific 
activity was complemented with technical developments in 
(4) novel communication and location systems for robot 
fleets, (5) enhanced simulation systems and collaborative 
graphic user interfaces, and (6) pioneering fuel cells to build 
clean and efficient energy sources. This fleet of robots has 
proven to be better than traditional sized vehicles regarding 
productivity (better adaptation to small fields than large 
vehicles), safer (less mass, less physical impact) and fault 
tolerance (a failure in a robot does not stop the mission). 
Furthermore, they produce less ground compaction (less 
mass, less effect on the ground) and require a smaller 
workforce (an operator can supervise several robots at the 
same time). There are some related projects that have already 
been completed or are still under development, as in the 
cases of the European projects FutureFarm and Flourish, 
respectively. 

Figure 3.  The RHEA fleet (ground mobile units and implements). 

 

 



  

FutureFarm (Meeting the challenges of the farm of 
tomorrow by integrating Farm Management Information 
Systems to support real-time management decisions and 
compliance to standards, founded by FP7 programme) [39] 
was focused on coordinating general aspects in agriculture 
farms. The project’s main aim was to increase farm 
competence and integrate goods provided by farming into 
management strategies. Alternatively, the Flourish project 
(Aerial Data Collection and Analysis, and Automated Ground 
Intervention for Precision Farming, founded by H2020 
programme) [40] is focused on bridging the gap between the 
current and desired capabilities of agricultural robots by 
developing an adaptable robotic solution for precision 
farming. 

The aforementioned projects have in common the use of 
advance information for fleet management in agricultural 
scenarios, allowing a significant reduction in time and energy 
usage. Small vehicles ensure higher positioning accuracy 
during operation and are intrinsically lighter than big 
machines. This last feature reduces the soil compaction and 
makes the vehicles safer in terms of safety to others, vehicle 
safety and crop safety, all important features in agricultural 
equipment currently [41]. However, small robots manage 
smaller implements and payloads than big machines. 
Therefore, several small robots are needed to accomplish 
tasks that are similar to what one big machine can manage. 
This raises the concept of fleets of robots with additional 
advantages regarding price (it allows farmers to get high-
technology equipment in an increasing manner), fault 
tolerance (failure in a small robot means one less robot at 
work, while failure in a big vehicle means the entire process 
on the field is stopped), mission coordination and 
reconfiguration (being able to change the fleet behavior at 
any time to optimize the mission, taking into account sudden 
changes in field conditions), etc. 

IV. DISCUSSION 
Currently, it is still not clear which of the two tendencies 

could be the most suitable for introducing robotics into 
agriculture in regard to configuring a mobile robot for PA 
tasks (automated tractors or specialized platforms). What 
many authors agree on and what has also been demonstrated 
practically in the RHEA project is that the future of PA is the 
deployment of a multi-robot configuration to perform the 
most arduous tasks that require a greater precision and a 
better use of the resources. 

Given that agriculture is a very broad economic area 
where many diverse goods are produced, some requiring 
more care and more agricultural inputs (in quantity applied) 
than others, it is clear that robotics for agriculture must 
follow a line of modularity, flexibility and adaptability. This 
is not new; for example, according to the strategic policies 
for both robotics and agricultural research in the EU defined 
by The Partnership for Robotics in Europe (SPARC) and the 
EU’s Standing Committee on Agricultural Research (SCAR), 
the challenge in the coming years is to develop robots that 
respond more flexibly, robustly and efficiently to the 
everyday needs of workers and citizens in professional or 
domestic environments. However, today, there is a long way 

to go both to manage all the information needed to operate a 
fleet of robots and to define the best configuration of that 
fleet. Some elements that still require reinforcing of their 
robustness and reliability are the following: 

• The size and morphology of each mobile robot: 
automated tractors have proven to be more adaptable for any 
agricultural task given their standards for mechanical 
connections —three-point hitch (TPH)— and 
communications —ISOBUS— and have a higher work rate, 
because they are able to cover a larger area of application. 
However, specialized platforms have proven to be more eco-
friendly (less use of fuel or totally electric) and generate less 
soil compaction, and given their size, they are less likely to 
generate extensive damage (increased safety). The selection 
of one approach or another may be conditioned to the type of 
task to be performed and how profitable it can be, which has 
not been adequately demonstrated. 

• Type and level of precision of intervention tools: the 
benefits of not treating the crop field as a homogeneous 
environment but rather identifying both its spatial and 
temporal variabilities have been demonstrated for the 
efficient usage of agricultural inputs. Nevertheless, the 
identification of the field and crop needs is an area of 
research that still requires a step change, which must be 
accompanied by the ability of the intervention mechanism or 
implements to act accurately. 

• Standards in communication: although there are 
communication standards specially focused on agriculture 
machinery, such as the ISOBUS, there is still a long way to 
go to manage the data obtained in the crop field, to interpret 
these data, and to make them available for better decision-
making. Farm Management Information Systems are tools 
that can contribute to the integration of data, including 
finances, economics, weather forecasts, soil‐structures and 
requirements, and field historic behavior. Farmers need clear 
proof that robotic systems can be profitable, and obtaining 
and managing the data to demonstrate such benefits requires 
a further advance in the standardization of the collected 
information, both outside and inside the crop field. 

• Level of autonomy: one of the great steps that robotics 
in agriculture must take is to ensure a high level of autonomy, 
almost eliminating the intervention of a human operator (to 
reach the highest level of automation according to the 10-
level taxonomy developed by Endsley [42]). All the robotic 
systems presented in this paper require a direct intervention 
by an operator to move the robotic system to the working 
area or to solve a basic safety situation (such as encountering 
an obstacle). Systems of obstacles identification and 
classification, predictors of behavior of mobile obstacles 
(such as people, animals or vehicles), and perception systems 
not prone to changes in light conditions are necessary for the 
incorporation of robotics in the day-to-day operation of a 
farm. 

V. CONCLUSION 
The technologies that will allow an increasing number of 

robots to work in crop fields are now available. Steps should 



  

still be taken to integrate such technologies, and the 
definitions of the best configurations for each of the tasks in 
crop fields remain to be identified. Demonstrating that 
robotic systems are cost-effective is one of the important 
steps that must be taken by researchers, but the acquisition 
and management of field data is necessary and still requires 
more progress and standardization. 
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Human Robot Motion:
A shared effort approach

Grimaldo Silva1 and Thierry Fraichard1

Abstract— This paper is about Human Robot Motion (HRM),
i.e. the study of how a robot should move among humans.
This problem has often been solved by considering persons
as moving obstacles, predicting their future trajectories and
avoiding these trajectories. In contrast with such an approach,
recent works have showed benefits of robots that can move and
avoid collisions in a manner similar to persons, what we call
human-like motion. One such benefit is that human-like motion
was shown to reduce the planning effort for all persons in the
environment, given that they tend to solve collision avoidance
problems in similar ways. The effort required for avoiding a
collision, however, is not shared equally between agents as it
varies depending on factors such as visibility and crossing order.
Thus, this work tackles HRM using the notion of motion effort
and how it should be shared between the robot and the person
in order to avoid collisions. To that end our approach learns
a robot behavior using Reinforcement Learning that enables it
to mutually solve the collision avoidance problem during our
simulated trials.

I. Introduction
Human Robot Motion (HRM) is the study of how a

robot should move among persons. In this context, robot
motion must be safe and appropriate. While safety relates to
guaranteeing collision-free motion [1], the term appropriate
relates to respecting concepts such as social spaces [2],
legibility and perceived safety [3].

Many recent studies have focused on tackling HRM by
teaching a robot human-like behavior, such as in [4] and
[5]. The justification for this approach is that it allows a
robot to follow the flow of the persons [4], and also allows
for better behavior legibility to persons around the robot.
Legibility is important because it was shown that persons
tend to solve collision avoidance problems in stereotypical
ways under repeated conditions [6], which implies that a
robot behaving in an uncommon way forces the person to
actively plan its motion instead of relying on already learned
motion plans, this means that human-like motion reduces
planning effort for all the persons in the environment [7].
Furthermore, another argument is that unexpected motions
can be perceived as unsafe by nearby persons even though
in practice they may be collision free [5].

In order to create human-aware robots capable of navigat-
ing among persons, most current approaches in HRM, such
as [8] and [9], operate in two steps. First the probable future
behavior of the persons is predicted without considering the
robot. Then the future robot motion is computed taking this
prediction into account. As a result, the robot always yields,

1 Grimaldo Silva jose.jgrimaldo@gmail.com and Thierry
Fraichard thierry.fraichard@inria.fr are with Univ. Greno-
ble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

that is, it avoids to the best of its ability regions where a
person is expected to go through. Collision avoidance among
persons is, however, mutually solved [10]. This means that,
depending on the current disposition of nearby persons, each
person is expected to contribute a certain amount of what
we call effort to avoid a collision. The amount of effort
expected from each person and in which manner this effort is
represented, as speed or path changes for example, depends
on many factors [10], [11], [12], such as: who is first, angle
of approach, speed and visibility.

In order to replicate human collision avoidance behav-
ior, our objective is to allow the robot to share collision
avoidance effort with people, when necessary, in a safe and
appropriate manner, that is, in a way that is expected by
its human peers. To that end our approach accounts for two
facts: visibility and crossing order. The former represents the
understanding of the robot regarding what nearby persons
can see, while the latter represents which agent in crossing
scenarios should give way to the other. Note, however, that in
situations where the person is unwilling or unable to follow
a stereotypical motion the robot in our approach will still
be able to take full responsibility for avoiding collisions.
An important aspect is how the effort needs to be shared
between persons and robot. In some situations the person
does not expect the robot to yield, such as when the person
is behind the robot but intending to overtake. Whereas in
other cases the person expects the other agent to give him
priority and also to be responsible for most of the collision
avoidance [10], as is the case when the front of the robot
would collide into the side of a person during perpendicular
crossing scenarios.

Predicting human behavior in reaction to a given robot mo-
tion in our approach depends on a human-like model (HLM),
which unlike many works in HRM such as [8] and [5] does
not use the Social Force Model (SFM) which was introduced
in [13]. Instead we rely on a slightly modified version of
Optimal Reciprocal Collision Avoidance (ORCA) [14], also
called RVO 2. This HLM was chosen as it can be directly
modified to accommodate different degrees of participation
from a particular agent during collision avoidance.

Based on the persons’ reaction to a given robot motion,
we intend to use this information to avoid collisions with
persons in a human-like way. To that end, our approach relies
on reinforcement learning (RL) [15] to learn such behaviors,
this technique was chosen for its ability to explore the state
space and also to learn behaviors that can be recalled even
in real-time situations [16].



A. Outline of the Paper

This work is divided into six sections. Section II describes
works with related concepts. Afterwards, in Sec. III a formal
description of our approach is presented and also how to
measure the additional effort required for collision avoidance.
This is followed by Sec. IV where this additional effort
measure is used to build a human-like collision avoidance
strategy. Experimental results of our approach are presented
in Sec. V. Finally, a discussion of our results, future works
and final remarks are presented in Sec. VI.

II. Background and Contributions

Initial concepts in HRM focused mainly on allowing a
robot to respect social spaces, which can be defined in a
general sense as regions that for whatever reason a person
considers as belonging to them [2].

There are many other concepts that have an influence in
HRM, such as comfort. Comfort relates to the subjective
feeling of a person that the body is relieved of negative
stimuli [17]. Many factors affect comfort, one such factor is
the visibility which has been tackled in [17] using a multi-
layer costmap that factors the cost of visibility into a costmap
in order to calculate the optimal trajectory of an autonomous
wheelchair. A definition of comfortable motion that is more
related to HRM was made in [5], it can be summarized as the
perception of a person being able to walk in their preferred
velocity and if their path felt collision free.

Among the several human-like models (HLM) that can
approximate human behavior in these cases, we highlight
the Extended Social Force Model [13], a method based on
modeling each person as being attracted to their goal (in a
preferred velocity) and being repulsed by other agents and
also static objects in the environment. Another tool used in
simulation of pedestrians, particularly in crowd simulation
[18], [19], is the reciprocal velocity objects (RVO) [14]
which is based on finding velocity choices for agents that
guarantee collision avoidance.

Given one such HLM, its possible to calculate the reaction
of a given person to a robot motion. This contrasts with
many current approaches where the planned human motion
is static [8] or probabilistic [9]. That is, in these works the
robot avoids regions where persons are predicted to go in
order to avoid disrupting their plans.

Another concept, defined in [9], was hindrance. This term
relates to situations where a person natural behavior is
disrupted due to a robot’s proximity. To that end, a human-
like planner using Markov Decision Process associates a
probability for each of the several possible person trajectories
to the goal (a distribution over trajectories), this planner is
trained by observing human trajectories. Thus, a robot is able
move towards its goal while avoiding high hindrance regions.

Our approach brings novel contributions in relation to
those works as we focus on reproducing how persons share
collision avoidance effort. To this end, it is necessary to
forecast short-term human motion plan in reaction to a given
robot action, which we accomplish with a modified ORCA.

III. Overview of the problem
A robot is tasked with reaching a given goal, in-between

his current and desired positions any number of persons may
cross his path. It is evident that collisions with persons have
to be avoided whenever possible. However, persons have cer-
tain expectations about how this collision avoidance should
take place. To solve this problem it is important to model
how the collision avoidance effort should be distributed.

A. Formalization of the problem
Consider that W represents the environment, with W ⇢

R2. In this environment, each person p and robot r that
belong to the set of dynamic objects D have positional
properties: qp = (xp, yp, ✓p) 2 R2 ⇥S

1. Thus we define the
state of a given person as sp = (qp, q̇p), where each person
also has a goal, which is known a priori, gp = (x

⇤
p, y

⇤
p , ✓

⇤
p) 2

R2 ⇥ S

1. Additionally, the robot r is also an agent in this
environment and as such also has positional properties sr

and a goal gr.
Although human behavior can be the result of large cog-

nitive effort, recent studies showed that realistic trajectories
can be generated with simple models where an agent solely
avoids local collisions [5]. Thus, our choice to utilize a
reactive HLM to evaluate human reaction to a given robot
motion over n time steps is reasonable.

One possible approach to the robot-person collision avoid-
ance problem can be posed in terms of minimizing additional
human effort. First, let ⇡p,r = {qp(0), . . . , qp(n)} be the
predicted trajectory of person p after interaction with a robot
r trajectory within a prediction window of n time steps
ahead. Moreover, consider that the additional effort of a given
trajectory is represented by a value �(⇡) ! R⇤ (detailed in
Sec. III-B). Finally, consider one possible formulation to this
problem

⇡r⇤ = argmin

⇡r2⇧r

X

p2P

�(⇡p,r) (1)

where ⇧r is the set of admissible robot motions to the goal.
In this model the robot avoids causing additional effort to the
person whenever possible, that is, it will minimize the disrup-
tion of the person’s motion plan while still reaching its goal.
This approach is necessary in case the person is unaware
of the robot or either unwilling or incapable of changing
his motion plan. Conversely, in real scenarios, a person does
not always yield. The additional effort required for collision
avoidance is shared between the persons involved. In such
context, a robot that acts unlike other persons can generate
scenarios where, for example, persons are forced to actively
think about the robot motion plan instead of relying on
already learned stereotypical trajectories. As such, to achieve
HRM it is also necessary for the robot to replicate the ability
of persons to share necessary changes in planning between
themselves in a socially aware manner in order to solve
collision avoidance situations in stereotypical situations.

To account for the effort sharing between person and
robot, the problem of collision avoidance is posed as an
optimization problem in this manner



⇡r⇤ = argmin

⇡r2⇧r

X

p2P

|(1� ↵r,p) · �(⇡p,r)� ↵r,p · �(⇡r)|

(2)
where ↵r,p 2 [0, 1] is the effort distribution coefficient (EDC)
between p and r. This coefficient indicates, at each time step,
what is the relative cost of the robot’s deviation from its
baseline goal in relation to the person, a higher proportion
engenders less deviation, this is detailed in the section IV.

B. Human trajectory cost function
Anticipating the human effort necessary to execute a given

trajectory is a necessary step in order to properly divide effort
between person and robot. Many models exist to measure this
effort. One such function is the path length and also total
time to the goal [20]. Another approach, is given by [21],
which describes the cost of a trajectory as a combination of
weighted acceleration controls.

Our work relies on the concept of understanding how
collision avoidance requires additional effort in relation
to the robot baseline motion. Baseline motion represents
the trajectory that does not account for the presence of
other agents in the environment. The interaction with other
agents, however, requires change in the motion plan. To
measure this change, the first step is calculating the distance
of an agent r to the goal at time t using dt(r, gr) =p

(xr(t)� x

⇤
r)

2
+ (yr(t)� y

⇤
r )

2 where xr(t) and yr(t) are,
respectively, the x and y coordinates of the agent r at
time t. Thus, we can define the change in distance to
the goal as �dt(r, gr) = dt(r, gr) � dt�1(r, gr). In our
approach, at each time step, a baseline change in distance
to the goal is estimated, that is, the agent plans its motion
without accounting for other agents. This baseline change in
distance to the goal at the current time step is represented by
�Bt(r, gr) and can be understood as the desired progression
to the goal.

However, interaction with other agents require additional
effort, which impose changes into the baseline motion of an
agent. Given this concept, we can define the additional effort
of r for a given trajectory as

�(⇡r) =

nX

t=1

max{0,�dt(r, gr)��Bt(r, gr)} (3)

This cost function calculates its result based on the dif-
ference from the baseline motion to the actual motion. In
this formulation, a given motion can only have an equal or
smaller cost than the baseline motion at any time step. This
definition guarantees that �(⇡) ! R⇤, which is a property
that is important in Sec. IV-B, when using it as part of a
reward function during optimization.

IV. Presentation of the Approach
Given the initial state of the person and the robot (includ-

ing position, goal and velocity), the robot wishes to find a
trajectory ⇡r⇤ that shares collision avoidance effort among
them in a similar way as another person would. Thus, in this

section we divide our approach to solve the optimization
problem of shared effort presented in Eq. 1 and Eq. 2 in five
main steps:

1) Receive information from sensors (world model/state)
2) Find 8p 2 D the ↵r,p based on current state
3) Plan collision avoidance actions up to n steps ahead
4) Send planned velocity (action) to wheels
5) Stop if goal reached, go to step 1 otherwise
As the robot receives input from its sensors it builds a

representation of the world including position of the goal,
position and velocity of nearby persons and also his own.
This information can be used to generate what is called a
model of its environment – a world model.

Information about position and velocity of nearby persons
enables the robot to calculate the amount of effort it should
share with each one for human-like collision avoidance. The
effort distribution coefficient (EDC) and the steps necessary
to calculate it are described in details in Sec. IV-A.

Given the world model and the EDC, the motion plans for
future timesteps can be calculated. To that end, Reinforce-
ment Learning (RL) is used to learn a motion plan capable of
reaching a given goal while avoiding collision with a nearby
person. Our formulation of this problem as RL problem is
described in Sec. IV-B.

Based on this overview of our approach to solve the
shared effort collision avoidance problem, in the upcoming
subsections the aforementioned steps are detailed and some
advantages and limitations of our approach are discussed.

A. Sharing effort
The proportion of effort shared during collision avoidance

between person and a robot varies depending on crossing
order and crossing angle. It is known that the person that
is giving way has to contribute more to the avoidance than
the one passing first [10]. One possible explanation for this
comes from difference in visual stimuli that both agents have,
as the person that gives way can more easily obtain visual
information about the person passing first [10]. In our current
formulation these two factors are taken into account to decide
shared effort: crossing order and visibility.

The point of potential collision, which is the position
where both agents would collide on in case they continue
in their current velocity, forms an angle ⇣r,p 2 [0, 2⇡]

between the current position of the robot r and of person
p. Henceforth, when analyzing angles of crossing scenarios,
the angle that is being referenced is ⇣r,p. Furthermore, the
angle �r,p is formed from the bearing-angle of r in relation
to the position of p. The derivative of the bearing angle ˙

�

can be a strong indicator of potential collision and also of
crossing order [22]. These angles are shown in Fig. 1.

Based on results found [10] through analysis of the per-
pendicular crossing scenarios, it was found that the person
crossing first has a maximum of 40% contribution in collision
avoidance effort, while the one crossing last has a maximum
of 40%. Furthermore, it is intuitive that in most situations of
head-on collision with similar velocities or when both person
and robot see each other but have no clear crossing order,



Fig. 1: Collision situation between r and p, where crossing
angle ⇣, bearing angle � and its derivative ˙

� are shown.

the effort is shared equally between participants. Conversely,
in scenarios where one agent is potentially unaware of
the other i.e. the passing agent is coming from behind;
the responsibility shifts to the agent that sees the other.
Recent results also indicate that agents are still able to avoid
collisions against obstacles in peripheral vision [23].

This background allows us to correctly distribute effort
during collision avoidance between a person and a robot.
Thus let ↵r,p represent the effort sharing coefficient between
r in relation to p, which we define as a proportion that
weights crossing order and visibility into the relative cost
of the robot’s deviation from its baseline motion in relation
to the person. That is, the higher the proportion, the less
deviations from baseline motions of the robot are done in
comparison to the person.

The notion that agents do not react to other agents that
are outside their field of view, which span around 180o (with
both eyes) when looking ahead [24], is translated into our
model as a function  : R ! [0, 1]. This model is used for
the robot in order to find trajectories that respect humans
expectations. Thus,  is defined as

 (�r,p) =

(
0 for |�r,p|� ⇡

2

1� e

��1(|�r,p|�⇡
2 ) otherwise

(4)

where �1 is 15. Based on this model of visibility, the shared
effort coefficient of r in relation to p that also accounts for
the passing order can be defined as

↵r,p = (1� (�r,p)) + (0.5 + f(�r,p)) · (�r,p) (5)

f(�r,p) = sgn(��r,p)(1� �(�))

 
A+

K �A

1 + exp(��2 ˙�r,p)

!

(6)

where the constants A, K and �2 are, respectively, 0.1, �0.1

and 30. Furthermore, ˙

� is the rate of change of �, sgn is
the standard sign function that extracts the sign of a real
number and � : R ! [0, 1] is a function that resembles
a smooth approximation of the dirac delta distribution that
maps � into 1 � |tanh(�3�)| in which �3 = 8 was chosen
to appropriately control the rate of convergence from one to
zero. The dirac-like distribution was used to guarantee that
the effort is always shared evenly during head-on (or near

Fig. 2: Shared effort space defines ↵p,r (both axis in degrees).
Its value indicates the relative cost of the robot’s deviation
from its baseline motion in relation a person’s deviation.

head-on) collision scenarios. Additionally, a generalized lo-
gistic function represents the boundary between the head-on
collision avoidance case and the perpendicular case (where
there may be an unequal distribution of effort).

The function f , showcased in Fig. 2, is not applied in cases
where there is no chance of collision, as there is no need to
change its motion plan, or in cases where the person does
not see the robot. In the latter case, for example, if a robot is
trying to pass a person from behind it is not appropriate to
expect the person to share effort with the robot as the robot
is outside its field of view. Thus, in both cases the robot is
responsible for the total motion effort.

B. Human-like collision avoidance

To correctly share effort between a person and a robot the
optimization problem defined in Sec. 2 is presented in this
section in a way can be solved using Reinforcement Learning
[15]. The most usual way to represent reinforcement learning
problems is as a Markov Decision Process (MDP) which
defines a tuple containing hZ,A,R, P i that are, respectively,
the set of possible states Z, the set of possible actions A, the
reward function R : Z ⇥ A ⇥ Z ! R and also a transition
function P : Z ⇥ A ! Z. At each discrete time step the
MDP observes the current state z0 2 Z and selects an action
a0 2 A, as a result, it reaches a new state z1 and receives
a reward r1. Given this formulation, the goal of the MDP
is to reach a given terminal state sf with the best expected
reward or maximize the expected reward within a certain
time frame.

A particular robot behavior, that is, a relation between
every state and action is defined as  : Z ! A and
called policy. The goal of a reinforcement learning is thus
to learn a policy  

⇤ that provides better reward than any
other policy. Among available methods of Reinforcement
Learning, TEXPLORE [16] was selected as our choice as it
is robust to noise and able to handle continuous state features.

In order for  to make a decision about the future



robot motion, the robot represents its own internal state
and the state of nearby persons into a form that can be
used in RL. As such, its RL state, defined as zt, is a
tuple h�r,g, dr,g, ⇣r,p, ttc,�r,p, ˙�r,p, dr,pi that is used a person
where its current motion has risk of collision with the robot,
where ttc represents the number of time steps to collision (up
to n steps ahead) given linear projection of current velocities,
and ˙

� is the rate of change of the bearing angle (see Fig.
1). One limitation of this state space formulation is that it
only allows for shared effort in the one person and one robot
scenario, given that adding more persons would require an
unbounded number of new states to the state space, according
to the number of people in the environment.

Using the relative angle and distance to the goal allows
the robot to learn what actions better leads him to the goal.
For instance, in the absence of collision risk, maintaining
the bearing angle of the robot to the goal, �r,g , at near zero
guarantees the reward is maximum. In a similar sense ˙

� is
used to allow the agent to measure the risk of collision, the
direction of the collision is given by �r,p and ⇣r,p. When
collision is detected within the visible range the ttc is set to
the predicted amount of time steps, its value is an arbitrary
maximum distance of collision detection otherwise.

The possible actions are a discretization of the control
space, represented as forward motion and also left and right
motions in 45o angles. The discretization was chosen in such
way to reduce learning times. To avoid sharp turns as a
result of this discretization, the generated trajectories are
smoothed using a B-spline [25]. Given this control space,
each action at in our model can be represented by a control
u(t). Furthermore, the motion u(t) can be seen a trajectory of
two points and one time step, where its cost can be expressed
in terms of �, thus for each action at in state zt its reward
is given by

rt+1 = � |(1� ↵r,p) · �(up(t))� ↵r,p · �(ur(t))| (7)

The reward in Eq. 7 is used in case the robot did not reach
its goal and there was no collision, in case otherwise, the
reward is set to, respectively twenty and minus twenty.

V. Results
In this section we evaluate our approach to shared effort

in HRM. The tests were executed inside the ROS framework
and its packages but most trajectory planning is done inside
ORCA space. The persons are simulated as holonomic agents
using ORCA and are able to change their speed, conversely,
the robot has a discretized control space that is always at
maximum speed. The robot is set to have maximum speed
equal to a person’s maximum speed, however our model is
compatible with any particular proportion between these two
speeds. Moreover, in our tests both simulated person and
robot have a circular shape with diameter of 34 cm (similar
to TurtleBot 2). The robot motion model used to find the
trajectory is point mass but restricted to three acceptable
actions, see section IV-B for details.

In these tests, the time step between t and t + 1 of our
prediction is equal 0.25 seconds.

(a) Three difference scenarios where �̇ < 0

(b) Three difference scenarios where �̇ > 0

Fig. 3: Crossing angle of 90o, where zero indicates the effort-
aware robot and one the human-like planner

(a) Three difference scenarios where �̇ < 0

(b) Three difference scenarios where �̇ > 0

Fig. 4: Crossing angle of 45o, where zero indicates the effort-
aware robot and one the human-like planner

A. Trajectories based on crossing order

The trajectories presented were made accounting for dif-
ferent crossing angles and crossing order expectations in
order to evaluate their feasibility. The goal of the person is a
point with a fixed distance away while the goal of the robot
is a random position away and an angle near the direction
of their heading, this allows one to randomize the crossing
order without altering relative velocities. This is so as the
person and the robot are set to have near equal speeds.

It is important to note that there is no perceived order
in crossing scenarios with angles of 0o, depicted in Fig. 5.
Whereas in the case of crossing angle 45o (Fig .4) and 90o

(Fig. 3), we showcase different available trajectories in the
cases where a robot has crossing order priority ( ˙�r,p < 0)
and in cases where a person has the priority ( ˙�r,p > 0).



Fig. 5: Case with no crossing order, where zero indicates the
effort-aware robot and one the human-like planner

B. Runtime performance
The runtime performance analysis of our approach is

presented in Table I to showcase that, after the policy is
trained, it can be used to provide response times that are
compatible with real-world requirements.

Policy type Avg. 1-step (s) Avg. n-steps (s)

Online 0.100489s 3.701310s
Offline 0.000479s 0.016419s

TABLE I: Runtime performance comparison with an online
policy, that updates its model while taking actions, and also
an offline policy, which only applies learned behavior.

VI. Discussion and Conclusion
This work presented an approach to allow a robot to

share the effort required to avoid collision with a person by
learning a policy that encodes stereotypical behaviors from
persons during collision avoidance. The results observed
during experimental evaluation show that the robot is capable
of sharing effort with angles 0o, 45o, 90o without simply
yielding to the person.

To our knowledge, this is the first work that approxi-
mates the human asymmetrical effort sharing during collision
avoidance in 90o crossing scenarios in different crossing
orders. This can allow a robot to better represent human-like
behavior, this is important as following stereotypical motions
were shown in recent works to reduce planning effort for
persons in the environment.

For the short term, our plan is improve our model as to
allow effort sharing with multiple persons, as our current
approach is limited to the one person scenario. This would
allow observation of cases where avoiding collisions with
someone could by consequence cause additional effort to
somebody else. Our long term goal is to apply this model
into a real robot that has to avoid collision with multiple
persons in a real environment.
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On Multi-robot Search for a Stationary Object

Miroslav Kulich1, Libor Přeučil1 and Juan José Miranda Bront2

Abstract— Two variants of multi-robot search for a stationary
object in a priori known environment represented by a graph
are studied in the paper. The first one is generalization of
the Traveling Deliveryman Problem where more than one
deliveryman is allowed to be used in a solution. Similarly, the
second variant is generalization of the Graph Search Problem.
A novel heuristics suitable for both problems is proposed
which is furthermore integrated into a cluster-first route second
approach. A set of computational experiments was conducted
over the benchmark instances derived from the TSPLIB library.
The results obtained show that even a standalone heuristics
significantly outperforms the standard solution based on k-
means clustering in quality of results as well as computational
time. The integrated approach furthermore improves solutions
found by a standalone heuristics by up to 15% at the expense
of higher computational complexity.

I. INTRODUCTION

Assume a mobile robot autonomously operating in a priori
known environment, in which a stationary object of interest
is randomly placed. The objective is to find the object, whose
position is not known in advance, in a minimal time. This
problem is formulated as the Traveling Deliveryman Problem
(TDP) provided that the environment is represented by a
graph and probability of appearance of the object is the same
for all vertices in the graph. Although TDP is similar to
the Traveling Salesman Problem (TSP), objectives of these
problems differ and thus an optimal solution for one problem
is not necessarily optimal for the second problem [1].

TDP, which is NP-hard [2], has been studied from var-
ious perspectives during the last few years. Besides exact
algorithms introduced by several authors [3], [4], Integer
Linear Programming with Branch-and-Cut and Branch-Cut-
and-Price approaches were proposed [5], [6], [7] for time-
dependent TSP which generalizes TDP. The best exact algo-
rithm [5], nevertheless, is able to solve instances with up to
107 vertices to optimality in several hours.

More useful are heuristics and meta-heuristics which pro-
vide good quality solutions with much lower computational
effort. These rely particularly on Greedy Randomized Adap-
tive Search Procedure (GRASP), introduced originally by
Feo and Resende [8], and Variable Neighborhood Search
(VNS), proposed by Hansen and Mladenovic [9]. Salehipour
et al. [10] employ a GRASP for TDP and compare the impact
of VNS procedure as a local search phase with Variable

1 Miroslav Kulich, Libor Přeučil are with Czech Institute of Informatics,
Robotics and Cybernetics, Czech Technical University in Prague,Zikova
1903/4, 166 36 Prague, Czech Republic {miroslav.kulich,
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2 Juan José Miranda Bront is with Departamento de Computación,
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
Argentina jmiranda@dc.uba.ar

Neighborhood Descent. Mladenovic et al. [11] propose a
General VNS (GVNS), which improves Salehipour’s results.
Further improvements were achieved by Silva et al. [12]
who propose a simple multi-start heuristic combined with
an Iterated Local Search procedure. To the best of our
knowledge, the approach by Silva is thus the one producing
the best results, nevertheless, time needed to compute prob-
lems containing 100 vertices is more than ten seconds and
instances with 200 vertices are computed in approximately
one minute.

Approaches used by the robotics community are simpler.
Sarmiento et al. [13] propose a modification of breadth-
first algorithm which iteratively constructs all possible routes
of the defined length, fixes the most promising one and
starts the next search from this route as a prefix. Finally,
a modified depth-first search algorithm with pruning and
limited branching was introduced in our previous work [1].

The Graph Search Problem (GSP), introduced in Kutsou-
pias et al. [14], is formulated under the same settings as
TDP, with the only difference that each vertex has assigned
probability of finding the object when visiting the vertex
and probabilities of the vertices differ in general. Besides
some theoretical results regarding approximation schemes
presented in Ausiello et al. [15], no further developments
are present in the related literature. The only exception is our
recent work [16], in which a tailored GRASP meta-heuristic
for the GSP is introduced which is able to find near-optimal
solutions for TDP and GSP problems up to 107 vertices in
about one second of computing time.

Little attention has been paid to multi-robot variants of
TDP and GSP. On the other hand, some inspiration can
be found in approaches to the Multiple Traveling Salesman
Problem (mTSP) or other routing problems. Besides genetic
algorithms, neural networks, or ant colony optimization, the
cluster-first route-second approach plays an important role.
The key idea of this approach is to split all vertices into
M clusters based on their location in space (M is the
number of salesmen) and solve the traditional Traveling
Salesman Problem for each cluster separately. For example,
Sathyan et al. [17] use k-means clustering for the first
phase followed by application of a genetic algorithm or 2-
opt heuristic. Boone et al. [18] employ an initial k-means
clustering and modify it by taking points from the cluster
with the largest tour distance and adding them to one of
the smaller clusters. Convex hulls, fuzzy logic, and the TSP
solution are used to determine which points to switch. Geetha
et al. [19] improved k-means algorithm for the Capacitated
Clustering Problem by incorporating a priority measure to the
criterion on which are vertices assigned to clusters. We use k-



means clustering followed by solution of Traveling Salesman
Problem for each cluster by Chained Lin-Kernighan as a base
of a goal assignment strategy in multi-robot exploration [20].
The presented experimental results indicate that this method
provides more efficient assignment than former approaches.

In this paper we build on experience from the works
mentioned above and present a cluster-first route-second
approach for the Multiple Traveling Deliveryman Problem
(mTDP) and the multi-vehicle case of GSP (mGSP). The
approach extends our GRASP-based meta-heuristic for the
single-vehicle problems [16] by incorporating the clustering
phase. The key contribution thus lies in design of a novel
clustering method which respects special aspects of mTDP
and mGSP. The proposed solution is evaluated computation-
ally and compared with an algorithm based on k-means. The
experimental results show that our solution has potential to
be applied in practice as it provides better results than the
k-means based approach in almost all problem instances.

The rest of the paper is organized as follows. The problem
is defined in Section II, the proposed clustering is presented
in Section III, while the key ideas of the tailored GRASP-
approach for TDP and GSP are summarized in Section IV.
Computational results including instances of both mTDP and
mGSP are presented and discussed in V. Finally, Section VI
is dedicated to concluding remarks and future directions.

II. PROBLEM FORMULATION

That is, formally, given
• a complete undirected graph G = (V,E), where V =

{v1, v2, . . . , vN} stands for a finite set of vertices and
E is a set of edges between these vertices: E =
{e1, e2, . . . e

n
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• t : E ! R: a cost t
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associated with each edge e
ij

representing time needed to traverse the shortest path
from i to j,

• p : V ! h0, 1i: a weight for each vertex representing
probability of presence of the searched object at the
vertex,

• the number of the vehicles M , and
• s

i

2 V, i 2 h1,Mi: starting vertices of the vehicles
(note that several vehicles can start from the same vertex
in general).

Define a walk ! = h!1,!2, . . .!k

i as a sequence of vertices
of G, i.e. !

i

2 V for i 2 h1, ki. The overall objective is then
to find a tuple of M walks ⌦ = h!1,!2, . . . ,!M i that visits
all vertices of V at least once (i.e. 8v 2 V 9!i
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1 = s
i

for i = 1 . . .M . The
minimal expected time is then

T
exp

= E(T |!) =
MX

i=1

|!i|X

j=1

⌧(!i, j)p(!i

j

). (2)

In summary, the aim is to minimize the average time the
vertices are visited weighted by probabilities assigned to the
vertices.

The multi-vehicle Traveling Deliveryman Problem is a
special variant of mGSP with the only difference that the
probability of finding the object is the same for all the
vertices in the graph. These probabilities can be omitted from
the equations for this case.

III. PROPOSED CLUSTERING APPROACH

The proposed method for solving both mTDP and mGSP
follows the cluster-first route-second schema. This means
that all vertices of the graph are divided into M clusters
assigned to the vehicles in the first phase. A TDP/GSP solver
is then run for each cluster separately to optimize the order
in which the vertices in the clusters are visited.

The clustering approach whose scheme is depicted in
Algorithm 1 has a greedy nature. The algorithm starts with
initialization of clusters: each cluster contains the starting
vertex of the vehicle it is assigned to and current time needed
to traverse each route is set to zero (lines 1–3). Moreover, the
set of all not assigned graph vertices V

REST

is set (line 4).
The main part of the algorithm is a loop between lines 5

and 18 which is processed until V
REST

is empty. In each
iteration of the loop, each not yet assigned vertex is examined
to attach to each of the routes. Time in which the vertex
is visited is computed first (line 9, followed by evaluation
of a penalty function (line 10). This function was designed
to prefer vertices that are visited earlier and with higher
probability of the object of interest at them.

The pair hvmin,!mini with the lowest value of the penalty
function is chosen and the vertex vmin is attached to the
end of !min (line 13) and time needed to traverse the !min

is updated accordingly (line 14). Finally, v is removed from
V
REST

(line 15). Note that the algorithm does not only return
partition of vertices into clusters, but also their orders within
the clusters (line 19). The result can be thus used as a solution
of mTDP/mGSP. An example of a solution found by the
algorithm is shown in Fig. 1.

IV. META-HEURISTIC FOR A SINGLE-VEHICLE CASE

Having the vertices partitioned into clusters, the second
step is to find the best order for each cluster. To do that,
we employ the greedy randomized adaptive search procedure
(GRASP) meta-heuristic tailored for TDP and GSP [16]. The
general scheme of the GRASP is shown in Algorithm 2.

The value of the best already found solution is initially set
to a high number in the algorithm (line 1). The meta-heuristic
then consecutively constructs initial solutions using some
simple, typically greedy, heuristic (line 4). The obtained



Fig. 1: The result of the proposed clustering method for the
bier127 problem [21] and 4 vehicles.
solution is improved by a sequence of local search steps
(line 5) and its cost is updated accordingly (line 6). If the
improved solution is better than the current best solution,
the best solution and its cost are updated (lines 7–9). After
all initial solutions are processed, the best solution found is
returned (line 10). More detailed description of the particular
steps of the GRASP follows in the next paragraphs.

We consider two heuristics for initial construction of
routes, both using the same general greedy scheme as shown
in Algorithm 3. The algorithm starts with a route containing
only the start vertex (line 1), consecutively finds the best
vertex from vertices not yet connected according to the
penalty function f . The found vertex is then appended at
the end of the route (line 4) and removed from the set of not
connected vertices (line 5).

The difference between the two heuristics lies in the
definition of f , which affects the selection of the next vertex
to be visited (line 4). We consider the standard distance-
based function, fdist(u, v) = t(u, v). In order to incorporate
the weights for each candidate, we further consider the
function fratio(u, v) = t(uv)/(1 + p(v)). As both heuristics
are deterministic, we employ Monte Carlo randomization
to generate various initial solutions – the lower the penalty
function value for the vertex, the higher probability that the
vertex is selected.

After obtaining an initial feasible solution, an improve-
ment phase is performed. In our case, a Variable Neigh-
borhood Descent (VND) [10] is used. The idea of VND is
simple: a neighborhood of the current solution is completely
searched and the best neigbor replaces the solution. This
process is repeated until no improvement is possible. A
neighborhood of the route ! defined by an operator is a set
of all routes which are formed from ! by application of this
operator. Two different neighborhoods are considered which
are formed by two local search operators:

• Swap: Select two vertices in the tour and swap them.
• 2-opt: Select two non-adjacent arcs and replace them

by two new arcs, obtaining a new route as a result.
When the result obtained by VND with Swap and 2-opt

is promising, i.e. its cost is less than 10% of the current best
solution, the LK-op operator is applied to this result. LK-
op is an adaptation of Lin-Kernighan operator [22] designed
for TSP. It starts with a feasible solution and considers each
edge sequentially as a seed for an improvement procedure.

Algorithm 1: Proposed clustering algorithm.
Input: M – the number of vehicles

G = (V,E) – a graph
t
ij

– costs of edges
p(i) – probabilities associated with vertices
s
i

2 V, i 2 h1,Mi – start vertices of vehicles
Output: ! = h!1,!2, . . .!M

i – a tuple of sequences
representing clusters

1 for i 1 to M do
2 !i  hs

i

i
3 ⌧

!

i = 0

4 V
REST

 V \ {s1, s2, . . . , sM}
5 while V

REST

6= ; do
6 min 1
7 foreach ! 2 ! do
8 foreach v 2 V

REST

do
9 d = ⌧

!

+ t(idx(v), idx(last(!))), where
idx(v) is the index of v and
last(!) is the last vertex of the route !

10 c = d

1+p(idx(v))

11 if c < min then
12 min c
13 dmin  d
14 vmin  v
15 !min  !

16 !min  !min + v
17 ⌧

!

min  dmin

18 V
REST

 V
REST

\ {v}

19 return ! = h!1,!2, . . .!M

i

The procedure attempts to obtain an improved route by
application of a sequence of 2-opt moves, not necessarily
improving the current solution, with a limited backtracking.
If such a better path is found, it is accepted as the new initial
solution and the procedure is restarted again from the first
edge. Otherwise, the algorithm moves to the next edge, until
all edges have been considered as a seed.

As LK-op is computationally demanding, the search space
is reduced in two ways. First, a length of a sequence of
performed 2-opt moves is limited to a maximum depth ↵.
Moreover, not all edges are considered for each vertex, only
limited number of shortest edges � is evaluated instead.
Detailed description of the method as well as discussion
about complexity of the particular steps can be found in [16].

V. RESULTS

Performance of the proposed approach has been evaluated
for both mTDP and mGSP. The experiments for mTDP were
run on a set of standard instances from TSPLIB [21] with
sizes between 52 and 1002. As there are no benchmark
instances for mGSP, instances from TSPLIB were also used
for which probabilities of vertices were generated randomly.
To ensure repeatability of experiments, a generator from
random.org was utilized for generating 10000 normally



Algorithm 2: GRASP scheme.
1 zbest  1.
2 foreach h 2 H do
3 for k = 1, . . . , N

it

do
4 Obtain a feasible route ! using h.
5 Improve route ! by applying a local search step
6 Update cost z of !.
7 if z < zbest then
8 !best  P
9 zbest  z

10 return !best

Algorithm 3: General greedy scheme.
Input: G = (V,E) – a graph

t
ij

– costs of edges
p(i) – probabilities associated with vertices
s – starting vertex

Output: ! = h!1,!2, . . .!K

i – a route

1 P  s
2 V

REST

 V \ {s}
3 while V

REST

6= ; do
4 v  argmin

u2VREST f(last(!), u)
5 !  ! + v

6 Return path P .

distributed random numbers between 1 and 10 and the string
”2016-09-11” was set as a seed1. Random numbers were
assigned to vertices respecting the order, i.e. i-th vertex
of an TSPLIB instance has assigned i-th random number.
Moreover, the numbers were normalized so that the sum of
probabilities of all vertices for an instance is 1.

Regarding the parameters of the method, we set ↵ = 20,
limiting the size of sequences of 2-opt moves, � = 5 for first
4 depths of backtracking, and � = 1 for the rest. N

it

was set
to 50, generating 100 initial solutions in total. Start positions
of all vehicles were set to the first vertex of the instance.

The proposed cluster-first route-second approach was com-
pared with pure clustering as proposed in Section III and with
an approach combining k-means clustering and our GRASP
meta-heuristic. More specifically, we employed k-means++
– an augmentation of k-means which significantly improves
both the speed and the accuracy of k-means [23]. We refer to
the methods as proposed, clustering, and k-means.

All experiments were performed within the same com-
putational environment: a workstation with the Intel R�Core
i7-3770 CPU at 3.4 Ghz running Linux with the kernel 4.4.0.
The algorithms have been implemented in C++ and compiled
by clang 3.8.1. with “-O2” flag. 50 runs were run for each
setup consisting of an instance, a number of vehicles, and a
method to provide statistically significant results.

The results for mTDP are presented in Table I. Meaning
of the symbols is following: M stands for the number of

1We are ready to publish the generated sequence if the paper is accepted.

vehicles, BKS for the best known solution (to the best of our
knowledge, there is no other mTDP solver and BKS is thus
the best solution found by one of the evaluated methods), SD
is standard deviation, and T is execution time. PDB is the
percent deviation to BKS of the best solution values found by
the algorithm (denoted as best), i.e. PDB=(best-BKS)/BKS.
Similarly, PDM is the percent deviation of the mean solution
value to BKS. PDBs for the method which found the best
solution are highlighted in bold. Note that clustering is
a deterministic algorithm, therefore SD is always zero and
PDM=PDB and are thus omitted.

The results show that proposed outperforms k-means
in all cases except six, sometimes by more than 20% in
PDB and by more than 30% in PDM. On the other hand,
k-means produces better results for small numbers of
robots, where the highest difference of PDM is less than
6%. clustering lies between these two. Its benefit is
much lower computational complexity in comparision to the
other methods, with no large gap of produced results to
the best found solution. Difference of computational burden
between k-means and the other methods increases with an
increasing number of vertices as the k-means clustering is
much slower that the proposed one. This applies especially
for higher Ms, for which the influence of complexity of
GRASP is reduced in comparison to clustering and
k-means is thus more than 2 times slower than proposed.

The results for mGSP are presented in Table II in the
same way as for mTDP. The running time of all methods
slightly increased in comparison to mTDP, but the situation
remains the same regarding quality of solutions. proposed
produces best results in the majority of cases, followed
by clustering. Again, k-means found best solutions
for several instances and M = 2, but the gap does not
exceed 6%.

VI. CONCLUSION

We formulated mutli-vehicle variants of two routing prob-
lems – the Traveling Deliveryman Problem and the Graph
Search Problem and introduced a novel clustering approach
which is designed especially for these two problems. The
proposed clustering was then used together with the GRASP
metaheuristics in the cluster-first route-second scheme as an
integrated approach to the problems. The proposed integrated
approach is, based on the performed experimental results,
suitable to solve both problems as it outperforms the standard
approach based on k-means clustering in quality of found
solutions in the majority of cases with lower computational
burden. Moreover, the proposed clustering can be used as a
standalone solver as it produces solutions slightly worse than
the integrated approach, but substantially faster.

Future research will go in two directions. We would like
to use the proposed clustering in GRASP as a constructive
heuristic and together with design of neighborhoods for
exchanging vertices between routes extend pure GRASP
for mTDP and mGSP. The second stream will focus on
application of the proposed approach in other robotic appli-
cations. Similarly to using a mTSP solver for the exploration



Problem M BKS clustering proposed k-means
PDB T [ms] PDB PDM SD T [ms] PDB PDM SD T [ms]

berlin52

2 70235 3.98 0.24 0 0 0.79 42.67 6.82 15.76 6070.62 64.03
4 39746 0.78 0.25 0 0 0 19.68 8.84 12.77 1052.73 31.31
6 30563 0.03 0.27 0 0 0 8.75 14.24 18.07 824.95 17.48
8 25470 1.34 0.30 0 0 0 6.61 13.53 21.11 1137.95 12.69

10 23919 1.01 0.35 0 0 0 5.14 14.83 19.05 742.42 8.96

bier127

2 2354332 10.03 0.78 1.59 2.74 8388.61 396.88 0 7.66 142517.02 540.77
4 1228367 13.10 0.64 5.84 5.84 0 116.97 0 16.83 80731.98 251.61
6 879448 4.95 0.65 0 0 0 82.52 17.52 24.22 47044.46 183.57
8 713125 0.97 0.66 0 0 0 52.17 14.96 23.25 27229.50 122.54

10 612336 0.35 0.73 0 0 0 38.65 19.48 26.01 18738.51 99.08

gil262

2 153716 8.66 3.23 0 0.98 601.31 3055.23 0.06 4.32 3130.36 4342.95
4 87114 6.96 2.16 0 0.21 81.67 1019.36 12.65 13.30 209.34 2187.43
6 65428 3.10 2.07 0 0.04 22.76 599.17 13.56 18.98 2124.00 1168.37
8 55306 1.90 2.10 0 0.01 8.14 447.16 16.25 21.84 1566.33 776.67

10 50292 0.75 2.18 0 0 2.63 329.39 19.43 23.64 1417.02 617.23

lin318

2 3140312 15.07 4.29 4.55 5.75 15004.90 5855.93 0 2.92 32535.88 5931.95
4 1811206 6.46 2.92 0 0.24 2817.56 1644.35 1.80 7.44 36532.68 2239.29
6 1431946 4.18 2.86 0 0.08 1004.02 940.59 2.35 5.92 31411.96 1371.37
8 1214427 3.24 2.85 0 0.03 292.51 563.80 4.56 8.13 44304.42 976.14

10 1129348 3.93 3.03 0 0.01 256.28 565.05 3.55 6.49 27180.85 760.35

pcb442

2 5292831 5.07 9.13 0 0.56 17515.61 14006.46 5.56 6.46 26968.07 24343.18
4 2849704 4.96 6.08 0 0.44 7294.97 3758.14 14.27 14.61 6929.25 8974.81
6 2055340 2.07 5.75 0 0.14 2272.75 1641.71 17.98 21.26 33959.70 4861.82
8 1607307 1.65 5.73 0 0.11 1234.00 1251.63 26.51 30.42 30783.56 3115.88

10 1402893 2.74 5.84 0 0.05 898.36 988.54 29.37 33.29 24376.01 2261.04

rat575

2 994166 7.01 16.96 0 0.96 3631.90 37961.41 2.20 3.10 3053.47 66531.58
4 524957 6.65 10.47 0 0.50 1110.60 9644.29 9.78 13.40 12210.99 23472.77
6 375842 6.60 10.20 0 0.22 375.69 4100.55 11.89 13.89 8107.88 11401.33
8 303082 3.46 10.10 0 0.06 137.15 2312.13 15.63 17.79 5449.48 7426.09

10 260937 1.37 10.47 0 0.05 101.79 1406.92 18.82 22.19 4480.78 5577.58

u724

2 7479059 8.28 26.90 0 1.31 39681.60 57579.28 2.86 3.47 24549.00 79037.02
4 3904506 7.77 17.47 0 0.52 8792.00 16542.24 9.23 12.04 59939.66 26556.46
6 2926359 5.31 16.85 0 0.38 4477.46 8135.85 10.39 11.53 22159.80 15149.82
8 2427262 4.49 17.03 0 0.11 1496.06 6363.60 11.95 13.89 28998.38 10828.30

10 2111492 2.46 17.42 0 0.12 1014.74 3725.07 14.90 16.67 34886.45 8564.65

pr1002

2 65541078 5.99 52.28 0.35 0.99 215703.18 183435.59 0 0.63 227427.16 279021.00
4 36553749 13.90 35.78 1.69 2.20 85095.75 53400.13 0 0.75 192716.60 81455.54
6 26676866 9.48 36.38 0 0.28 33816.36 25943.29 1.17 2.10 318901.94 43332.34
8 20946133 7.57 36.03 0 0.18 20700.88 14389.91 8.59 10.53 544729.91 30745.18

10 19540052 6.21 37.82 0.96 1.14 17698.56 9307.68 0 3.34 524410.71 22968.16

TABLE I: Comparison of the algorithms for mTDP.

task [20] and a GSP solver for search in a priori unknown
environment [1], [16], we would like to study properties of
mGSP for multi-robot search in an unknown space.
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based goal-selection strategy for mobile robot search in an unknown

environment,” Computers & Operations Research, 2016, in press.
[17] A. Sathyan, N. Boone, and K. Cohen, “Comparison of approximate

approaches to solving the travelling salesman problem and its appli-
cation to uav swarming,” International Journal of Unmanned Systems
Engineering, vol. 3, no. 1, pp. 1–16, 2015.

[18] N. Boone, A. Sathyan, and K. Cohen, “Enhanced approaches to
solving the multiple traveling salesman problem,” in AIAA Infotech@
Aerospace. American Institute of Aeronautics and Astronautics, 2015.

[19] S. Geetha, G. Poonthalir, and P. Vanathi, “Improved k-means algorithm
for capacitated clustering problem,” INFOCOMP Journal of Computer
Science, vol. 8, no. 4, pp. 52–59, 2009.
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Semantic Visual SLAM in Populated Environments

L. Riazuelo, L. Montano and J. M. M. Montiel

Abstract— We propose a visual SLAM (Simultaneous Lo-
calization And Mapping) system able to perform robustly in
populated environments. The image stream from a moving
RGB-D camera is the only input to the system. The computed
map in real-time is composed of two layers: 1) The unpopu-
lated geometrical layer, which describes the geometry of the
bare scene as an occupancy grid where pieces of information
corresponding to people have been removed; 2) A semantic
human activity layer, which describes the trajectory of each
person with respect to the unpopulated map, labelling an area
as ”traversable” or ”occupied”.

Our proposal is to embed a real-time human tracker into
the system. The purpose is twofold. First, to mask out of the
rigid SLAM pipeline the image regions occupied by people,
which boosts the robustness, the relocation, the accuracy and
the reusability of the geometrical map in populated scenes.
Secondly, to estimate the full trajectory of each detected person
with respect to the scene map, irrespective of the location of
the moving camera when the person was imaged. The proposal
is tested with two popular visual SLAM systems, C2TAM and
ORBSLAM2, proving its generality. The experiments process
a benchmark of RGB-D sequences from camera onboard a
mobile robot. They prove the robustness, accuracy and reuse
capabilities of the two layer map for populated scenes.

I. INTRODUCTION

State of the art visual SLAM (Simultaneous Localization
And Mapping) algorithms rely heavily on the rigidity prior,
which assumes that each image is filled with a that is
mostly rigid and persistent. To exploit the rigidity prior,
the algorithms include a RANSAC-like voting stage to
blindly detect and remove any dynamic element from the
mapping process. This delivers a nice robust performance
in mostly rigid scenes. Unfortunately, the observation of
populated environments implies non-persistent scene changes
and scene regions with severely non-rigid motions. The
resulting images might be filled with non-rigid and non-
persistent elements where the voting algorithms will fail. Our
goal is to develop a VSLAM (Visual SLAM) system able to
map populated scenes.

Our proposal is to detect and track people in each frame
of a video stream (See Fig. 1), Our first contribution is to
mask out of the SLAM processing those image regions corre-
sponding to human activity. Hence, we restore the validity of
the rigidity prior for the non-masked image regions that can
now be processed successfully with the standard VSLAM
algorithms. The masked frames are fused in a map that only

*This research has been funded by Spanish Government grants DPI2016-
76676 R AEI/FEDER-UE, DPI2015-67275-P and the Aragón regional grant
DGA-FSE (grupo T04). The authors are with the Robotics, Perception and
Real-Time Group, Aragón Institute of Engineering Research (I3A), Univer-
sidad de Zaragoza, 50018 Zaragoza, Spain. {riazuelo, montano,

josemari}@unizar.es

Fig. 1: (Top row) Typical frames of a populated scene. The
human tracker detections are overlaid in colours identifiying
the person. (Bottom row) the two layers map. The geo-
metrical unpopulated map is a dense occupancy map after
removing people populating the scene. The human activity
semantic layer is the set of trajectories of the detected persons
with respect to the unpopulated map.

represents the geometry of the non-human rigid elements in
the scene. We refer to this as the unpopulated map. In our
proposal, the unpopulated map is a dense occupancy grid
computed as an Octomap [1] resulting from the fusion of
a selected set of RGB-D keyframes which are accurately
located in a common reference after the Bundle Adjustment
of a sparse point feature matches [2], [3].

Our second contribution is to exploit the human detection
and tracking in each frame of the video stream to build a
semantic human activity layer that registers the trajectory of
each person entering within the limits of the unpopulated
map. This is the result of combining the accurate camera
location that the unpopulated map provides with the human
detection in real-time at frame rate. The scene is observed
with a mobile RGB-D camera, but the people trajectories
are estimated on the map, irrespective of where the camera
was when the person was imaged (See Fig. 1.) The semantic
layer can be exploited for autonomous robot navigation and



planning in populated environments.
The remainder of the paper is organized as follows:

Section II discusses related work. Section III describes our
system. Section IV presents the experimental results and
Section V summarizes the main conclusions.

II. RELATED WORK

Most semantic mapping approaches are focused on static
objects instead of moving objects. In [4] and [5] a 3D
laser scan is used for enhancing the map with semantic
information. Using 3D points from a stereo camera, [6]
builds a map and enriches it by inserting CAD models
corresponding to the detected objects. Combining object
recognition and visual SLAM in order to produce semantic
maps has been extensively studied in recent years. [7] and [8]
merged a monocular SLAM system and object recognition
for enriching the map. In [9] a combined approach is also
presented, the authors not only compute the position of
the objects in the map, but also add the objects to the
optimization process. A recent work [10] incorporates the
use of depth information for mapping and object recognition
of object instances. [11] also uses RGB-D sequences, but
goes further because the goal of the recognition is not object
classes but categories. They create consistent 3D semantic
reconstruction of indoor scenes and categorize each voxel in
real-time, assigning a semantic label to the voxel according
to a specified category. However, removing dynamic objects
and annotating them is not a problem which has been studied
in depth. OctoMap [1] blindly removes moving objects due
to its probabilistic nature; it eventually filters out moving
objects, but it does not contain semantic information about
the removed objects. In contrast, our approach first identifies
objects by categories and then removes them. It is even able
to deal with stationary people. [12] also deals with moving
objects using a volumetric representation, but they do not
add semantic information about these objects to the map.
A preliminary work to identify and remove moving objects
finding corresponding in two views is presented in [13].

Navigating in the presence of humans requires knowledge
of people’s movements. In [14] a collection of approaches
to human-aware navigation are presented. [15] presents real-
time people perception framework, using detectors based on
laser and RGB-D data and a tracking approach able to fuse
multiple detectors.

The study of human motion patterns has become increas-
ingly significant in recent decades. [16] presents a method for
classifying regions for human movements and [17] proposes
a method to recognize and predict people’s path using a
pre-trained SVM as a classifier. In [18] an approach for
modeling the dynamics of human movements with a grid-
based representation is presented. However on these methods
the sensor remains always static in the scene in contrast to
our approach.

Human detection and pose estimation in populated en-
vironments is a problem studied in considerable depth in
the literature [19], [20], [21]. On the subject of articula-
tion, [22] proposes a fully connected graphical model for
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Fig. 2: Typical VLSAM parallel architecture and people
detector integration.

representing articulated models. [23] describes a general
method for human pose estimation in static images based on
a representation of part models. A generic approach based
on the pictorial structures framework for articulated pose
estimation is presented in [24].

[25] proposes a mathematical framework to integrate
SLAM and moving objects whith the use of depth sensors.
[26] presents an approach close to ours as they mask detected
people from the geometrical processing. However instead
of building a full SLAM map they only compute visual
odometry. Furthermore, additionally their focus is on people
tracking while neglecting the scene unpopulated map.

Our proposal is a system paper that builds strongly on
state of the art visual SLAM systems processing RGB-
D images, C2TAM [2], and ORBSLAM2 [27]. Regarding
people detection we integrate [28] because of its real-time
RGB-D detection and tracking for mobile robots and head-
worn cameras.

III. SYSTEM DESCRIPTION

Klein and Murray proposed the ground-breaking PTAM
architecture for purely RGB monocular sequences in [29].
This is still the basis of state-of-the-art VSLAM systems
also monocular [3] or RGB-D C2TAM [2] or ORBSLAM2
[27]. Our proposal also builds on top the RGB-D ones.
Although our approach is agnostic to the VSLAM approach,
for the aim of simplicity we focus the system description
on ORBSLAM2. The architecture is based on two inter-
twined processes running in parallel. The two processes
are generically named as frontend and backend, see Fig. 2.
The frontend is focused on a minimal set of operations to
provide the camera location in real-time, it assumes that
the backend has provided a map of the scene. The backend
concentrates the expensive mapping operations to estimate
the scene map by means of non-linear optimization, it iterates
at low frequency providing fast –but not real-time– updates
of the estimated map.

The real-time camera pose is a tracking algorithm which
assumes that the camera trajectory is smooth. If it gets lost,
for example due to camera occlusion or motion blur, then
the camera location has to be located from scratch before
resuming tracking. This recovery stage is called relocation
in the VLSAM literature, and it is also a standard component



(a) (b)
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Fig. 3: (a) Raw RGB. (b) Interest point detection and human
activity masking. (c) Raw RGB-D depth channel. (d) RGB-D
point depth channel after removing people depth points.

of contemporary SLAM systems.
Our proposal integrates a real-time people detection and

tracking stage [28] in the system to enable its operation
in populated environments. The people detection interacts
with all the components and stages of the visual SLAM. We
describe below the modified frontend, backend, relocation
and human activity detection layer of the map.

A. Frontend process
The frontend processes each RGB-D camera frame in real-

time to provide the camera location. Its main component is
the camera tracking, which assumes that both an accurate
sparse 3D point map of the scene and an estimated camera
position, from which putative point matches between the
current frame and the map are estimated. Then, the camera
pose is estimated by non-linear minimization of the map
reprojection error. The optimization is cheap because only
the six d.o.f of the camera pose are optimized. The map
points are not optimized because their estimate locations,
provided by the backend, are assumed to be perfect.

The reprojection error includes a robust influence func-
tion [30] that marks as an outlier any match with a big
reprojection error. If the outlier rate exceeds 50% of the
computed matches, the camera location estimate is very
likely to break down. Outliers correspond to mismatched
points or to matches not following the rigidity prior. Hence,
human activity makes the camera estimation more likely to
fail because it generates outlier matches that increase the
outlier fraction.

We propose to identify the frame regions which image
human activity in order to mask them out of the camera
tracking processing. The first step of the tracking is to detect
interest points in the current frame, typically FAST [31].
We additionally process the frame with a real-time people

tracker [28] that yields a bounding box per each detected
person. All the points of interest within the bounding boxes
are masked out for the subsequent matching stage (Fig. 3
(b)). By masking out the FAST points on humans, we remove
points that are probably outliers, reducing the proportion of
outliers and hence increasing the probability of a successful
camera location estimate.

The people tracker provides a 3D position of each detected
person with respect to the RGB-D camera frame simply
by reading the depth channel. Additionally, we have ready
available each person trajectory referred to the static scene
map frame, by just composing the person position with
respect to the camera with the camera pose provided by
the camera tracking. This mechanism to compute the people
tracks referred to the map is the main ingredient of the
semantic people activity layer of the map.

B. Backend process
The backend concentrates all the compute-intensive or

non-time critical operations derived from the mapping es-
timation. Its main component is a non-linear iterative op-
timization, after each optimization step, the map provided
to the frontend is updated. It is only possible to achieve
an update rate significantly lower than the frame rate, but
fortunately it is acceptable.

The backend exploits the fact, well-known since the early
times of photogrammetry, that given the points correspon-
dences along a monocular image sequence both the camera
poses and the 3D point positions can be estimated up to
scale factor, for a rigid scene. The gold-standard algorithm
is non-linear minimization of the reprojection error, known in
the literature as Bundle Adjustment (BA) more specifically,
the iterative optimization algorithm used is the Levenberg-
Marquardt. We use an extension in the case of stereo cameras
[27].

PTAM-like algorithms exploit the fact that not all the
frames in the sequence have to be included in the BA, but
only a small fraction of them, known as keyframes. Different
heuristics have been proposed for keyframe selection, for
example in [29], [3], [2]. The heuristics application results
in a reduced set of keyframes that cover the imaged scene
while having enough overlapping to ensure that all the
points in the map are imaged from several images with
a significantly different point of view in order to render
parallax, ensuring a good geometrical conditioning for BA.
There is overwhelming experimental evidence of the efficacy
of these heuristics in the keyframe selection. The keyframe
selection is made in the frontend.

The main challenges that BA has to face are the outliers,
the local minima, and the high number of iterations to
converge to the minimum. All these drawbacks can be
overcome if an initial guess close to the solution is available.
The intertwining between the frontend and the backend
is responsible for mutually providing the necessary initial
guesses for the non-linear optimization. When the camera
explores new scene areas not yet included in the map,
the frontend sends a new keyframe to the backend, with



Translation Sequence Arc Sequence
ORBSLAM2 C2TAM ORBSLAM2 C2TAM

ATE (mm) % Frames Tracked ATE (mm) % Frames Tracked ATE(mm) % Frames Tracked ATE(mm) % Frames Tracked
No Masking 53.3 92.3 42.6 95.9 39.2 97.0 41.7 93.5

Ground-Truth Masking 15.9 90.7 16.7 92.3 19.6 98.6 28.6 94.5
People Detector Masking 22.6 92.5 20.2 94.3 21.2 99.2 29.1 87.5

TABLE I: System performance over KTP dataset sequences using ORBSLAM2 and C2TAM.

an initial guess for its location. A low spurious rate set
of matches between the new keyframe and all the other
keyframes already in the map is also available. From this
initial information, matches for new points to expand the map
can be robustly found exploiting the scene rigidity. Again,
masking out the keyframe regions corresponding to human
activity helps to reduce the outlier rate in the new matches,
and hence increases the robustness. Given the new camera
pose estimate, initial guesses for the points newly added to
the map can be also estimated. Thanks to the initial guesses
the convergence for the newly added camera and map points
is fast.

The sparse map M is the result of the BA. It is composed
of a set of l keyframes {K1,K2, . . . ,Kl} and n 3D sparse
feature points {P1, P2, . . . , Pn}. Per each keyframe, it esti-
mates the camera position coded as the rigid transformation
TWKj referred with respect to world frame W . The keyframe
also contains a the camera depth channel of the image, which
in contrast to the sparse points of the maps can provide
dense depth information of the scene. Once we have accurate
keyframe poses, TWKj from the BA, we use the Octomap al-
gorithm [1] to fuse all the depth maps into a single occupancy
map. Prior to the fusion, the depth regions corresponding
to human activity are also masked out from the keyframes,
so that the generated Octomap does not contain the people
populating the scene. This people-removal process does not
have to be in hard real-time, so it is performed in the backend
and only on the keyframes. The unpopulated map could be
easily reused in future reobservations of the same scene,
irrespective of the present and future the human activity.

C. Camera Relocation
As mentioned above, relocation is mandatory after the loss

of camera tracking, and it is necessary to be able to reuse
a previously available map. The ORBSLAM2 relocation
algorithm is currently the state of the art. Its first step
is an indexed search for matches known as DBoW [32].
The search for matches between the current image and the
available map mimics a query in a database, where the
current image is the query, and the dabatase is holds the
map points. In the second stage the camera pose is recovered
using a RANSAC-like approach. In our proposal, during the
relocation step, we mask out the detected people from the
current image before querying the DBoW database. It has
to be considered that in building the database, the regions
corresponding to human activity were also masked out from
the map, hence also from the database. We can conclude that
human activity detection and removal extends the lifespan
of map reuse, because the number of spurious matches is
reduced both from the database and from the queries.

D. People detection and human activity layer
To deal with human activity we propose to integrate a

people detection and tracking stage, in our case we use [28].
We process all the images coming from the RGB-D camera.
Each detected person in an image is coded as an image
bounding box and a label is created that uniquely identifies
the person. The 3D position of the person with respect to
the camera is computed as the position of the center of the
bounding box, and the depth channel. All these pieces of
information are computed and stored in the frontend.

When the frontend decides to create a new keyframe, it
sends the keyframe to the backend. Additionally all the infor-
mation registered for all the frames since the last keyframe is
also sent to the backend. The pieces of information included
are the frame poses and all the instances of people detections.

The backend generates the human activity semantic layer,
composed paths of each person with respect to the unpopu-
lated static map, irrespective of where the camera was when
the people were detected. These trajectories are computed
by the composition of the 3D position of each person with
respect to the camera with the 3D camera pose computed by
the frontend. After each iteration of the backend, the position
of each keyframe is updated. We keep the connection of
the intermediate frames with the keyframes to propagate the
position updates of the keyframes to the intermediate frames,
and from there to each person’s trajectory, which is updated
at same rate as the unpopulated map. This information adds
a semantic label to activity layer of the map as a ”occupied
area” by people. This semantic information will be use by a
mobile robot for navigating in the same environment.

IV. EXPERIMENTS

In this section, we present the experiments performed for
validating our approach. The system is implemented in C++
using Robot Operating System (ROS) [33]. An Intel Core
i7 @2.67GHz processor was used for running the VSLAM
system and the people detector at a 24 fps rate. For validating
the approach we have used the Kinect Tracking Precision
Dataset (KTP) presented in [34]. This contains 5 different
sequences acquired with a Microsoft Kinect on board a
mobile platform. We have selected this dataset because it
provides RGB-D images in a context where a robot makes
a trajectory and also includes a ground-truth of both the
position of the robot and the detections of the people.
Regarding the VSLAM system, we have tested our approach
using two different PTAM-like algorithms adapted for RGB-
D, C2TAM [2] and ORBSLAM2 [27]. Both of them use [28]
for human activity detection.

Table I presents the results of both VSLAM algorithms
running over two of the KTP sequences: ”Translation” and
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Fig. 4: Effect of human activity masking per each frame of
the sequence ”Translation” processed by ORBSLAM2. Top
row displays a representative case.

”Arc”. The metric selected for measuring the performance
of the system is the Absolute Trajectory Error (ATE) after
aligning the computed trajectories with the ground truth by
means of a rotation and translation. We also include the rate
of frames successfully located, named ”% Frames Tracked”.
We run the sequences with three different configurations
for human activity detection: No masking, in which human
activity detection and masking is deactivated; Ground-Truth
Masking, where we use the ground truth bounding boxes
detections provided by KTP, in order to find an upper
performance limit; and People Detector Masking by which
the system is fed with the real people detection provided by
[28].

First of all we can see how the frame tracked percentage
is very similar for all the configurations. However the ATE
error is reduced by more than half if human activity masking
is applied to the images, which proves the benefit of masking.
Also we can see a small increase in error depending on
whether we use the ground-truth detections or the people
detector. This increase in the error is minimal, proving that
we are close to the upper performance limit.

Figure 4 presents in detail the evolution of the error during
the whole sequence for the ”Translation” and ORBSLAM2
case. The plot displays the error with people detector mask-
ing (green line) and with no masking (red line). The area of
the image covered by people is also plotted, as an index of the
human activity. The camera location error is highly correlated
with the level of human activity. Four representative frames
are selected in order to visualize this correlation. In the
frames 4(a) (#663) and 4(d) (#1745) we can see how the
error increases due to the increment in human activity. The
higher the occlusion level of the image caused by the people
in the scene, the lower the system accuracy. There are even
situations in which the occlusion level is so high (Frame 4(d)
(#1745)) that the system cannot be located and the camera
is lost. In addition we can see in frame 4(b) (#1109) how

Translation Sequence Arc Sequence
ATE
(mm)

% Frames
Relocated

ATE
(mm)

% Frames
Relocated

NoMasking 51.2 87.5 32.7 78.8
Ground-Truth Masking 16.2 76.8 21.6 56.7

People Detector Masking 17.8 75.2 22.5 37.2

TABLE II: Camera relocation performance over KTP dataset
sequences using ORBSLAM2.
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Fig. 5: Effect of human activity masking on relocation. ATE
after relocation per each frame of the ”Translation” sequence
processed by ORBSLAM2.

the human activity level decreases and hence the error also
decreases. When there are no people in the image (Frame
4(c) (#1391)) we can see in the figure how the error is
maintained or even decreases.

For validating the camera relocation performance we have
run KTP dataset ”Translation” and ”Arc” sequences over
ORBSLAM2 because its relocation algorithm based on bag
of words is on top of the state of the art. We have run
the VSLAM system on the first part of the scene (about
300 frames) during the scene exploration stage. Afterwards
we close the map and force a camera relocation for each
frame in the rest of the sequence. Table II presents the
results of the camera relocation performance for different
options of masking, applied both to the map creation and
the subsequent relocation. We can see the improvement in
the ATE metric when human activity is masked. Regarding
the use of the ground-truth for masking the people, the ATE
metric is quite similar to that achieved by the implemented
detector. We can also see how the percentage of relocated
frames drop with people masking, this is due to with no
masking some frames are not relocated correctly and the
number of relocated frames increases.

Figure 5 presents the evolution of the relocation error with
(green line) and without (red line) masking people. In this
case we can also see the correlation between the error and
the area of the image covered by people. In the frames in
which the image is covered by people, the error is greater
than in which are without people. In addition, depending on
the level of occlusion, the relocation algorithm is unable to
provide a position. We can conclude that using a masking
technique improve the camera relocation performance.

Regarding the geometrical layer, figure 6 displays the
improvement provided by our C2TAM approach after the
initial exploration of the scene (⇡ 350 first frames). Due to
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Fig. 6: 3D reconstruction and Octomap using unmasked 3D
point cloud (a,c), and using the human activity masked data
(b,d).

the information provided by the people detector about the
estimated position of the people in the images, a process of
annotation and removing the people from the 3D point cloud
is performed. Figure 6(b) shows the result of this process.
The number of points in the scene is reduced in a 30%, and
there is not any evidence of people in the scene, in contrast
to raw the reconstruction shown in figure 6(a) where artifacts
due to people are noticeable.

Comparing the initial texture alignment with the octomap
approach, we can see in the figure the maps obtained. In
figure 6(c), an octomap is built using the raw data from the
3D point cloud associated to each keyframe witout masking.
In contrast, using our approach (figure 6(c)), the octomap
built masking the people information does not even include
static persons.

Figure 7 summarizes the results obtained by the VSLAM
system proposed. Top images show the sparse map (front
and top view) generated by C2TAM after masking. The map
is used for locating the RGBD camera in the scene. We
can see the feature points extracted from the rigid scene
and the camera trajectory followed by the robot during
the experiment. In the bottom image, we can also see the
unpopulated map that describes the 3D geometry where
information corresponding to the people has been removed.
In addition, the people trajectories that define the semantic
layer are also displayed. A full video of the validation can

Fig. 7: Sparse map and camera trajectory (top), and geomet-
rical and human activity layer (bottom).

be found in 1.

V. CONCLUSIONS

Thanks to the embedding of human detection in a rigid
visual SLAM system, it is possible to build precise VLSAM
maps in populated environments.

Our system integration approach can effectively remove
human activity from an unpopulated map simply by remov-
ing the people from the input sequence. People detection
and removal not only benefits the scene description, it also
benefits the camera tracking and relocation, significantly
improving their performance in populated environments, and
reducing the ATE error by more than half. Additionally it
is possible to generate a semantic layer that exhaustively
registers human activity in the mapped area, irrespective of
the camera motion during acquisition. We can conclude that
both the mapping and the people tracking benefits from the
combination. In addition, the system is able to deal with
the false positives provided by the person detector, since the
detection is performed in all frames of the sequence.

We have tested the embedding in two popular rigid VS-
LAM systems, with a similar gain in performance. We can
therefore conclude that our proposal is agnostic to the VL-
SAM method, and hence can potentially improve any SLAM
system. In the same way, we can say that the combination of

1http://robots.unizar.es/data/videos/ecmrRiazuelo17



this method map building with the recognition of people is
agnostic to the algorithms used, since any detector that give
us information of the person in the scene can be included in
the proposed system.

People detection can be considered as an instance of class
category recognition and tracking. A similar benefit in terms
of an increase in the robustness, map reuse and tracking of
the instances irrespective of the camera motions caould be
achieved in other environments, for example vehicle detec-
tion for automated driving, or a tool detector for endoscope-
guided minimally invasive surgery.

Mapping populated environments where human move-
ments are prevalent is a key capability for service robots.
As future work we plan to develop robot motion planners
in such environments, profiting from the human activity
mapped. Planning and navigation using this information can
be improved by the knowledge of the patterns of human
movement.
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Mapping likelihood of encountering humans:
application to path planning in crowded environment

Fabrice Jumel1,2 and Jacques Saraydaryan1,2 and Olivier Simonin1,3

Abstract— An important challenge for autonomous robots
is to navigate efficiently and safely in human populated envi-
ronments. It requires that the robots perceive human motions
and take into account human flows to plan and navigate. In
this context we address the problem of modeling human flows
from the perception of the robots, by defining a grid of the
human motion likelihood over the environment, called flow
grid. We define the computation of this grid as a counting
based mapping. Then we define a path planning taking into
account the risk of encountering humans in opposite direction.
We first evaluate the approach in simulation by considering
different navigation tasks in a crowded environment. For this
purpose, we compare three A*-based path planning models
using different levels of information about human presence.
Simulations involving 200 moving persons and 4 collaborative
robots allow to evaluate simultaneously the flow mapping and
the related path planning efficiency. Finally we experiment the
model with a real robot that maps human displacements in its
environment.

I. INTRODUCTION

Deploying robots in human environments has become a
central challenge in robotics. Many applications require to
define robot behaviors that are able to take into account the
presence of humans and to interact with them. Robot have
to perform their task while being safe for humans and aware
of their social rules [12].

In this paper, we focus on robotic path planning and
navigation in environment where many people are moving.
We are interested to deal with the problem of identifying
where humans regularly move/appear, in order to optimize
their paths among humans. In the robot workspace, the
human activity makes the environment very dynamic, it is
then essential to identify the recurring displacements (the
regularities). We consider that robots know the static part
of the environment (e.g., a metric map) and are able to
localize themself. SLAM techniques allow to make such an
assumption [14].

By detecting displacements of humans, we aim at mapping
human flows in dense populated environments. This requires
to be able to detect human motions around the robots,
by considering only the data coming from the embedded
sensors. Current sensors, camera or LIDAR, allow to detect
human’s location and velocity. We do not consider that
the environment is equipped with external fixed cameras or
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sensors. Therefore, robots have to move in order to cover
the environment and to update their knowledge of the human
activity. We propose to incrementally compute a grid, called
flow grid, where each cell will contain a set of likelihood that
represents represent human motion in different directions.
This differs from standard grid approaches that models only
human presence likelihood, as in [15], or that generates a
flow map after having collected data.

However, building a map of human flows from robot
perceptions can require a long time of observation. This leads
us to complete observations with motion patterns that allow
to extend/anticipate the model of flows.

Computing a representation of human displacements and
flows aims to optimize robot navigation in dense populated
environment. We evaluate this ability by comparing three
path planning models exploiting different maps of the like-
lihood of encountering humans.

The paper is organized as follows. Section II presents
related work to the problem of modeling and predicting
human motion and flows. In Section III we introduce the
flow-grid model and the predictive flow grid. In Section IV
we define three path planning models based on different rep-
resentation of human presence in the environment. Section
V presents the experimental scenarios and compare results
with the different path planning models. Then Section VI
gives the first results of computing the flow grid with a real
robot in a human populated environment. Finally, in Section
VII we conclude the paper and draw up the perspectives.

II. RELATED WORK

Since two decades, a lot of work has been dedicated to the
detection and the prediction of moving objects. This defines
the problem of tracking moving targets. The most common
approaches use techniques such as Kalman filters, HMM and
more generally Bayesian models [11]. The problem is more
challenging when the tracking is performed from a moving
robot. We can mention the HSBOF model [3] which is able
to detect and predict object and people motion from a camera
embedded on a moving vehicle.

Among these works, some of them are specialized in
tracking human motion, as [16]. For this purpose they
can use models of human behavior, established by psyco-
physiologists, as in the work of [12].

Even recent works are concerned with tracking simulta-
neously several persons [10], few focus on modeling human
flows. A recent review [4] presents social-aware navigation
frameworks and compares them. As it is highlighted by au-
thors, few work are focusing on global social-aware planning.



In this paper we focus on modeling flows of human, or
recurring human displacements, which can be seen as a
long-term task. Much work has been carried out to simu-
late crowds of people (see for instance [6]), but few has
considered the problem of representing such flows from the
perceptions of a robot (ie. with embedded sensors).

Recent works have considered the problem of learning
human flows from one or several static cameras or LIDAR. In
particular we can mention the work of Tipaldi and Arras [15]
defining the spatial affordance map. The model learns the
spatio-temporal distribution of events, from the observations
in each cell representing the environment. The main limit of
such an approach is to only model human presence, without
information about motion of human flows. Then Kucner et al.
introduced Conditional Transition Maps [9], which models
the probability of human transition between neighbouring
cells of a grid representing the environment. However, this
approach requires to determine from which cell the observed
person arrives, its current cell, and its next cell. This can be
achieved with static cameras overhanging the environment, it
is more difficult with embedded camera on moving robots.
We note also that the combination of transitions requires
to learn 64 parameters per cell. An extended approach [19]
allows long-term spatial correlations but proposes to reduce
the neighboring transitions to 4 directions (north, south, east,
west).

In [17] and [18] Wada et al. have shown that human
activity, in particular walking, can be observed and mapped
from embedded sensors and with SLAM techniques. After
collecting observations from each region of the environment
they can generate a human motion grid, giving in each cell
the statistics of walking direction in every 15 degree [18].
This approach does not consider an online computation of
this flow model from the observation of moving robots, as
we propose in this paper.

The method we propose can be seen as an extension of
the affordance maps, where we add in each cell the modeling
of human motion for a set of directions (8 in practice). This
allows us to build incrementally a grid of human motion
likelihood. This process is done simultaneously by several
robots that share the computed grid.

III. MODELING HUMAN FLOWS

A. Approach overview

We adopt a grid representation to discretize the flow and
to limit the information to learn. The objective is to build
a grid where each cell holds the likelihood of encountering
humans.

We first define a two layer model of the human flows:
• a flow grid modeling in cells the likelihood to observe

a human moving in a set of directions.
• a prediction flow grid that estimates the human flow

from the flow grid.
The general idea is to update the likelihood values of the

flow grid at each observation of a human presence/motion
(counting-based approach). When humans are observed, we

A. B.

Fig. 1. A. Two layers grid model of the human flows (flow grid and
prediction) B. Possible motions from Von Mises Gaussian circle probability
distribution: (a) sample of Von Mises probability distribution with C = 2,
(b) normalized distribution with |K| = 8, (c) prediction direction grid
according a given observation.

also estimate their short-term motion in the prediction flow
grid. These two grids are illustrated in the Figure 1.A. Now
we define them formally.

B. Flow grid layer

In each cell c
x,y

, we discretize the possible flow directions
by a set of K directions, and we note k

i

2 K each
direction. For instance, we can set K = {North,East,

South,West}.
We note Z

t the set of observations performed by all the
robots up to time t. An observation, in a cell c

x,y

, consists
in identifying a human direction, eventually none, and its
duration. By hypothesis, only one human can occupy a cell at
a given time. In practice, we consider cell sizes from 0.25m2

to 1m2.
Let note R = {r1, r2, .., rn} the set of robots.
We note t

c

x,y

(r) the sum of the durations (in seconds)
of all observations performed by the robot r on cell c

x,y

.
t

c

x,y

,k

(r) is the sum of durations of the observation of a
human moving in direction k in cell c

x,y

.
We set M

flow

= 8x8y8k(M
c

x,y

,k

) the grid of human
motion likelihood in every direction k of each cell c

x,y

. By
considering that human flows are stationary processes, each
cell value (in [0, 1]) is computed (updated) as follows:

M

c

x,y

,k

(Zt) =

P|R|
n=1 tcx,y

,k

(r
n

)
P|R|

n=1 tcx,y

(r
n

)
(1)

To deal with non stationary processes a forgetting factor
could be added (not developed in this article).

As the matrix M

flow

holds the human motion likelihood
in observed cells we can deduce the human presence likeli-
hood, noted M

pres

, that corresponds to the affordance-map
proposed in [15] :

M

pres

c

x,y

(Zt) =
X

k2K

M

x,y,k

(Zt) (2)

C. Prediction flow grid layer

Building the flow grid from local robot observations leads
naturally to partial information over the whole environment.



In order to accelerate the flow learning, we add a human
motion pattern around the last observations.

Many approaches have been proposed to predict human
motion. Generally, it is computed from current velocity
and direction observation in addition to the beliefs of the
past robot observations, as done in [20]. Moreover, it has
been shown that predicting the motion of a pedestrian by
a velocity-based linear projection [7] is known to be a
reasonable approximation for short term behavior [13].

As we model human direction in cells, the short term
prediction is computed by the use of the Von Mises angular
probability distribution [8]:

�(✓|µ,�) = e

Ccos(✓�µ))

2⇡I0(C)

1

C
= �

2 (3)

where µ is the measure of location, C is the measure of
concentration ( 1C = �

2), I0 is the modified Bessel function
of order 0. As it was highlighted in [13], moving object pre-
diction deals with variation of speed and translation/rotation
moves. We consider that a human can take a maximum
rotation speed of 90�.s�1 with an average linear speed
of 1m.s

�1. Considering these properties and the fact that
current cell dimension is 1m, we use Von Mises equation
with a parameter of C = 2 (see the Figure 1.B).

When a robot observes a human direction at a given
location c, the flow grid is updated and the predicted flow
grid on this cell is cleared (for each k 2 K, Mpred

c

,

k

= 0).
The Von Mises angular Gaussian distribution is applied on

the neighbor cells and result in a set of possible directions.
First step consists to create an initial predicted cell from
the last observation and next to apply a Von Mises Pattern
computation on the neighborhood of this cell.

The main idea of the Algorithm 1 is to propagate the pat-
tern from cells with maximum probablity presence towards
direction with maximum probability (line 6). Therefore, we
consider that the number of possible directions is no more
higher than the grid cell connectivity (e.g 8 or 4). The
propagation stops when computed probability is lower than
a threshold (min value line 16).

The predicted flowgrid of cell c

ni

in each k

ni

direction
is computed as the probability associated to angle ✓

ni

of a
normalized Von Mises distribution times the probabilities of
human direction observation M

c,k

:
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where the Von Mises function is centered on the angle
associated to the observed direction µ = ✓

k

with a dispersion
� = 1p

2
, and M

c,k

(Zt) is the probability of the observation
of the direction k on the cell c.

The Figure 1.B(c) shows the result of a Von Mises pattern
computation. This distribution is normalized according to
the number of possible directions |K| (K = 8 on the
Figure 1.B(b)). Then the resulting predicted directions are

Algorithm 1: Von Mises pattern computation
Input: c

ni

,M
flow

, Mpred

flow

, min value

Output: updated M

pred

flow

1 Process:
2 CellToProcess = c

ni

3 V onMisesComputedCell = c

ni

4 while CellToProcess 6= ? do
5 c = first element of CellToProcess

6 for each k

i

ordered by decreasing value of Mpred

c,k

i

do
7 c

n

= neighbor cell of c in direction k

i

8 if c
n

/2 V onMisesComputedCell then
9 add c

n

to V onMisesComputedCell

10 if M

pres

c

n

not defined then
11 // Precompute Von Mises on c

n

:
12 for each k

ni

2 K do
13 M

precompute,pred

c

n

,k
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=

�

0
(✓
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|✓
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i
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14 if M

precompute,pred

pres

c

n

> M

pred

pres

c

n

then
15 M

pred

pres

c

n

= M

precompute,pred

pres

c

n

//update
16 if Mpred

pres

c

n

> min value then
17 add c

n

to CellToProcess

18 sort CellToProcess by decreasing
M

pred

pres

c

n

19 Remove c from CellToProcess

Fig. 2. Flow grid (red) and Prediction flow grid (blue) at 30s

shown on the Figure 1.B(c) where arrow length represents
the probability value.

D. Illustration of the flow grid buiding

We use the simulator presented in Section V to illustrate
the proposed model. The Figure 2 shows the flow grid built
by 4 robots moving in 4 connected corridors where people
are walking in the anti-clockwize direction (see Scenario in
Section V-B). It appears that the estimated flow corresponds
to the motion directions induced by the human trajectories.
One can see that predicted motions (in blue) can coherently
complete the flow built from the observations (in red).

IV. PATH PLANNING IN DYNAMIC ENVIRONMENT

In this section we show how to adapt the A* path planning
computation to take into account different models of human
presence in the environment.



A. Cost estimation in human populated environment
We consider navigation techniques based on computing

optimal path in “reachability graphs”. We use the A* algo-
rithm which is standard for robot path planning.

A* is using an heuristic to control the order of exploration
of the cell in the decision process. At each iteration of its
main loop, A* determines which of its partial paths to expand
into one or more longer paths. This is based on an estimate of
the cost still to go to the goal node. A* selects the path that
minimizes the function f(n). f(n) = g(n)+h(n) where n is
the last node on the partial path, g(n) is the cost of the path
from the start node to n, and h(n) is a heuristic that estimates
the cost of path from n to the goal without knowledge. The
heuristic used in this paper, h(n), is the classical euclidean
distance from n to the goal without obstacle.

To take into account the presence of humans, we consider
three different map-distances to compute the cost function
g(n) in A* planning :

• an equiprobable cost, that is the non informed model,
• a human presence estimation, ie. the affordance-map

computed as a spatial Poisson process [15],
• a human motion estimation, ie. the flow-grid map intro-

duced in this paper.

1) A* algorithm with equiprobable presence: The cost
between 2 neighbors cells n and (n� 1) is defined as:

g(n) =kn, (n� 1)k ⇥ (1 + F ) + g(n� 1) (6)

where kn, (n�1)k is the distance cost between n and (n�1)
and F is a positive factor to represent human presence. As
the disturbance due to humans is not know it is considered
as identical in all cells. Then F is set as a constant (1 in the
experiments).

2) A* algorithm with affordance-map: An affordance map
estimates the human presence probability in each cell as
a spatial Poisson process [15]. In each cell n, the human
presence estimation, noted Poisson(n), is computed as
follow: Poisson(n) = M

pres

n

(see eq. (2) Section III-B)
This allows to define the following cost function :

g(n) = kn, (n� 1)k⇥ (1+F.Poisson(n)) + g(n� 1) (7)

We add to the distance a cost directly linked to the probability
of crossing a human when moving to cell n, i.e. Poisson(n).
The factor F allows to tune the weight of the human
disturbance in the cost function.

3) A* algorithm with Human flow estimation: The human
flow grid and the prediction flow grid are used to determine
the navigation cost. Let flow(n) be the human flow cost
in n, k the direction from (n � 1) to n and k̄ the opposite
direction of k. We define the cost of moving to cell n as
directly linked to the probability of having a human flow in
the opposite direction : flow(n) = M

n,k̄

(Zt). In the case
where M

n,k̄

is not defined, the predicted flow grid M

pred

n,k̄

is
used.

This leads to the following cost function :

g(n) = kn, (n� 1)k ⇥ (1 + F.flow(n)) + g(n� 1) (8)

Fig. 3. Illustration of the simulated scenario

The factor F allows to tune the weight of the perturbation
caused by an opposite flow of humans. We study the factor
F parameter in the following section.

V. EXPERIMENTS

A. The simulator

To evaluate the different A* based algorithms we de-
veloped a simulator based on PedSim, the 2D simulator
of pedestrian crowd proposed by [2] [5]. In this simulator
each pedestrian (agent) follows a predefined path by moving
thanks to a local planner. This planner computes repulsive
forces from obstacles and attractive forces from social link
and attractive area, according to the pedestrian model de-
fined in [6]. It provides trajectories avoiding collision with
dynamic obstacles, i.e. people and other robots.

We extended this simulator to provide autonomous de-
cision and interactive abilities to robots. They can com-
municate to others information about the pedestrians and
robots they detect in their perception range. Robots can
navigate along waypoints, computed with one of the A*
based algorithms (listed in section IV-A).

An additional module is in charge of computing the flow
grid and the human prediction flow grid. This module uses
the direction information of humans detected by the robots.
The Figure 2 illustrates the two grids, merged, after 10
minutes of the scenario presented in the following section.

B. Scenarios

The test environment is composed of two rooms connected
by two long corridors (see Figure 3). Moreover, two sets of
people (a total of 200 individuals) move in the environment
by following a predefined circuit that consists in crossing the
corridors in the anti-clockwise direction.

Each group of persons is composed of random socially
linked people (people that stays close together during their
navigation) and of individuals. Each person is set with
a random walk speed from 0.5m.s

�1 to 1m.s

�1. At the
beginning, the two groups are placed in opposite location
(near point C and point B in Figure 3). After few minutes,
people will be dispersed all along the corridors. In order to
be more realistic, the simulator adds some random moves
to the social forces model and prevents robots to try to pass
through human groups if the space is not large enough (social
rule).



Fig. 4. Evolution of cell to cell time travel when the opposite likelihood
flow grows.

The robots move with a speed of 1m.s

�1 and have an
omnidirection perception of radius 5m.

The first scenario focuses on the navigation of one
robot. This robot moves from point A to point B then
from B to A and repeats this task until the end of the
experiment. The path from A to B is particularly interesting
because the shortest path crosses the human flow in opposite
direction. We conduced numerous experiments to evaluate
the performances of the different path planning algorithms.

The second scenario involves 4 robots that start re-
spectively on position A, B, C and D (see Figure 3). The
robots are asked to continuously navigate between two fixed
positions until the end of the experiment. Their round trips
are respectively between A-B, B-A, C-B and D-A. This
allows to test different start-destination objectives within the
same human flow scenario. The difference between A-B and
B-A appears at the beginning of the experiment, as the first
travel is not symmetric considering humans location. In this
scenario, robots cooperate to build a common flow grid
and a common affordance map. These shared grids are
used by the robots to compute their path each time they
reach a start/destination point.

We analyze in the next sections the time performance
obtained with the three A*-based path planning.

C. Setting the human disturbance factor F
Before measuring performances of the A*-based path

planning algorithms we need to determine their respective
human disturbance factor F (eq. 6, 7, 8). This factor evalu-
ates how humans can perturbate the travel from cell to cell,
regarding the map information of each model.

In the non-informed model (eq. 6), human presence is
equiprobable. The value of the parameter F has no influence.
We can only consider that disturbance is homogeneous,
leading to use F=1 .

In cases of affordance-map and flow grid models, the value
of F influences directly the resuting path. If we underestimate
the F value we could compute paths that will be costly in
time, due to the risk of meeting more people than expected. If
we overestimate this value, we could compute longer paths,
that risk to avoid unnecessary low human presence areas,
leading finally to take more time.

In order to estimate this factor, we considered different
human densities in a scenario where a robot move contin-
uously from A to B and conversely. For each travel, we

Fig. 5. Evolution of time performance on A , B path for each model

considered all the cells of the followed path and we computed
an average cell-to-cell time and an average opposite flow
likelihood (flow in equation 8). Each result corresponds to
one point in the figure 4.

The obtained graph shows the correlation between this
two values. When the average opposite flow grows the
average travel time too. We can see that the absence of
opposite human flow (case of B to A travel) gives a null
opposite flow for a shortest cell to cell travel time. A
simple regression analysis gives a linear model of the form
minimum travel time.(1+F.flow). The minimum travel
time per cell have no influence in the path F calculus, only
F factor have to be considered. The factor obtained in this
characterization is F=7.55.

For the affordance-map based model, a similar analysis
gives F=3.5. In the rest of the paper, we will use the three
obtained F factors.

D. Performance analysis on A , B

Measures of performance of each model on the A , B

path are presented in Figure 5. The average duration of
each approach is presented for both A ! B and B ! A

navigation. The x-axis is the number of round-trip performed
by the robot during an experiment of 30 min. The y-axis
gives the cumulative average duration of the travel A � B.
Each average time of each algorithms was computed over 10
experiments of 30 min.

The red line (circle marker) plots the results of the A*
model, the blue dotted line (square marker) plots the A*
Poisson based model and the green line (triangle marker)
plots the A* Flow grid model. We can notice that the
approach using the Flow grid performs more round trips
(14) than other approaches, confirming that its average travel
duration is better.

In the A ! B path, the A* Flow grid based model is
quickly better than the other approaches. Morover, one can
see the duration to travel from A to B decreases over the
time.



Fig. 6. A� >B paths selection after 10 minutes of experimentation

The classical A* model (non-informed) and the Poisson
based model show a slight increases of the A ! B duration.
This is the consequence of the initial two groups of persons
that spread along the corridors and increase their obstruction
to robots over the time.

It is clear that going from A to B is more easy through
the bottom corridor (same direction as the human flow) and
going from B to A is more easy through the top corridor
(for the same reason). The A* Flow grid model is the only
one to be able to choose the bottom corridor to go from A

to B as soon as it has learnt enough information about the
human flow. This is illustrated in Figure 6 where computed
paths are plotted at time 10 min.

Concerning the duration of the B ! A path, all curves
converge to a same average duration (Figure 5). The Poisson
Based model gets a high first step duration value. The model
computes the cost of the top corridor, where humans are
observed, while it estimates that the other corridor is a better
solution as it has been not yet observed by the robots. As
a consequence the Poisson based model chooses the non
observed corridor where the human flow is in the opposite
direction.

The shortest path, which passes by the top corridor, has
a common direction with the human flow. Then, in scenario
B ! A, the three models find quickly the identical solution.

In the beginning of the experiment, one can note that
the Flow grid model is the fastest to adapt its choice when
meeting group of people (see Fig. 5 B ! A). The Poisson
based model, modeling only human presence, needs more
time to estimate the best path before people spread along
the corridors.

E. Average performance on different paths
Table I presents the average dura-

tion of round trip between each start
destination positions (Figure 3), after 30 minutes of
experiment. The three A*-based models are compared.

Regarding our scenario, the A* Flow grid based approach
is more efficient than the standard A* and the A* Poisson
based model for most of robot’s paths. For paths A , B,
C , B and B , A, the A* Flow grid model reaches aver-
age time much lower than others (best results are displayed
in grey cells).

Path A* A* Poisson Based A* Flow Grid Based
A , B 151.0 s 142.7 s 103.7 s
C , B 317.3 s 249.6 s 146.7 s
B , A 167.3 s 166.4 s 118.1 s
D , A 134.8 s 220.0 s 136.1 s

TABLE I
AVERAGE ROBOT TRAVEL DURATION FOR EACH A* BASED MODEL

Regarding the D , A path, the standard A* model obtains
better results. In the early steps of the experiment, the A*
Flow grid model selects a costly trajectory due to a partial
knowledge about the human flow. The first selected path
crosses the human flow in the opposite direction (humans
have not yet been oberved by robots in the bottom corridor).
The A* Flow grid model will compute a path passing by the
top corridor as soon as the human flow will be sufficiently
observed in the bottom corridor.

Fig. 7. Example of Flow grid (red) and Prediction Flow grid (blue) obtained
with a a real robot (using a PMB-2 base and a Sick 2D laser)

VI. EXPERIMENTATION WITH A REAL ROBOT

Robotic experiments are necessary to evalute the proposed
human flow mapping in real environments. We propose a first
experiment with one robot.

The robot is a PMB-2 base from Pal Robotics equipped
with a Sick TiM561 2D Laser (resolution of 1� angular, aper-
ture angle of 270� and scanning range of 10m), see Fig. 7. It
has been developped to participate to the Robocup@Home
international competition (http://www.robocupathome.org).

Standard libraries of ROS are used for the robot local-
ization and for the detection and localization of humans



around the robot (legs detector function). This data are used
to compute online the flow grid. The figure 7 shows an
example of such a grid built by the robot evolving in the test
environment during 5 min. This area is a largely open space
of 500 m2 including a corridor, a meeting room and desktop
rooms. The result is extracted from the ROS visualization
tools. A video of the mapping is available at [1] 1 and shows
the incremental building of the flow grid while the robot
meets or observes people walking around it.

Despite the current implementation limitations (e.g. delays
due to large amount of markers to display ) and the people
detection accuracy (based on legs detection with Lidars), this
experimentation shows clearly that real robots can build a
representation of the recurring displacements of humans. We
will now experiment in more dense populated environments.
Future work will also focus on evaluating path planning
computed with the flow grid information, and for different
real scenarios and areas.

VII. CONCLUSION

In this paper, we have addressed the problem of mapping
human flows with mobile robots evolving in indoor envi-
ronments. For this purpose, we introduced the Flow grid
model, which computes in each cell the likelihood of having
a person moving in a certain direction. The approach relies
on a statistical counting process from the observations of the
robots. We completed the model by a Predicted flow grid
based on a Von Misses Pattern of human motion, allowing
to anticipate the flow in non-observed areas.

We evaluated this model by considering a task of path
planning and navigation in a human populated environment.
We compared three A*-based models, where the cost func-
tion depends on information about human presence in cells,
that is i) non informed model (standard A*) ii) informed
of human presence likelihood [15], iii) informed of human
presence and motion direction likelihood, i.e. the flow grid
model. Experimental results, in simulated crowded environ-
ments, show that the flow grid based path planning provides
better results, in term of time to travel the environment, than
the two other models.

Finally, we experimented the flow grid mapping with a
real mobile robot (a PMB-2 base equipped with a Sick
2D Laser). While moving few minutes in the environment
and encountering some people walking, the robot generated
incrementally a map modeling the main repetitive displace-
ments, see Fig. 7.

We plan to continue the work in two main directions.
The first one is to consider new scenarios in simulation,
including various and crossing human trajectories, to com-
plicate the flows to model and to evaluate the robustness of
the approach. The second perspective is to go further with
real robot experiments, in particular by considering several
robots cooperating to build the flow grid in dense crowded
environments.

1https://youtu.be/Z8qDJH2CkLc.
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Online Switch of Communication Modalities
for Efficient Multirobot Exploration

Francesco Amigoni, Jacopo Banfi, Alessandro Longoni, and Matteo Luperto

Abstract— Exploration of unknown environments with mul-
tirobot systems subject to communication constraints is a task
involved in several applications, like search and rescue and
monitoring. The approaches proposed so far to address this
problem are usually based on the use of a single communication

modality, for instance, either multi-hop (MH) or rendezvous
(RV), during the whole mission. However, it has been conjec-
tured that online switching between communication modalities
could be beneficial. In this work, we empirically investigate this
hypothesis by presenting an exploring multirobot system that
can originally switch between communication modalities during
an exploration mission.

I. INTRODUCTION

Exploration is the task of building a complete map repre-
senting an initially unknown environment. When employing
a multirobot system for building such a map, it often happens
that robots are not able to always communicate with each
other throughout the whole mission, because their commu-
nication ranges are limited. Moreover, it is also common to
require the robots to provide reports to a Base Station (BS),
so that human operators can supervise the evolution of the
mission (and, possibly, receive some other useful data, such
as a video feed).

While the unlimited communication setting has been
widely studied (see, e.g., [1]), the case of multirobot explo-
ration in presence of limited communication still presents
challenging research questions. The approaches presented
in the literature can be roughly classified according to
the strength of the constraints they impose on connectivity
between robots. On the one hand, there are approaches that
enforce a “strict” form of connectivity. In this case, the
robots and the BS are connected with each other at all time
instants [2], [3] or they are allowed to shortly disconnect
only while traveling between connected configurations [4],
[5]. When robots are connected, they form a relay chain to
send gathered data to the BS, for this reason we call this
communication modality multi-hop (MH). On the other hand,
there are approaches using a “soft” form of connectivity,
in which connections between robots and the BS are not
planned but emerge from the behavior of the robots. In this
case, robots freely explore the environment and return to
the BS when some condition is met (e.g., a threshold on
explored area is reached) [6], [7]. Since, when returning
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to the BS, robots can opportunistically meet and exchange
collected information, we call this communication modality
rendez-vous (RV).

The two communication modalities have complementary
positive and negative sides. In the MH communication
modality, robots can quickly deliver new information to the
BS, but changing the robots’ deployment may result into long
traveled distances that increase exploration times. On the
other hand, the RV communication modality often requires
less time and traveled distance for exploring an environment,
but at the expenses of a lower situational awareness at the BS.
To the best of our knowledge, exploring multirobot systems
presented in the literature adopt a single communication
modality (either MH or RV). However, it has been observed
that online switching between communication modalities
could be beneficial to exploration missions by balancing
exploration efficiency and awareness at the BS. In particular,
in [8], a conjecture is advanced that the MH modality is well
suited for initial and final stages of an exploration mission,
while the RV modality is more convenient in the middle of
the mission.

In this paper, we investigate the possibility of combining
the best features of the two described modalities through
the study of a multirobot system that can originally switch
between communication modalities during an exploration
mission. The proposed switching policy selects a commu-
nication modality according to the estimated percentage of
explored area. Experimental results (obtained in simulation)
suggest that switching of communication modalities leads to
a balanced performance in terms of exploration time, traveled
distance, and situational awareness at the BS.

II. MULTI-HOP AND RENDEZ-VOUS MODALITIES

In this section we provide an overview of two types of
communication modalities, namely MH and RV, which are
usually employed in multirobot exploration.

The MH communication modality can be thought as
enforcing a form of “strict” connectivity, informing the BS
each time new data are acquired. In particular, robots are
required to form a relay chain connecting the frontiers of
the environment (i.e., the boundaries between mapped and
unknown space) with the BS. This modality provides up-
to-date situational awareness to the BS but constrains the
robots in their movements. An approach following the MH
modality is introduced in [4] and generalized in [5]. In
particular, while the strategy proposed in [4] computes a
new deployment of robots once they have all reached their
currently assigned locations, [5] suggests to compute new



deployments for subsets of robots, provided that they have
accomplished their assigned tasks.

Two relevant examples of strategies embracing the RV
communication modality are presented in [6], [7]. In par-
ticular, [6] presents a role-based exploration strategy where
robots are preassigned with the role of explorer or relay,
and information is brought to the BS by the relays after
having arranged a meeting with the explorers at rendez-
vous locations. In [7], instead, the behavior of the robots
is regulated by a local utility function which considers the
amount of information a robot has not yet delivered to the
BS and the estimated amount of information known by the
BS. As soon as an exploring robot notices that it is carrying
“too much” information still unknown at the BS, it goes back
to report it: if two robots meet while returning, only one of
them is left in charge of going to the BS, leaving the other
free to explore. Thus, this strategy gives rise to a form of
“implicit rendez-vous” between robots.

In [8], variants of the above MH and RV communication
modalities are implemented as a testbed for a routing proto-
col to exchange information between exploring robots. From
the analysis of obtained results, a conjecture is advanced that
a MH modality is well suited for initial and final stages of an
exploration mission, while a RV modality is more convenient
in the middle of the mission. The idea is that sharing initially
acquired information promotes an effective deployment of
robots (e.g., a balanced spreading), which can then explore
freely, before eventually reconnecting to quickly convey to
the BS the last perceived data.

In this paper, we investigate the above hypothesis by
presenting an exploring multirobot system that, originally,
can switch between the MH modality of [5] and the RV
modality of [7].

III. SYSTEM OVERVIEW

We consider a two-dimensional indoor environment, which
is initially unknown. We consider a system composed of
n homogeneous robots R = {r1, r2, . . . , rn} and of a BS.
The information collected by the robots in the environment
should be eventually delivered to the BS, where human
operators supervise the exploration mission. Each robot can
move in the environment and perceive it with a laser range
scanner. Robots can also communicate with each other (and
with the BS) within a range Rc, which is not constant but
varies according to some factors, such as the presence of
walls (see Section V-A). We assume that, when two robots
can communicate, the available bandwidth provided by their
communication devices is unlimited (for the purposes of the
mission). For simplicity, we assume that all the robots are
equal. Each robot is able to build a local occupancy grid map
starting from the scans it collects (e.g., using gmapping [9]),
while the BS is able to merge the local maps received from
the robots in a global map MBS of the environment (e.g.,
using a method like that in [10]). On both the local maps
and the global map, frontiers are calculated as the clusters
of known free cells that are adjacent to unknown cells. The
goal of the mission is to build a complete global map of the

Fig. 1. MH modality, exploration snapshot. Blue and red: not ready
and ready robots, respectively. Black-edged squares: vertices of G. Green:
current communication links. Purple: frontiers of the last issued plan. Image
from [5].

environment, namely a map without frontiers, trading-off the
minimizations of exploration time, of distance traveled, and
of time during which robots are disconnected from the BS.

As introduced above, we consider a multirobot system that
can operate under two different communication modalities,
MH [5] and RV [7]. In the following, we provide a brief
overview of the two modalities, referring the reader to the
original papers for full details. Note that each communication
modality is associated to a different coordination strategy for
the robots.

A. A MH modality (Banfi et al. [5])

When adopting MH as communication modality, robots
are required to form relay chains connecting the frontiers
with the BS (Fig. 1). To cast this process into a rigorous
optimization framework, a graph G = (V,C) is constructed
upon the occupancy grid map. The vertex set V represents
candidate robots’ locations, while the edge set C represents
the possibility of communicating between two vertices in V
under a given conservative communication model (like, for
instance, one based on limited-distance line-of-sight). At any
time instant, a robot can be ready or not. Informally, a robot
is ready if it has acquired and/or relayed the information from
the assigned frontier(s) to the BS. Note that, in an efficient
deployment, a robot not placed on a frontier may serve as
data relay for other robots placed on frontiers (like in a tree
structure).

At the beginning, all the robots are ready and connected to
the BS. Deployments of subsets of robots in the environment
are then iteratively issued by the BS (which acts as a central
coordinator) as soon as a given number ✓ of robots becomes
ready (in our experiments, we set ✓ = 1 to avoid idle
robots). To simplify the deployment process, the problem
is decomposed in two sub-problems. First, find the “best”
set of connected robots’ positions (i.e., vertices in V all
connected to the BS by edges in C) according to a utility
function that considers the expected information gain at
those positions (regardless of which robot occupies which
position). Second, allocate the robots on such positions to



minimize their traveling cost. The first problem is solved
by means of an approximated algorithm based on finding
solutions to a sequence of Steiner tree problems. The second
problem is then easily solved by means of the Hungarian
algorithm.

B. A RV modality (Spirin et al. [7])
In this modality, the robots explore independently the

environment, moving toward the most promising frontiers
they know (according to a utility function which takes into
account both the estimated information gain and the travel
distance), and return to the BS when they have gathered
enough information. Specifically, a robot ri goes back to the
BS when:

|MBS|
|MBS|+ |Mi|

< th,

where |MBS| is the amount of information (e.g., number of
known cells) contained in the global map MBS known at the
BS (according to what robot ri knows), |Mi| is the amount of
novel information contained in the local map of robot ri that
is not in MBS, and th 2 [0, 1] is a fixed threshold. The larger
the value of th, the more frequently a robot returns to the
BS (in our experiments, we set th = 0.8 to ensure a good
situation awareness at the BS). The coordination between
robots is episodic and opportunistic. If two robots meet (i.e.,
if they are within Rc), they first merge their local maps and
share their believes about MBS. Then, the robot nearest to
the BS will be in charge of going back to the BS, while the
other one will be free to going back to explore.

The robots can be basically involved in two behaviors: ex-
ploring or returning to the BS to deliver information. In [7], it
is observed that for small values of th and for a large number
of robots n, some robots start to act as relays, simply moving
back and forth between the BS and the other exploring
robots. This happens because robots frequently meet while
returning to the BS to deliver their information. When they
are within communication range, they exchange information
and, having now the same knowledge of the environment,
the robot nearest to the BS assumes the responsibility of
delivering back to the BS the combined new information.
When this relay robot tries to move again toward some
frontier, it is likely that it meets another returning robot,
and the process repeats.

IV. SWITCHING BETWEEN MODALITIES

In order to switch between the MH and the RV communi-
cation modalities (and associated coordination strategies), we
introduce a switching policy, which returns a communication
modality according to the current state of the mission. In
particular:

SwitchingPolicy(MBS,m
t�1

) = mt,

where MBS is the map currently known at the BS, mt�1

is the current communication modality, and mt is the new
communication modality. In our system, mt 2 {MH,RV}

for all time steps t. If mt 6= mt�1, then there is a switch in
the communication modality.

In principle, there can be several ways in which the
SwitchingPolicy can be implemented. Following the conjec-
ture reported of [8], we implement a simple SwitchingPolicy
that performs a switch from the starting MH modality to
the RV modality after the initial stage of the exploration
mission and a switch back from RV to MH in the final stage
of the exploration mission. The communication modality is
thus changed according to:

SwitchingPolicy(MBS,m
t�1

) =

8
><

>:

RV if ↵  area(MBS)

Â
< �

MH otherwise

where, area(MBS) is the extent of the area of the known free
space of the map MBS and ˆA is an estimate of the area of the
free space of the whole environment. The two parameters ↵
and � (both in [0, 1] and such that ↵  �) control the switch
from MH to RV and from RV to MH, respectively.

Calculating ˆA amounts to estimate the entire area of an
environment that is only partially known by the multirobot
system. We propose three different ways to perform such
estimation:

• ˆA = A, the real area of the environment. This is an often
unrealistic situation, but it is useful for comparison.

• ˆA =

ˆABB, the area of the bounding box of the
environment. In realistic situations, it is often possible
to know the outer perimeter of an indoor environment
(e.g., from satellite images or from floor plans). From
the outer perimeter, the bounding box and its area can
be easily calculated.

• ˆA =

ˆAAV, the average area of environments of the same
type of the explored one. Human-made environments,
like buildings, are characterized by strong regularities,
not only within the same building, but also between
buildings of the same type (like schools, offices, hospi-
tals, . . . ). In previous work, we have modeled these reg-
ularities according to the concept of building type [11],
[12]. Assuming to know the type of the environment
the robots are exploring, we calculate the average area
of the environments of the same type present in the
data sets of [11], [12]. For instance, Fig. 2 shows
the histogram distribution of the areas of 43 school
buildings and the average area.

All three methods provide an estimated area for the envi-
ronment being explored, which is calculated at the beginning
of the mission.

The decision of switching between different modalities
is taken by the BS and considering area(MBS), the total
amount of area known to the BS at each time step t. After
each update of MBS (triggered by reception of data from
robots), the BS compares the two parameters, ↵ and �, with
the current exploration progress area(MBS)

Â
. If the conditions

for a strategy switch are met, the BS sends its decision to
the connected robots. In the case of a switch from MH to



Fig. 2. Areas of 43 school buildings (in m2) and average area.

RV strategy, robots are usually already connected to the BS
(or they will be, as soon as they reach their current goal
positions) and the policy switch happens immediately. In the
case of switch from RV to MH, instead, we study the two
following scenarios.

Basic scenario: we assume that the BS is endowed with
the same communication device (e.g., a Radio-Frequency
(RF) transceiver) of the robots, characterized by a (relatively)
low range Rc and by a high bandwidth. Under this assump-
tion, the BS alerts all the robots that gradually enter the
BS’s communication range to stop their current tasks. When
all the robots eventually can communicate to the BS, the
robots restart exploring using the MH modality. Note that
this process might require some time, since robots moving
according to RV modality restore the connection with the
BS only when coming back to report new data (which can
happen at unpredictable times).

Additional long-range low-bandwidth channel: we as-
sume that the BS is endowed with a second communication
channel with low bandwidth and long range, able to cover
the whole environment. This channel, similar to an AM radio
frequency, is mono-directional: the BS is the only transmit-
ter and the robots can only receive. Using this additional
communication channel, the BS signals to the robots the
need to switch from RV to MH modality, avoiding to wait
until all robots are connected. After the signal is received,
all robots immediately return to the BS and switch from
RV to MH. Note that limited bandwidth is not a problem,
since a single-bit information is enough to communicate the
switching command. This second channel is not used to
communicate any other information about the environment
(partial maps, video feeds, . . . ).

V. EXPERIMENTAL RESULTS

We run simulated experiments in MRESim [13], which
is an easy-to-use simulator for multirobot exploration with
communication constraints. In the experiments reported here,
we consider teams of 6 robots plus the BS, exploring 12

school buildings. Our main aim is to validate the conjecture
of [8], namely that alternating MH and RV yields better

Fig. 3. One of the simulated environments representing a real-world school
building.

exploration performance than using a single communication
modality.

Given an environment, we consider three metrics:
1) the time taken by the robots to completely explore the

environment,
2) the total distance traveled by the robots to completely

explore the environment (which can be easily related
to energy consumption),

3) the disconnected time, namely the time robots have not
been in communication with the BS.

MH and RV modalities perform very differently if we
consider these three metrics: RV is generally better than MH
in the time taken and the total traveled distance, while MH is
generally better than RV for what concerns the disconnected
time. In the following, results are presented using heatmaps.
For each combination of values of ↵ and � of our switching
policy (from 0 to 1 with step 0.1), the heatmap reports a
cell with a color: green ( ) means good performance, red
( ) means bad performance, and yellow ( ) means average
performance.

A. Simulation settings

Maps in MRESim are 800 ⇥ 600 px, which correspond
to environments of approximatively 40 ⇥ 30 meters. One
example of one of the environments is shown in Fig. 3.
Robots are equipped with a simulated laser range scanner,
whose data are fed to a simulated SLAM module. We
set a sensing range of ⇠ 5 meters, with a field of view
of 120 degrees. Robots are also equipped with simulated
short-range RF transceivers (which simulates, for instance,
a WiFi signal), adopting the signal strength model of [14].
According to this model, the signal strength at distance dm
from the emitting source is computed as:

S = Pd0 � 10⇥N ⇥ log10
dm
d0

�min(nW,C)⇥WAF, (1)

where Pd0 is the signal strength at the reference distance
d0, N is the rate of the path loss, nW is the number of
obstructing walls, WAF is the wall attenuation factor, and
C is the maximum number of walls where the attenuation



Fig. 4. Average results with the perfect estimator Â = A.

factor needs to be considered. In our experiments, we set
d0 = 180 px (⇠ 1/5 of the map diagonal, approximatively 9

meters), Pd0 = �92 dBm, N = 2, C = 4, WAF = 3. We set
the cutoff value to �92 dBm. Therefore, d0 is the highest
possible value for Rc. For what concerns the conservative
communication model used to build the graph G used by
the MH modality, we assume that two robots will always be
able to communicate when within distance d0 and in line-
of-sight. The second communication channel is modeled in
a similar way, but allowing communication across the whole
environment.

B. Results

Fig. 4 shows the average results obtained over the 12

school buildings considering ˆA = A, namely a perfect
estimator of the area of the environment. For each metric,
the performance is normalized over the environments and
over the runs with different combinations of ↵ and �. From
the figure, it is clear that the three metrics are conflicting.
Shortest time taken and distance traveled are obtained when
� is close to 1 (namely, when the final switch from RV to
MH is performed very late during the mission). Conversely,
shortest disconnected times are obtained with small values
of � (namely, limiting the time during which RV is used).

Fig. 5 shows the results for the bounding box estimator
( ˆA =

ˆABB). By definition, this estimator overestimates the
area of the environment, and this is particularly true for
environments that do not have a box-like shape (for which
the estimation error is ⇠ 30%), like T-shaped (estimation
error of ⇠ 100%) and H-shaped buildings (estimation error
⇠ 50%). (In our experiments, we use 8 box-shaped buildings,
3 T-shaped ones, and one H-shaped). Note that the bounding
box model overestimates the area even for box-shaped build-
ings, because of gaps between rooms, as those caused by
walls or by closed/service rooms (like elevator shafts). The
consequence of overestimating the area is that the ranges of
values for ↵ and � that produce good performance relative

Fig. 5. Average results with the bounding box estimator Â = ÂBB.

to time taken and distance traveled are larger (visually, the
green areas are larger). However, at the same time, it is
harder to find a good combination of values for ↵ and
� that minimize the disconnected time. This is the main
limit of the bounding box estimator, which is often unable
to guarantee good situation awareness at the BS. For this
model, the combinations of values for ↵ and � that yield
good results (namely, the green area) seem to be larger with
respect to the perfect estimate model. Also, this green area
is slightly moved from values where the RV modality is
predominant (namely, with low ↵ and � = 1) to values
where ↵ < 0.5 and � � 0.6. Using the bounding box model,
when an exploration run is approaching to discover the last
remaining parts of the environment, the estimator returns that
the percentage of the environment explored is much smaller
than it actually is. This leads to never employ the second
switch to a MH modality, because the threshold � is never
met.

In Fig. 6, we report the results for the average area
estimator ( ˆA =

ˆAAV). In this case, the performance is similar
to that obtained with the perfect estimator (visually compare
Figs. 4 and 6), with the presence of ranges of values for ↵
and � that provide a good trade-off between the effort needed
to explore the environment and the maintenance of a good
situational awareness at the BS. However, being based on an
average value, this estimator shows some weakness when the
area of the environment being explored significantly deviates
from the average of the areas of the environments of the same
type. Values around ↵ = 0.5 and � = 0.8 produce a good
balancing between the benefit of a MH modality and those
of a RV one when using the average area estimator, with
good performance for all the three metrics combined.

Overall, the conjecture of [8] seems to be supported by
our empirical evidence: online switching from MH to RV
and from RV back to MH leads to a balanced exploration
performance. This balancing is not obtained when using
combinations of values close to those corresponding to single



Fig. 6. Average results with the average area estimator Â = ÂAV.

communication modalities, namely ↵ = � for MH and
↵ = 0, � = 1 for RV.

Finally, we evaluate the effect of using the low-bandwidth
communication channel for switching from RV to MH. Fig. 7
shows that the use of the second communication channel
does not substantially change the overall performance of our
exploring multirobot system. The only improvement that can
be found is a slight reduction of the disconnected time.

VI. CONCLUSIONS

We have presented a novel multirobot system for explo-
ration that is able to dynamically switch communication
modality during the mission according to different estimates
of the whole area of the (unknown) environment. We have fo-
cused on switching between two communication modalities,
namely MH and RV, which have strict and soft connectivity
constraints, respectively. The system has been evaluated by
considering the exploration time, the distance traveled, and
the time during which robots are disconnected with the BS.
Results show that alternating the MH and the RV modalities
nicely balances the benefits of the two approaches.

Future works include testing different switching policies,
possibly involving different criteria beyond the one based on
the estimated area, and testing more complex combinations
of different communication modalities, also measuring the
costs of communication and the redundancy of information
transmitted to the BS. Moreover, the impact of the number
of robots and of their locomotion and perception capabilities
could be better assessed. Finally, implementation on real
robots is required to confirm the findings of this paper.
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Autonomous Landing On A Moving Car With Unmanned Aerial Vehicle

Tomas Baca1, Petr Stepan1 and Martin Saska1

Abstract— This paper presents an implementation of a system
that is autonomously able to find, follow and land on a car mov-
ing at 15 km/h. Our solution consists of two parts, the image
processing for fast onboard detection of landing platform and
the Model Predictive Control tracker for trajectory planning
and control. This approach is fully autonomous using only
the onboard computer and onboard sensors with differential
GPS. Besides the description of the solution, we also present
experimental results obtained at MBZIRC 2017 international
competition.

MULTIMEDIA MATERIAL

A video attachment to this work is available at [11].

I. INTRODUCTION

Multirotor helicopters, in robotic literature called Un-
manned Aerial Vehicles (UAVs) or Micro Aerial Vehicles
(MAVs), due to their possible very small size, have become
widely popular within the scientific community for their well
studied dynamic properties and high applicability. Ability
to hover in one place has advocated their use as a sensor
carrying platform and for testing various approaches of fully
autonomous flying, even without any human intervention
during the mission in future. Three tasks need to be solved in
such a deployment of autonomous MAV systems: take off,
trajectory following possibly with an environment interac-
tion, and precise landing. Robust and safe autonomous land-
ing seems to be the most challenging part of the overall MAV
mission mainly if a dynamic target of unknown position and
windy outdoor conditions are considered. In this paper, a
system designed to solve this task is introduced together with
breathtaking results of repeated fully autonomous landing on
a 15 km/h moving platform in an outdoor arena with the
wind reaching 10 � 20 km/h and achieving a precision in
tens of centimeters.

A. MBZIRC 2017 competition

The research achievements presented in this paper were
motivated and results obtained within the Mohamed Bin
Zayed International Robotics Challenge (MBZIRC) 2017
competition organized by the Khalifa University of Science
in Abu Dhabi. The MBZIRC competition brought a signifi-
cant impact to the robotic community, and mainly to the field
of MAVs, due to the ambitiously selected robotic challenges
on the edge of current state-of-the-art chosen by a board of
top scientists in the field. One of these challenges motivated
by current needs of industry was autonomous landing on a
moving vehicle discussed in this paper.

1Authors are with the Faculty of Electrical Engineering, Czech
Technical University in Prague, Technicka 2, Prague 6, Email:
tomas.baca@fel.cvut.cz.

The MBZIRC challenges were designed to provide a spec-
tacular performance and to attract a broad general audience.
The most importantly, the MBZIRC competition could be
considered as a relevant and objective benchmark of the
tasks, which are currently solved by the robotic community
since the successful teams had to achieve the given goal
after only a few minutes of preparation in one trial. No
repeated tests, which is the standard practice in most of
the laboratory experiments, were allowed and moreover the
system robustness was exhibited in current environment
(light and windy) conditions (teams could not influence the
start of their run). Out of 140 registered teams from almost
all best robotic groups worldwide, 25 top teams were selected
after several preliminary rounds to compete in the final
competition in Abu Dhabi in March 20171. The solution,
described in this paper, presents the best reliability and
robustness (only two teams landed precisely in both final
trials) and the fastest performance from all competition trials
(the fastest time of landing in the entire competition was
achieved by the proposed system during the grand challenge,
where together three MAVs were deployed simultaneously).
The only competitive solution was presented by team Fly
Eagle from Beijing Institute of Technology. They also landed
in both trials in a similar time, but their system is not
published yet to be able to compare both systems and to
highlight differences. Nevertheless, both solutions can be
considered as a valuable contribution to the robotic field
since according to our knowledge no other system does
exist to be able to solve this very demanding and complex
challenge in these outdoor conditions (which was also the
reason, why this task was selected by respected robotic
leaders for the competition).

Before the competition, few solutions of autonomous
landing with visual feedback were described in literature [5],
[6], but most of these systems are capable of landing only
on a static or slowly moving pattern [8], [9], [10] and only
in laboratory conditions, without the presence of wind and
with stable light conditions.

To sum up the contribution of this paper, the proposed
method enables to detect a landing pattern, to estimate its
relative position and velocity, to predict motion of both
systems (the MAV and the landing platform) and based
on these states estimation it designs sequence of optimal
control inputs taking into account external disturbances such
as wind and imprecisely identified MAV model in MPC
fashion using only onboard computational resources. This

1Results of our team from this qualification process can be found at
http://mrs.felk.cvut.cz/projects/mbzirc



approach provides high robustness and precision in the
landing task, which is a crucial element for fully autonomous
missions (such as periodical surveillance, reconnaissance,
object carrying, and monitoring) in which MAVs are espe-
cially appealing.

B. Contributions

We present a solution to the challenge 1 of MBZIRC 2017
competition. The MAV can follow a car moving at 15 km/h
autonomously. While following, it lands on the car roof and
attaches itself using magnetic legs. The landing on a moving
car is robust on very challenging outdoor condition with wind
speed up to 10 m/s.

II. THE PROBLEM DEFINITION

The task consists of an autonomous landing of an MAV
on a moving car. The car is equipped with a graphical black
pattern on a white metal board. The landing pattern consists
of a single circle with a cross drawn in its center. The
autonomous landing is conducted with a multirotor aircraft
equipped with cameras, differential GPS receiver, and other
sensors. Although the GPS is not a necessity, long-term and
robust autonomous flight proves to be simpler than using,
e.g., only visual odometry for localization. The speed profile
of the car is known, starting at 15 km/h and slowing down,
as well as its trajectory, except its initial conditions – position
and direction. The track, in which the car will drive, can
be measured before experiments to improve the search or
tracking.

We assume our MAV is equipped with a down-facing
camera, differential GPS and laser rangefinder for measuring
its altitude above the ground.

III. COMPUTER VISION

The goal of pattern detection is to detect the landing
pattern robustly. The image processing was computed on
Intel NUC embedded PC with Intel Core i7 5557U processor.
A single mvBlueFOX-MLC200w color camera was used.
This camera has a global shutter and therefore is suitable
for aerial robotic purposes. The camera can provide 93
images per second with resolution 752 ⇥ 480. A miniature
SuperFisheye lens Sunex DSL215, together with with 1/3”
camera sensor, created an image with horizontal FOV of
185�. Our detection algorithm can detect the landing pattern
in one image using a single thread in 15 ms. The final
detection rate is 50 Hz.

A. Algorithm overview

Landing pattern detection is based on standard computer
vision approaches using OpenCV tool. The landing pattern
(see Fig. 1a) contains circle and cross. The detection al-
gorithm is based on circle detection combined with cross
detection inside the circle. The detection has to be robust to
various weather conditions, changes of light intensity, and
direct sunshine with shadows cast by the aircraft.

The first step of pattern detection is a method of adaptive
thresholding. The result of the thresholding with box size 5

(a) (b) (c)

Fig. 1: a) original image from the camera, b) adaptive
threshold with box size 11 pixels, c) adaptive threshold with
box size 5 pixels.

(a) (b)

Fig. 2: a) original image from the camera, b) undistorted
image.

pixels and 11 pixels can be seen in Fig. 1b resp. 1c. The
adaptive threshold is robust to light intensity and is used to
segment the border of the circle in the image. The size of
the block for adaptive threshold depends on expected pattern
size, which depends on drone altitude.

A variant of the detection algorithm is selected based on
the current altitude of the MAV:

• altitude more than 5 m, the pattern is small, the size of
circle in the image ranges from 10 to 20 pixels

• altitude between 1.5 m and 6 m, the whole circle can
be detected

• altitude less than 1.5 m, only a part of circle is detected,
detection is based only on cross detection

The circles and lines are detected in the segmented image
from the adaptive threshold. The object detection is done in
image coordinates, in contrast with the classification, which
is applied on undistorted images. Undistorting images before
further computations is crucial for further processing.

B. Fish-eye lens

The identification of the lens was performed using
OpenCV 3.2 and its fish-eye model. The original image from
the drone can be seen in Fig. 2a, the corrected image in
Fig. 2b.

Due to the slow implementation of the fish-eye model in
OpenCV, a custom version of the undistort method was im-
plemented. This new undistort function is even faster than the
conventional camera model. The original fish-eye undistort
function computes transformation from image coordinates
(x, y) to undistorted coordinates by following steps:
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where k0, k1, k2, k3 are distortion coefficients detected
by fish-eye calibration.
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This approach is very slow, because iterative computation of
✓10 needs 80 float multiplication and 17 float divisions, so
together it needs 97 float operations.

Because the distortion coefficients are known in advance,
we can prepare results of scale for all values of ✓0 with
sufficient precision. For our image resolution 752⇥ 480, we
are using array scale
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root function, because we can prepare scale values for the
square distance from image origin. Finally, the computation
of undistorted coordinates for image coordinates (x, y) takes
following steps:
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This approach is using only 7 float multiplications and is
approx. 15 times faster than the conventional one.

C. Robust detection

The robust detection of the landing pattern is based on cir-
cle detection on images from adaptive threshold procedure.
To eliminate false positive detections, the circle must contain
a cross. The detection of the cross relies on three algorithms,
depending on circle size.

If one of the axis of the ellipse (circle) is shorter than
30 pixels, then a line, making a part of the cross, cannot
be detected reliably. In such case, the cross is detected
by searching for four areas with similar size. Mathematical

(a)

(b)

Fig. 3: a) Original images from camera, b) result of operation
morphological closing.

(a) (b) (c)

Fig. 4: a) original image from the camera, b) adaptive
threshold with box size 11 pixels, c) result of Guo Hall
thinning.

morphology operation closing is applied, and the number of
closed areas is computed. The cross is detected if there are
four closed areas, having similar size. Figure 3a shows orig-
inal images, wheres Fig. 3b shows detected areas depicted
by gray color.

Cross of a size between 30 and 150 pixels can be detected
by Guo Hall thinning [2]. This algorithm cannot be used
for larger circles because of its computational demands. The
Guo Hall thinning enables very robustly detect correct lines
inside the circle. The cross inside the circle is detected if a
crossing point of two the biggest lines is near the center
of the ellipse. Figure 4 shows the original images from
the camera in comparison to images after applying adaptive
thresholding and the results of Guo Hall thinning algorithm.

For circles larger than 150 pixels, the cross is detected by
finding two pairs of parallel lines (see fig. 5a red and green
lines) forming a border of the cross. At least two pairs of
parallel lines with correct size and thickness are required,
to positively detect the cross and its center. This method
provides detection of the landing pattern if the whole circle
cannot be seen. Figure 5b depicts the pattern reconstructed
only from two visible lines of the cross.

D. Global pattern position

The last step is computing the position of the landing
pattern in global world coordinate system. Suppose that we



(a) (b)

Fig. 5: Line detection for a) cross inside of the circle and
b) when only a part of the landing pattern is detected. Only
boundaries are shown, as would be in undistorted images.
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to center to the landing pattern in world coordinate system.
Knowing the altitude alt of the camera from ground and
height of the landing vehicle we can compute the position
of the landing pattern lan as:

lan = cam+ d ⇤ alt� high
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. (8)

A precise estimate of the MAV altitude is required.
Experiments showed that the altitude error could be up to
1 m when relying on a laser rangefinder or other available
sensors. Therefore, for purposes of the pattern detection, we
compute the distance to the pattern from the apparent size
of the ellipse.

IV. CAMERA CALIBRATION

The successful landing depends on precise localization of
the landing pattern in world coordinates. Synchronization of
MAV position to the time of image acquisition is important to
correctly compute the global coordinates of the car. Calibra-
tion of the camera coordinate system with MAV coordinate
system has the same importance.

Following steps describe the parameters taken into account
when calculating the global position of the car:

• position translation of the camera origin relative to the
MAV body

• angular shift of a camera mount to the MAV body
• time shift of camera data to the time of known position

and orientation of the MAV
The position shift of the camera coordinate system to the
MAV coordinate system was measured on a bench during the
construction of the MAV. The experiments show that the best
way to estimate the angular shift is to use real-world data.
The time shift of camera data has to be estimated by ex-
periment too because it depends on many hidden parameters
of ROS and OS system. It varies with camera type, camera
interface and real-time features of the underlying operating
system.

We found it difficult to set all parameters at once, due to
the time shift and angular shift being strongly connected. We
designed two flight scenarios to automate the estimation.

Both scenarios rely on differential GPS up-to 5 cm lo-
calization precision. The MAV takes off from the center
of the landing pattern, and therefore the target’s position
in world coordinate system can be automatically detected.
The first scenario was designed to detect the angular shift of
the camera, and therefore the MAV flies as stable along a
predefined trajectory around the landing pattern. The second
scenario contains aggressive maneuvers with a high angular
rate of the MAV.

Finding the angular shift is split into two parts. First, the
yaw angle ↵ is estimated as
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Then roll and pith angles are found separately using x and
y global coordinates respectively, all obtained from designed
flight. For example, to estimate the angular correction using
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The search for the angular shift can be defined as an
optimization task with variables ↵, d

x

, d

y

. The task was
solved by finding a minimal value for all combinations of
values ↵ from interval h�5�, 5�i with step 0.5�, values d

x

, d

y

from h�50, 50i with step 2 using focal length f

x

= f

y

=
261 pixels. The task was solved offline using recorded flight
data.

V. GUIDANCE LAW

The guidance law we present is a modular pipeline consist-
ing of five components. Following paragraph gives a shortlist
of those components, which are subsequently describe in
following sessions V-.1 to V-.4.

The first component is the Cross detector (presented in
Chapter III), which provides measurements of car position
in the world frame coordinate system. The measurements
are processed by Car state estimator, which outputs an
estimate of the car states in the means of nonholonomic, car-
like model. The estimate is then conveyed to the Car state
predictor, whose output is a future trajectory of the car. The
trajectory is then taken as reference by the MPC tracker,
which minimizes a quadratic error of MAV future states
over the predicted future, to fly above the car. As a result,
the MPC tracker outputs desired states (position, velocity,
and acceleration) to the State feedback controller. The
state feedback controller, being the last part of the pipeline,
produces commands for the Pixhawk flight controller.

1) Car state estimator: The car state estimator was de-
signed using the Unscented Kalman Filter (UKF) [4]. UKF
allows estimation of system states using a nonlinear transfer
function. A discrete, nonholonomic, car-like model with state
box constraints was used to further allow precise prediction



of vehicle future movement:
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T is position of the car, � is its heading,

K is curvature of its turn, v is car scalar velocity, a is car
scalar acceleration and �t is sampling time difference.

State estimation served two purposes within our pipeline.
First, it acted as a filter for incoming measurements from the
cross detector, with measurements variance being adjusted
with respect to the altitude. Second, it allowed estimating
unmeasured states, later important for predicting car future
movement. The resulting estimate is outputted at 100 Hz.

2) Car state predictor: Using the information from the
car state estimator, we predicted its future trajectory using
the same dynamic model. In the case of a general car
trajectory, tracking with such prediction worked reliably up
to 20 km/h. For purposes of the competition, we decided
to use a prior knowledge about the competition arena. The
curvature of the predicted trajectory was biased using a
known map of the arena and the track on which the car
was driving. Based on the observations during rehearsals,
the day before the competition, this technique was further
extended to bias predicted points by projecting them directly
in the driving track. The predicted trajectory was outputted
at 30 Hz.

3) MPC tracker: In our pipeline, a trajectory tracker is
responsible for generating a set of desired states of the
MAV (position, velocity, and acceleration) to follow a set
trajectory (generated by the car state estimator). It uses a
decoupled, 3-rd order translational dynamics to simulate a
virtual MAV at 100 Hz. The virtual MAV is then controlled
by Model Predictive Control with 8 s prediction horizon, also
at 100 Hz. States of the virtual MAV are sampled and handed
out to the state feedback controlled as a reference. Thanks
to the MPC, the tracker provides necessary feed-forward
action to follow the known future path. The particular MPC
control approach is based on previous work presented in [3],
further extended to support state constraints in velocity and
acceleration.

4) State feedback controller: The final part of the pipeline
is SO3 state feedback controller presented in [7]. SO3
controller provides 100 Hz feedback on the desired position,
velocity, and acceleration of the MAV. Controller output is
desired tilt angles, yaw rate and total thrust which are sent
to Pixhawk embedded controller as a reference.

A. Approach and landing strategy

The whole mechanism of approaching and landing was
realized as deterministic finite state automata. After the
sequence was initiated, the MAV took off and moved to

(a) (b)

Fig. 6: a) Our MAV landing on the car. b) The landing
platform from MAV camera point of view.

the center of the workspace, where it waited for the car
to appear in the field of view of the camera. Such strategy
minimizes the mean time of the search given the constraints
of our MAV and the unknown (random) initial condition of
car position and direction. After the car was spotted and the
covariance of its state estimate surpassed a given threshold,
the MAV started to follow the car while it maintained current
altitude. In this case, the approach trajectory, produced by
Car state predictor, was designed as minimum-snap with
orthogonality constraint – the MAV first moved orthogonally
to a point, where it would meet the car. Such approach
mitigated unwanted direct movement towards the car, which
would tilt the MAV in car direction and possibly lost it from
the line of sight. After the MAV had been aligned with the
car, a first descending stage was initiated. When descended
to 4 m, the MAV was waiting for a precise alignment,
after which a rapid landing stage started. During the rapid
landing stage, a laser rangefinder provided a trigger for motor
shut-off. In the case of lost alignment or lost tracking, the
respective states were stepped back, or the whole automata
was reset.

VI. EXPERIMENTAL RESULTS

The challenge took place on a flat, rectangular area with
dimensions 90⇥60 m. The area contained a marked track in
a shape of figure 8 (see Fig. 8). The car was driving within
the marked track, starting on a random place and heading in
a random direction. A decreasing speed profile was defined,
starting at 15 km/h and later slowing down to 5 km/h.
The car was equipped with a 1.5⇥ 1.5 m landing platform,
bearing a landing pattern (see Fig. 6).

Before the round, the competing team would place the
MAV at a starting location and wait for a mark to initiate
the flight. The team whose MAV would land the fastest wins.
Penalization was issued if parts of the drone would fell off
during the landing or for any human intervention after it took
off.

A. Experimental platform

The MAV was assembled mostly from off-the-shelf com-
ponents, except a few 3D-printed parts. Common DJI F550
hexacopter frame (see Fig. 7) was equipped with Pixhawk



Fig. 7: MAV used in the experiments was based on DJI
F550 hexacopter frame, Pixhawk stabilization board, and
Intel NUC computer.

autopilot system, flashed with stock PX4 software. Our
computer vision and guidance software were executed on
Intel NUC with Core i7 processor. The MAV utilized a sin-
gle down-facing MatrixVision Bluefox camera with fisheye
lens. Drone’s landing gear was equipped with neodymium
permanent magnets to fix it after the landing. All custom
software was build using ROS (Robot Operating System),
running upon Ubuntu operating system.

B. Trial results

Our platform was tested in 4 trials over two days of the
competition. First two were part of a separate challenge
solely focused on landing on a moving vehicle, wheres the
other two were part of a Grand challenge, where other
robotic tasks were performed simultaneously in the same
arena (Cooperative collecting of objects by multiple MAVs
and a ground robot task). First two trials were completed
successfully with the flight time of 1 min, 44 sec, and 0
min, 1 min, 28 sec. The third trial was also successful while
having the best score of all teams – 0 min, 25 sec of flight
time. The fourth trial was the only unsuccessful one due
to the MAV misalignment in the final stage of the landing,
which was falsely classified. Fig. 8 plots all three successful
trials in a top-down view, as recorded by the MAV during
the flight. Videos, capturing the trials, can be found at [11].

VII. CONCLUSION

We showed that platform presented in this paper is capable
of landing on a car driving at speed 15 km/h, using only
onboard computational resources. The platform was tested
in MBZIRC 2017 competition, where it performed with the
fastest landing time among all competing teams.
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Improving Sonar Image Patch Matching via Deep Learning

Matias Valdenegro-Toro1

Abstract— Matching sonar images with high accuracy has
been a problem for a long time, as sonar images are inher-
ently hard to model due to reflections, noise and viewpoint
dependence. Autonomous Underwater Vehicles require good
sonar image matching capabilities for tasks such as tracking,
simultaneous localization and mapping (SLAM) and some
cases of object detection/recognition. We propose the use of
Convolutional Neural Networks (CNN) to learn a matching
function that can be trained from labeled sonar data, after
pre-processing to generate matching and non-matching pairs.
In a dataset of 39K training pairs, we obtain 0.91 Area under
the ROC Curve (AUC) for a CNN that outputs a binary
classification matching decision, and 0.89 AUC for another CNN
that outputs a matching score. In comparison, classical keypoint
matching methods like SIFT, SURF, ORB and AKAZE obtain
AUC 0.61 to 0.68. Alternative learning methods obtain similar
results, with a Random Forest Classifier obtaining AUC 0.79,
and a Support Vector Machine resulting in AUC 0.66.

I. INTRODUCTION

One of the basic problems in robotics is data association,
where sensor readings have to be associated with previous
measurements, as the combination of sensor data reduces
noise and improves robot understanding of the world. Au-
tonomous Underwater Vehicles (AUVs) constantly struggle
with data association, as the underwater environment is very
hostile for sensing. Some common robot tasks that require
data association are tracking and simultaneous localization
and mapping (SLAM). Object detection/recognition can also
benefit from data association in the form of matching images
if the task is to locate an object and only a single training
sample is available.

Acoustic sensing (Sonar) is used in underwater environ-
ments as sound can travel large distances on water with
little attenuation. Optical cameras are not an option as
light is attenuated and absorbed by particles in the water
column. Interpretation of acoustic images is not trivial as
unwanted reflections, noise, and low signal-to-noise ratio
(SNR) degrades the amount of information that the AUV can
gather.

For sonar, matching image patches to known objects
or landmarks in the environment is an important problem.
Matching can also be formulated for other tasks such
as mosaicing [1], where sonar images must be registered
before being combined to improve SNR ratio and image
resolution. Matching sonar images is difficult due to viewpoint
dependence.

In this work, we propose the use of Convolutional Neural
Networks (CNN) to learn a matcher for sonar images. Our

1Matias Valdenegro-Toro is with Ocean Systems Laboratory, School
of Engineering & Physical Sciences, Heriot-Watt University, EH14 4AS,
Edinburgh, UK m.valdenegro@hw.ac.uk

objective is to produce a function that takes two sonar image
patches and makes a binary decision: both images correspond
to different views of the same object, or not. Matching should
be possible even as insonification1 varies due to AUV or
sensor movement, different views, and object rotation or
translation.

CNNs have obtained very good results [2] in different tasks
that use optical color images, such as object recognition [3]
and transfer learning [4]. We have previously evaluated CNNs
for object recognition in sonar images and found that they also
improve the state of the art [5]. CNNs have also been used
to match patches from color images [6] with high accuracy.
These results motivate us to use CNNs for sonar data, as the
trained network can learn sonar-specific information directly
from the data.

We show that we can build and train a CNN that matches
Forward-Looking Sonar (FLS) image patches with high
accuracy (AUC2 0.91), surpassing the state of the art keypoint
matchers such as SIFT and SURF (with AUC in the range
0.61 - 0.68).

Our contributions are: we propose an algorithm to generate
matching pairs from labeled objects for training, we learn
the matching function directly from labeled data, without any
manual feature engineering, we show that it is possible to
match sonar images with relatively high accuracy.

II. RELATED WORK

Matching sonar images with high accuracy has been a
unsolved problem for a long time [7] [1] [8]. This is due
to specifics issues in sonar imaging, such as viewpoint
dependence, non-uniform insonification, low signal-to-noise
ratio, low resolution, and low feature repeatability [9]. Most
methods that are used for different kinds of matching in sonar
imagery are not specifically designed for sonar (originally
developed for optical images), and do not consider sonar-
specific information.

Kim et al. [10] matches keypoints detected with the Harris
corner detection to register general sonar images. Vandrish et
al. [8] compares the use of SIFT [11] with different feature
methods for sidescan sonar image registration, concluding
that for this task SIFT performs best. Hurtos et al. [1] uses
Fourier-based features for registration of Forward-Looking
Sonar images, with great success. These kind of features
could be used to make a matching decision, but they only
work appropriately when rotation/translation between frames
are small. Pham et al. [12] uses block-matching guided by

1Amount of acoustic signal that ”illuminates” the target area by the sonar
sensor.

2Area under the ROC Curve



a segmented sonar image with a Self-Organizing Map for
registration and mosaicing of sidescan sonar images.

A large portion of the research about matching sonar
images is devoted to registration and mosaicing [10] [1].
Both processes require many assumptions on the kind of
images and their content, specially when considering non-
uniform insonification and simple transformations between
images.

In comparison, CNNs [3] have been used to compare and
match color image patches. Zagoruyko et al. [6] uses CNNs
trained on a dataset of 500K matched patches with high
accuracy in tasks such as stereo matching and descriptor
evaluation. Raw matching performance is also good, but only
possible due to the availability of large labeled datasets.

Zbontar and LeCun [13] also use CNNs for stereo matching,
improving over the state of the art in several datasets. These
recent results using CNNs motivate us to explore such
algorithm for matching sonar images. CNNs have several
advantages when applied to sonar imaging: they can learn
sonar-specific information directly from raw data, they do
not require feature engineering or specific data preprocessing,
and they make little assumptions on input data.

III. MATCHING SONAR IMAGE PATCHES WITH CNNS

A. Training Data Generation

Given a dataset containing labeled bounding boxes (includ-
ing object classes), we generate matching and non-matching
image pairs that are sampled from the dataset. We do this by
using object class information to generate matching image
pairs, and we also produce non-matching pairs that contain
objects versus background. The dataset that we used for this
purpose was originally designed for object detection. We
generate the following kinds of pairs:

• Object vs Object, Same class. A matching pair is
generated from two objects of the same class. We sample
two random image crops of objects in the same class
and generate one pair, typically both crops corresponds
to different perspectives of the same object, or different
insonification levels from the sensor.

• Object vs Object, Different class. A non-matching pair
is generated from two objects from different classes. This
makes the assumption that objects in the dataset are not
similar across different classes.

• Object vs Background. A non-matching pair is gener-
ated by sampling one background patch that has IoU
score lower than 0.1 with the ground truth and generating
a pair with a random object image crop.

As the number of possible non-matching pairs is very large,
we balance matches (positive) and non-matches (negative)
samples to be 1 : 1. This is done by sampling 10 matches per
object, 5 non-matches between objects of different class, and
5 non-matches with background. The detailed algorithm is
presented in Algorithm 1. We generate pairs of 96⇥96 image
crops, as this is the most appropriate size for the objects in
our dataset. A small sample of generated pairs is shown in
Fig. 1.

Algorithm 1. Training Data Generation

Input: Labeled Image dataset I with bounding boxes B
i

and
class labels C

i

, number of positive samples S
p

, number
of negative samples S

n

.
Output: List of matching pairs L

m

and list of non-matching
pairs L

nm

.
1: L

m

 ;, L
nm

 ;
2: for img 2 I do
3: for object o 2 img do
4: OC  crop B

o

from img.
5: for i = 0 to S

p

do
6: MC  sample random object p of class C

o

and
make an image crop.

7: Append (OC,MC) to L
m

8: end for
9: for i = 0 to S

n

do
10: NMC  sample random object p of class C

p

6=
C

o

, and make an image crop.
11: Append (OC,NMC) to L

nm

12: end for
13: for i = 0 to S

n

do
14: BC  sample random background patch and

make an image crop.
15: Append (OC,BC) to L

nm

16: end for
17: end for
18: end for

(a) Object-Object Matches

(b) Object-Object Non-Matches

(c) Object-Background Non-Matches

Fig. 1. A small sample sonar image patches labeled as matching or non-
matching that were generated by our algorithm. These patches were captured
with an ARIS Explorer 3000 Forward-Looking Sonar.



B. CNN Architecture

We base our architectural choices on the work of Zagoruyko
et al. [6]. This paper introduced CNNs for matching image
patches and propose three different architectures for that task:
A siamese, pseudo-siamese and a two-channel architecture.
We use the two-channel and siamese architectures. In the
two-channel architecture, both input images (denoted as I

A

and I
B

) are merged to form a two-channel image, which is
the input to our neural network.

The siamese architecture uses two branches that share
weights, I

A

is input to the left branch, while I
B

is input
to the right branch. The output of each branch is a feature
vector of a fixed size. Both feature vectors from each branch
are concatenated to form a single vector that is input to a
decision network (formed only of fully connected layers).
The idea of a siamese network is that both branches share
weights and will learn patch invariant features that are useful
for the decision network to produce a matching decision. We
use two 96⇥ 96 input images to be matched.

We use the following notation for CNN layers: Conv(N
f

,
F
w

⇥ F
h

) is a convolutional layers with N
f

filters of width
F
w

and height F
h

. MP(P
w

, P
h

) is a max-pooling layer with
sub-sampling size of P

w

⇥P
h

, and FC(n) is a fully connected
layers with n output neurons.

We designed four CNN architectures, two using a 2-
Channel approach, and two using a Siamese architecture.
We obtained these architectures by performing grid search
over a defined set of variations, including depth, number
of filters, and filter size. We now describe the 2-Channel
architectures:

• 2-Channel CNN Class. This network is designed to
output a binary matching decision (match or non-match),
with a two-element output probability distribution given
by a softmax function. The full network architecture
is Conv(16, 5 ⇥ 5)-MP(2, 2)-Conv(32, 5 ⇥ 5)-MP(2,
2)-Conv(32, 5⇥ 5)-MP(2, 2)-Conv(16, 5⇥ 5)-MP(2, 2)-
FC(64)-FC(32)-FC(2). The network is trained using a
categorical cross-entropy loss function, as the matching
decision is formulated as a classification problem.

• 2-Channel CNN Score. This network outputs a match-
ing score in the range [0, 1] with a sigmoid function.
The full network architecture is Conv(16, 5⇥ 5)-MP(2,
2)-Conv(32, 5⇥ 5)-MP(2, 2)-Conv(32, 5⇥ 5)-MP(2, 2)-
Conv(16, 5 ⇥ 5)-MP(2, 2)-FC(64)-FC(32)-FC(1). This
network is trained using binary cross-entropy loss
function, and the activation at the output is sigmoid.

The Siamese architectures are based on branches with
configurations Conv(16, 5 ⇥ 5)-MP(2, 2)-Conv(32, 5 ⇥ 5)-
MP(2, 2)-Conv(64, 5⇥ 5)-MP(2, 2)-Conv(32, 5⇥ 5)-MP(2,
2)-FC(96)-FC(96). The output feature vector contains 96
elements, and the output activation is sigmoid. From this
branch architecture we derive the following architectures:

• Siamese CNN Class. Both branch outputs are concate-
nated to form a 192 element vector, that is passed through
a decision network with configuration FC(64)-FC(2). The
output activation in this case is softmax. This network

is trained with a categorical cross-entropy loss.
• Siamese CNN Score. Same as the previous architecture,

but the decision network has configuration FC(64)-FC(1),
with a sigmoid output activation. This network is trained
with a binary cross-entropy loss.

All four architectures were obtained by doing grid search
over a varying number of layers, convolutional filters and
fully connected neurons. The categorical and binary cross-
entropy loss functions are the same for the case of binary
classification, with the only difference being the application
to a single output or to a two-element vector (see Eq 1).

L(y, ŷ) = �
X

i

y
i

log(ŷ
i

) = �y0 log(ŷ0)�(1�y0) log(1�ŷ0)

(1)
All architectures use ReLU activations, except at the output

layers, and are trained on the same dataset, and learn to
discriminate sonar image patches. Dropout [14] is used after
every fully connected layer (except at outputs). We also
evaluated the use of Batch Normalization [15] but Dropout is
superior in achieving good generalization performance. Our
original design was the class output networks, posed as a
classification problem, which works well but interpretation
of the output is not trivial as the scores are correlated with
the classification outputs. This motivated us to explore the
scoring architecture that outputs a score directly that can be
separated to obtain a matching decision by a simple threshold
. Note that [6] uses networks that only output a score, while
we both evaluate continuous score and discrete classification
outputs.

C. Training

Our networks are trained using stochastic gradient descent
from random initialized weights. We train using mini-batch
gradient descent using a batch size of b = 128 images. We
adopt the ADAM optimizer [16] for accelerated training and
learning rate decay. The initial learning rate is ↵ = 0.1. All
networks are trained for 5 epochs. We tuned this value on a
validation set with early stopping.

In order to prevent the network from learning patterns in
the order images are presented, we augment the dataset and
for each training pair (A,B), we add the pair (B,A) to the
augmented training set. No other data augmentation was used.

IV. EXPERIMENTAL EVALUATION

A. Data

We have captured a dataset of marine debris objects in our
water tank with an ARIS Explorer 3000 (FLS). This dataset
consists of 2072 images with ⇠ 2500 total object instances
labeled in 9 classes (Metal Cans, Bottles, Drink Carton,
Metal Chain, Propeller, Tire, Hook, Valve, Background). On
this dataset we ran our matching pair generation algorithm
(Algorithm 1). In order to evaluate generalization performance
of our networks, we split the dataset according to object
class, before obtaining train and test splits. This generated
two datasets:



• Dataset D: In this dataset the train and testing sets are
generated with different objects. Classes 0-5 are used to
generate the training set, while classes 6-9 are used to
generate the test set. All of our matching networks are
trained on this training set.

• Dataset S: This dataset is generated using all classes,
and split into a training and testing set. From this split
we only use the testing set to evaluate performance.

The training set (from Dataset D) contains 39840 matching
and non-matching pairs (50% each). Both testing sets (D
and S) contain 7440 matching and non-matching pairs, also
balanced. All reported metrics are evaluated on the test set.

B. Matching Performance

In this section we evaluate raw matching performance.
We plot the ROC curve, and report the Area Under the
Curve (AUC). We also obtained accuracy scores for the test
set. Accuracy for the matching networks was obtained by
considering the raw match probability p (second element of
the softmax output, or the sigmoid output score) and taking
the class with maximum probability (Eq 2).

c = argmax{1� p, p} (2)

We compare both our matching networks with the state
of the art keypoint detectors and feature extractors, namely
SIFT [11], SURF [17], ORB [18] and AKAZE [19]. SIFT and
SURF represent the best keypoint detectors for optical images,
while ORB was chosen to evaluate its binary features. While
it is known [1] that these algorithms do not perform well
in sonar, there is no other comparison point, as no keypoint
detectors have been developed specifically for sonar images.
We also compare with Machine Learning (ML) based methods,
namely a Support Vector Machine (SVM) as classifier, a
Support Vector Regressor (SVR) to regress a score, and
Random Forest (RF) classifier and regressor.

Accuracy for keypoint algorithms is obtained by consider-
ing a positive match when the ratio test [11] gives at least 1
good match. If there are no good matches, then we output a
negative match. This threshold is low on purpose to evaluate
the best performance of a keypoint matching system.

As our dataset is generated using one type of matching
pairs and two different types of non-matching pairs, we
also compute the accuracy over each kind of match. This is
reported as ”Obj-Obj +” for Object-Object matching pairs,
”Obj-Obj �” for Object-Object non-matching pairs, and ”Obj-
Bg �” for Object-Background non-matching pairs.

Table I displays the main results, only considering the
best performing matching networks. Our methods have
considerably higher AUC and mean accuracy, which shows
that using neural networks for matching sonar images does
have a considerable improvement over the state of the art. The
2-Chan CNN Class network has an advantage of 22.4 AUC
percentage points over ORB, with a corresponding increase
of 31.3 accuracy percentage points.

Classical keypoint detectors match sonar images with a
chance that is slightly better than chance, with the best

classical method being ORB with 0.682 AUC. Both our
matching CNNs outperform classic matches by a considerable
margin. Our class matcher also outperforms the scoring
matcher. This is due to the fact that scoring matcher is
considerably harder to train because the sigmoid output easily
saturates. This also contrasts with the results from [6] as they
use {+1,�1} scoring with a hinge loss. Our results show
that a softmax output with cross-entropy loss can outperform
a saturating non-linearity.

Machine Learning methods also perform poorly, but better
than keypoint matching. A RF classifier has the highest non-
CNN AUC at 0.795, but their Obj-Obj positive accuracy is
considerably poor than the alternatives. SVM and SVE have
AUC that is close to keypoint matching.

Classic matchers have a higher Obj-Obj positive accuracy,
and this can be explained by overconfident predictions that
classify too many pairs as positive matches. This can easily
produce high accuracy for positive matches, but will hurt the
performance of negative matches. Our matching networks
seem to be more balanced, but still their lowest accuracy is
when they need to predict a positive match. Both results show
the difficulty of matching sonar images. ML methods suffer
from the opposite, where they are very accurate for negative
matches, but suffer in accuracy for positive matches.

Fig. 2 shows the corresponding ROC curves for the
classic matchers, ML-based methods, and our best performing
networks. The positive class probability p of Class matching
networks and SVM/RF-Class is used to construct the ROC
curve, while for Score matching networks and SVR/RF-score
the raw score is considered to produce the curve. For keypoint
detectors we vary the minimum number of good keypoint
matches to declare a positive match. Keypoint matchers have a
curve that is very close to random chance, while our methods
are closer to a perfect matcher. There is still a considerable
room for improvement in the sonar image matching problem.
All tested methods produce results that are better than random
chance, and RF-based methods are superior when compared
to keypoint matching, but still our matching networks are
considerably better.

Tables III and II show a comparison of all our matching
networks on the S and D datasets. Corresponding ROC curves
are shown in Fig. 3a and Fig. 3b.

Looking at Fig. 3a, we can see that network 2-Chan
CNN Class performs the best when compared to the scoring
network, but this trend reverses when looking at Siamese
networks (Fig. 3b), as the highest AUC is obtained by Siamese
CNN Score. When comparing performance on S and D
datasets, we show that performance slightly increases when
evaluating on the same objects as the training set (Test set
S). This is expected and shows a slight amount of overfit to
the training set objects. But generalization performance to
unseen objects (Test set D) is still good.

Finally, Table IV offers a breakdown of accuracy in our
matching networks over the three different match pairs on
both datasets S and D. When evaluated in different objects,
all networks have decreased performance on Object to Object
positive matches, while at the same time having adequate



Method AUC Mean Accuracy Obj-Obj + Acc Obj-Obj � Acc Obj-Bg � Acc
SIFT 0.610 54.0% 74.5% 43.6% 44.0%
SURF 0.679 48.1% 89.9% 18.6% 35.9%
ORB 0.682 54.9% 72.3% 41.9% 60.5%

AKAZE 0.634 52.2% 95.1% 4.8% 56.8%

RF-Score 0.741 57.6% 22.5% 88.2% 97.2%
RF-Class 0.795 69.9% 12.5% 97.7% 99.7%

SVR-Score 0.663 70.5% 57.2% 66.6% 87.5%
SVM-Class 0.652 67.1% 54.4% 69.1% 90.5%

2-Chan CNN Class 0.910 86.2% 67.3% 95.2% 96.1%
2-Chan CNN Score 0.894 82.9% 68.0% 96.1% 84.5%

TABLE I. Comparison of classic keypoint algorithms for matching versus our two best performing matching networks. Area Under the ROC Curve (AUC),
Accuracy at match threshold zero, and Accuracy for each match type is reported for Test Set D.

Network Type Output Test Objects AUC Mean Accuracy
2-Chan CNN 2 Class Different 0.910 86.2%
2-Chan CNN Score Different 0.894 82.9%

Siamese CNN 2 Class Different 0.855 82.9%
Siamese CNN Score Different 0.826 77.0%

TABLE II. Accuracy and Area Under the ROC Curve (AUC) metrics for
Test Set D

Network Type Output Test Objects AUC Mean Accuracy
2-Chan CNN 2 Class Same 0.944 86.7%
2-Chan CNN Score Same 0.934 85.4%

Siamese CNN 2 Class Same 0.864 75.8%
Siamese CNN Score Same 0.895 80.6%

TABLE III. Accuracy and Area Under the ROC Curve (AUC) metrics for
Test Set S

performance in both negative cases. For evaluation in the same
objects as the training set, this trend reverses (as expected)
and the largest accuracies are reported in the Object to Object
positive matches. This indicates that the networks are slightly
overfitting the objects in the training set, but still they do
provide an improvement over keypoint matching and ML-
based methods in unseen objects. Matching an object to a
different view of the same object is also a hard problem, and
discarding matches from different objects or to background
is easier.

C. Discussion

Our 2-Channel CNN Class matching networks performs
well, with an AUC of 0.91 when evaluated on unseen data, and
AUC of 0.94 on a dataset that shares objects with the train set.
We have not seen any previous work claiming to match sonars
images with such performance. Classic methods (SIFT/SURF
and ORB) are known to work poorly in sonar, but still they
are being used for registration in a large part of the literature
[10] [7] [8]. We have not seen quantitative results of keypoint
matching in sonar images, and our extensive evaluation is
useful for comparison.

One clear limitation of our evaluation is the small size of
our datasets (39K for training and 7K for testing). We believe
our networks could greatly benefit from a bigger dataset,
containing more variability in objects as well as more object
views. A dataset captured in real underwater conditions is
ideal but hard to produce.
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Fig. 2. ROC curve comparing our matching networks with ML-based
methods (SVM/SVR and Random Forest, RF) and keypoint matching
methods (SIFT, SURF, ORB and AKAZE). Our methods clearly outperform
other methods when used to match sonar images. These curves were evaluated
on the D dataset. The grey line represents random chance limit.

V. CONCLUSIONS

We have proposed the use of CNNs to learn a matching
function for sonar images. Our results show that our 2-Chan
CNN Class network can match FLS image patches with
high accuracy (AUC 0.91), while classic keypoint matching
methods can do it only with low accuracy, slightly better
than random chance (AUC 0.61 to 0.68). ML-based methods
(SVM and Random Forests) are also inferior (AUC 0.65 to
0.80).

We believe that our results are appropriate for the small
(39K samples) training dataset that we possess, and they
could improve if more data and object/background variability
is available. Our dataset was captured under laboratory
conditions in a small water tank containing household garbage
objects, and our work can surely be improved with a dataset
captured in real underwater scenes.

Our method is limited by available number of images
and objects in them. Our network architecture could fail
to generalize with other objects, specially if their shape is
radically different. Background is also a concern, as the
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Fig. 3. ROC curves comparing 2 Channel and Siamese matching networks on test sets S and D. This comparison shows the difference in performance Test
set S was generated with the same objects as in the training set. Test set D was generated with different objects than in the training set.

Different Objects Same Objects
Network Type Output Obj-Obj + Acc Obj-Obj � Acc Obj-Bg � Acc Obj-Obj + Acc Obj-Obj � Acc Obj-Bg � Acc
2-Chan CNN 2 Class 67.3% 95.2% 96.1% 86.6% 75.7% 97.8%
2-Chan CNN Score 68.0% 96.1% 84.5% 85.0% 77.5% 93.7%

Siamese CNN 2 Class 62.9% 89.9% 96.0% 92.2% 39.4% 95.8%
Siamese CNN Score 49.2% 84.7% 97.0% 89.1% 55.3% 97.3%

TABLE IV. Accuracy by matching type, for the S and D datasets

background in our water tank is not representative of a typical
underwater environment.

We expect that AUV perception will benefit from our work
and open possibilities of advanced CNN-based matching and
registration methods. Our work can be applied to any kind of
sonar, as we did not make assumptions on the kind of image
produced by the sonar.

As future work, we would like to build a similarity function
for sonar images instead of making a binary decision and
learn from image patches in a unsupervised way. The best
case is to learn from a dataset that contains automatically
matched scenes with another sensor (like depth in optical
images) as [13] and [6] do.
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Coherent swarming of unmanned micro aerial vehicles with minimum

computational and communication requirements

Daniel Brandtner and Martin Saska

Abstract— An algorithm designed for stabilization and con-

trol of large groups of micro aerial vehicles (MAVs) - multirotor

helicopters - without any explicit communication is proposed in

this paper. The presented algorithm enables a swarm of MAVs

to maintain its coherence and perform a compact motion in

complex environments while avoiding obstacles with only very

limited computational and sensory requirements. The method is

very robust to incomplete sensory information, it enables a fully

distributed applicability, and it is highly scalable. Increasing

amount of MAVs even improves the required coherence be-

haviour. Numerous simulations in different environments were

conducted to verify the algorithm, show its potential, and

explore its various configurations.

I. INTRODUCTION

Decreasing size and increasing robustness of micro aerial
vehicles (MAVs) allow us to consider deployment of large
multi-MAV groups instead of heavy and well-equipped un-
named aerial vehicles. Distribution of sensory power to small
flexible units increases reliability of the system and enables
applications where distributed sensing or acting is necessary
and which would not be possible with a single vehicle.
Substitution of a large vehicle by a team of light MAVs
is especially important due to safety reasons in scenarios
where the autonomous system may interact with humans
and where the large platforms may cause injury and damage
objects in their proximity. The applications with presence of
people are often located in urban and indoor environment,
where global navigation satellite systems (such as GPS)
are not available or their precision is not sufficient for
group stabilization, and onboard sensors are required for
mutual localization of individuals in the group. The proposed
swarm stabilizing algorithm is designed for using vision
based relative localization [1] by onboard cameras, carried
by MAVs, which was already successfully employed by
our team for cooperative surveillance by a team of self-
localized and stabilized MAVs and for compact formations
flying [2], [3], [4]. Although we call the group in [2] as a
swarm, the method requires centralized planning and MAV
coordination. In this paper, we propose a novel method that
allows to control the visually stabilized MAV groups in a
fully decentralized way and without explicit communication,
which is the main requirement of swarm robotics research
(see Fig. 1 for motivation).

The authors are with the Department of Cybernetics, Faculty
of Electrical Engineering, Czech Technical University in Prague.
martin.saska@fel.cvut.cz

Fig. 1. Motivation: A group of MAVs above the sand dunes following the
sun-set direction.

A. Related Work
Swarm robotics, which is aimed to implement a collective

behaviour without an explicit central control law, usually
arises from principles of swarm intelligence dealing with
decentralized, self-organized multi-agent systems [5]. Many
of these swarming algorithms are inspired by behaviours
observed on animal interactions. For example, the BOID
model is inspired by bird flocking [6], algorithm in [7] by
nesting and foraging habits of various species of insects, and
approaches in [8], [9] by fish schooling.

The methods [7], [8], [9] as well as for example PSO
(Particle Swarm Optimization)-based algorithms [10], [11]
and methods [12], [13], [14] require global knowledge and
communication unlike the approach discussed in this paper,
which is strictly distributed. Also the potential field-based
swarming method in [15] relies on explicit wireless commu-
nication between neighbour MAVs, while the cognitive-based
algorithm in [16] uses global positioning systems and broad-
casting of MAV positions. Frequently used BOID models
[17], [18], similarly as the proposed approach, rely on mutual
localization and stabilization of neighbouring particles, but
require a full information on the relative position and even
velocity of neighbours, whereas our method uses only a
binary information on the presence of the neighbours in
proximity of the particular MAV. This is a very important
capability for control of swarms of light-weight and simple
MAVs as it significantly reduces requirements on the onboard
mutual localization system.

The proposed method, which is inspired by a study of
coordination of ground robots in [19], enables the swarm of
MAVs to perform a coherent motion towards a given target
using only an onboard binary light sensor that can recognize
whether the target is in sight or not. Although in [19], the
group members share this information with neighbours to get
a vague common idea of the target location, our method uses



individual on-board estimation of the target position without
the need of the explicit communication.

To sum up the contribution of this paper, the presented
algorithm enables to stabilize an MAV swarm in environ-
ments with obstacles without the need of global positioning
systems and an explicit wireless communication, and with
significantly limited computational and sensor requirements.
Moreover, the important contribution of this paper is a
comprehensive analysis of the achieved swarming behaviour
aimed at confirmation/disapproval of a set of hypothesis
assumed in swarm robotics literature or being compiled
based on our experience with the BOID models used for
MAV swarm control.

B. Problem Definition and MAV set-up
The task solved in this paper is stabilization of a swarm

of M MAVs and its navigation into a desired location in
environments with static and dynamic obstacles. For the
swarm coherence, it is required that all swarm members
are relatively stabilized with at least ↵ neighbours in the
group, which means that at least ↵ helicopters are mutually
localized by each MAV using onboard sensors. Therefore, we
assume that all M MAVs in the swarm are equipped with
the sensors enabling to discern the adjacent robots (called
”neighbours”), localize the obstacles, and detect direction of
the required target. We suppose that the neighbours detection
(not necessarily full localization - only a binary information
on a presence of a neighbour) is ensured within a range of
detection with radius R. Let us denote the actual number of
detected neighbours within radius R by variable N .

Also the position of the target does not need to be observed
precisely. In the presented experiments, a set of 4 simple
vision sensors is deployed around the robot providing in-
formation in which quadrant corresponding to the particular
sensor the target is located (no precise information on the
bearing and distance of the target is required). The obstacles
are localized in a detection range Ra, where Ra < R, and
again the knowledge of distance to obstacles is not required
and also the bearing estimation error can be very high (30�
error was considered in the experiments).

II. SWARMING MODEL

The propoded method is inspired by principles of the
swarming model introduced in [19] to control a group of
ground robots. We adopted the basic swarming rules, mod-
ified them, and integrated them into a multi-MAV visually-
stabilized system. For MAV control strictly without com-
munication (in [19] a communication channel was used to
share the information among the robots), constraints of the
onboard visual relative localization mechanism have to be
considered. Additionally, motion constraints of the low level
onboard model predictive control technique [20], which is
used to deal with the high dynamics of MAVs, are integrated
into the swarming approach.

The proposed swarming model used for MAV-swarm
stabilization is composed of three behavioural states: forward
(default setting for all MAVs), coherence and avoidance.

MAVs in the forward state fly straight with a constant
velocity as long as they are forced to enter into another
state. If the required connection with at least ↵ neighbours
is lost (i.e. N < ↵) for an MAV, it enters into the coherence
state, in which turns and flies back until the connection is
restored. Once the MAV enters back into the localization
range (N >= ↵), it performs a random turn and returns
back into the forward state. The coherence manoeuvre can be
triggered only once per cf cycles to allow the MAV to regain
its visual connection. The random turn is applied if only
the swarm coherence is required and the swarm movement
direction is not controlled. If a desired target is required
to reach by the swarm members, the turning is influenced
by the estimated position of the target as mathematically
described in Algorithm 1. A proper setting of ↵ is important
mainly for large swarms, we are focused on, where keeping
the localization constraints between all pairs of MAVs is
not possible. Properly defined ↵ enables a wider and better
structured swarm, where (ideally) each robot has precisely ↵

neighbours and the swarm forms a stable regular net, which
is not precomputed and arises autonomously.

while true do

foreach MAV m do

if m is in sensory range and visible then

neighbors++
end

;
if state = Forward AND
neighbors < prevNeighbors AND
neighbors < alpha then

turnAngle = �⇡

lostNeighbors = prevNeighbors

counter = 0
state = Coherence

else if counter = cf AND state = Coherence

then

if visible(target) then

offset = activeSensor.direction

else

offset = 0
end

turnAngle = offset+ rand(�⇡/2,⇡/2)
state = Forward

else

continue in same direction
end

prevNeighbors = neighbors

counter ++
end

Algorithm 1: Swarm coherence algorithm implemented
onboard of each MAV in a decentralized way.

The avoidance state is used if an MAV gets closer to an-
other MAV/MAVs or an obstacle than a given threshold and
an evasive manoeuvre has to be performed. This manoeuvre
(the same manoeuvre is applied for obstacle avoidance as
well as for mutual collisions of swarm members avoidance)



controls the MAV in the opposite direction to avoid the
collision (see sketch of this behaviour on Figure 2).

Fig. 2. Basic principle of the coherence (a-c) and avoidance abilities (d-f)
of the algorithm. The larger circle indicates the neighbour detection range
R and the smaller circle the obstacle detection range Ra. The MAVs fly
initially straight in random directions in the forward state - (a). When the
MAVs lose mutual localization, they enter the coherence state - (b), turn
around and fly in the opposite direction - (c). When contact is renewed, the
MAVs perform a random turn and fly straight in this direction in the forward
state - (d). If the MAVs move too close to each other, an evasive manoeuver
is triggered - (e). They enter the avoidance state and are mutually repulsed
- (f).

III. MAV SWARMING BEHAVIOUR ANALYSIS

One of the main contributions of this paper is to analyse
behaviour of such a minimalistic swarming algorithm, which
should verify its usability for large swarms of micro aerial
vehicles with very limited sensory equipment. The proposed
method is designed in a way that numerous different be-
havioural patterns can be achieved using various sets of
algorithm parameters. Numerous hypothesis from [5] and
hypothesis motivated by studies of swarming behavior of
ground robots in [19] and by behaviour of MAV swarms
stabilized by frequently used BOID model in [17] have been
formulated based on expected influence of the parameter
setting on the algorithm performance. These hypothesis have
been experimentally validated (approved or disproved) and
optimal parameters setting was found for different required
behavioural patterns. The simulations were run with the
identified MAV model in a realistic robotic simulator V-
REP. For each configuration of tested parameters values, 10
simulations of 10 minutes flight have been performed. The
following three factors of the swarm behaviour have been
studied in the analysis.

The swarm coherence is described by the ratio of the sum
of time intervals where the swarm forms a connected graph
to the total time of the experiment. This means the swarm is
considered as “incoherent” from the first moment an MAV, or
a sub-swarm of MAVs, becomes disconnected from the rest
of the group. The coherence is the most important aspect of
a coherent swarming mechanism and should be maximized.

The swarm spreading is defined as the standard deviation
of the MAVs positions from the swarm center. The swarm
spreading may be maximized to cover large areas with

a minimum number of robots, but in some applications
compact swarms are required (e.g. for motion in clustered
environments).

The state distribution indicates time intervals that MAVs
spend in the different states of the swarming model (the
forward, avoidance, and coherence states). In case of the
navigation towards a given goal, the time spent in the forward
state is maximised. In this state, the MAV is most efficient
at performing the given task, since it does not perform
manoeuvres perturbing its flight.

A. Analyses of influence of the parameter ↵ and the number
of the robots

In this section, hypothesis that with the higher ↵ (the
required number of relatively localized neighbours of each
MAV) the swarm coherence is increased, the swarm spread-
ing is decreased, and the time spent in avoidance and coher-
ence states is decreased and that using large swarms increases
the swarm coherence, increases the swarm spreading, and
increases the time spent in avoidance and coherence states
are evaluated in simulations with 5, 10, and 20 robots. The
data obtained in the simulations are displayed on graphs in
Figures 3 and 4, showing the behaviour of different-sized
swarms with different values of ↵.
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Fig. 3. Swarm coherence and swarm spreading for different number of
robots and parameter ↵.
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Fig. 4. State distribution during the experiments from Figure 3. The labels
on the x-axis indicate the used configuration of the swarm (eg. m05 a04
represents a swarm of 5 MAVs using ↵ = 4).

Based on these data we can confirm that with higher value
of ↵ the swarm coherence is increased. Mainly for the bigger
swarms, the probability that the group connectivity is broken
decreases almost linearly with values of the parameter ↵,
reaching probability 0% for ↵ = 7. With growing ↵, the
swarm spreading decreases as expected, again this effect is
observed mainly for smaller values of ↵. In contrast with the
hypothesis, growing value of parameter ↵ increases the time



spent in the avoidance state due to the increased compactness
of the swarm and also in the coherence state, which is caused
by an increased sensibility to neighbour loss.

More MAVs in the swarm does not increase the swarm
coherence contrary to our hypothesis. The results indicate
that there proper values of ↵ (the proper values are 7 and
8 for our MAV model) to guarantee the coherence of the
swarm. These values are not dependent on the number of
robots, which is an important observation and it supports
the scalability of the method. With larger swarm, swarm
spreading is increased, but this increase is not proportional.
Surprisingly, in larger swarms, the MAVs do not spend more
time in the avoidance and coherence states. With constant
↵, the state distribution is similar for different swarm sizes.
The behaviour of an individual MAV is influenced only by its
local surrounding, not by the total number of robots, which is
also an important observation for swarm scalability in com-
parison with the BOID model that suffers from increasing
density of swarm members in the center of large groups
even-though approaches using the BOID model require more
precise sensors and bigger computational power than the
proposed method. In the following simulations, 10 robots and
↵ = 5 will be used to test the impact of other parameters on
the swarm coherence.

B. Influence of sensors capability on the swarming be-
haviour

Since the proposed approach is designed to allow coher-
ence swarming using limited sensory information, the influ-
ence of the sensors capability on the swarming behaviour is
important to study. Let us again postulate a set of hypotheses
that are considered in swarm literature and based on our
experience with BOID models.

Longer range of sensors used for relative localization
of neighbours increases the time MAVs spent in the for-
ward state, increases swarm coherence, and increases swarm
spreading. Based on the results summarised in Figures 5
and 6, we can confirm the expected positive influence of
the sensor range. With better sensors, MAVs stay longer
in the forward state and so travel a longer distance until
they have to turn back. Due to the reduced time spent in
the coherence state, which increases probability to break an
MAV apart from the rest of the group, the swarm coherence
is increased. With the longer range, MAVs can keep bigger
spacing between them, which increases the swarm spreading.

Smaller angle of view of the sensors for relative localiza-
tion decreases swarm coherence, decreases swarm spreading,
and increases the time spent in the coherence state. The
influence of the view angle of the relative localization sensors
is an important phenomena that needs to be studied, since
simple and light weight sensors carried onboard of micro
aerial vehicles (such as simple monocular cameras) often
do not offer 360 degrees view. Even more importantly,
the possibility to deploy swarming algorithms with such
a limited sensors enables to study swarming behaviour in
nature, where animals have almost always limited sensing
capabilities in this way. Two parameters settings were used

to evaluate the hypothesis. The first settings (↵ = 7 and
R = 8m) provided the best performance with a full-view
sensor in the previous experiments. As shown in Figure 7 (the
initial position of robots is shown in Figure 8 - Left), such
initialised swarm maintains a sufficient performance also
with significantly reduced angle of view. The second setting
(↵ = 5 and sensor range R = 4m) performs much worse
with a narrower field of view, although presented a sufficient
coherence with the 360 degrees sensor. To conclude, we
can confirm that smaller angle of view decreases coherence
in general, but this effect may be neglected for well set
up algorithm parameters. With this ability, the proposed
algorithm also surpasses the BOID approaches, which are
highly dependent on the limited field view as shown in
our prior work with the same MAV platform controlled
by BOID [17], [18]. Besides, the experiments in Figure 7
confirmed that swarm spreading is decreased with limited
field of view and the time spent in the coherence state
was increased, while the occurrence of the avoidance state
remains roughly the same.
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Fig. 5. Swarm coherence spreading with different sensor range. R = 4m
is the initial sensor range used in all other experiments in this paper.
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Fig. 7. Swarm coherence and spreading for different configurations of ↵
and sensor range (a5 R4 stands for ↵ = 5 and sensor range R = 4m).

C. Obstacle avoidance ability
Finally, let us analyse the avoidance behaviour using an

environment with a ring of obstacles (Figure 8 - Right).
The spacing between the obstacles is smaller than the range



of the obstacle detection sensor Ra, and bigger than the
MAV diameter. Using this setting, the MAV can exit the
obstacle ring only if the evasive manoeuvre fails, which can
be automatically detected. The robustness of the algorithm
has been tested by measuring the minimal distance between
the MAVs and between the MAV and the nearest obstacle.
An example of these experiments is shown in http://
youtu.be/W9QcrnLVI8Y with data in Figure 9.

Fig. 8. Left: Initial position of a swarm with sensors with a limited
angle of view. Video record of one of the experiment from Figure 7 is
available at http://youtu.be/uHPyTaaaqqE. Right: An environment
with obstacles to test the avoidance ability, for video of the simulation see
http://youtu.be/W9QcrnLVI8Y.

0
0,5
1

1,5
2

2,5
3

3,5

0,
0

0,
4

0,
7

1,
1

1,
4

1,
8

2,
1

2,
5

2,
9

3,
2

3,
6

3,
9

4,
3

4,
6

5,
0

5,
4

5,
7

6,
1

6,
4

6,
8

7,
2

7,
5

7,
9

8,
2

8,
6

8,
9

9,
3

9,
7

Di
st
an
ce
	[m

]

Time	[min]

Distance	between	2	MAVs Minimal	distance Sensor	range

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0,
0

0,
4

0,
7

1,
1

1,
4

1,
8

2,
1

2,
5

2,
9

3,
2

3,
6

3,
9

4,
3

4,
6

5,
0

5,
4

5,
7

6,
1

6,
4

6,
8

7,
2

7,
5

7,
9

8,
2

8,
6

8,
9

9,
3

9,
7

Di
st
an
ce
	[m

]

Time	[min]

Distance	to	the	nearest	obstacle Minimal	distance Sensor	range

Fig. 9. Distance between the MAVs and the closest distance between an
MAV and an obstacle during the simulation in Figure 8 - Right.

IV. EXPERIMENTAL RESULTS

The proposed algorithm has been tested in a complex
environment depicted in Figure 10 to show its effectiveness
and usability. First the swarm is navigated through a window
4 meters wide (the diameter of the stabilized swarm is
approximately 10 meters). Then the target automatically
moves to redirect the swarm to fly along a long wall. After
this movement, the target is again moved to navigate the
swarm across an open space with columns and a moving
obstacle. The moving obstacle is slower than the MAV
during its evasion manoeuvre to be able to avoid it. The

distance from the center of the swarm to the actual position
of the target is shown in Figure 12 - Left. As may be
also seen in Figure 11, where some snapshots and a path
passed by the swarm center during one of the simulation
runs are displayed (for full record of the swarm movement
see https://youtu.be/gqFxtVEcEdc), the proposed
algorithm was able to repeatedly navigate the swarm through
the environment without any collision with obstacle or within
the swarm members.

Fig. 10. Trajectory of the center of the swarm passed through the environ-
ment with obstacles. The blue arrows represent the intended trajectory, the
red curve represents the real trajectory of the swarm during one simulation.
The numbers indicate the successive positions of the target. For snapshots
see Figure 11.

In the previous experiments, from safety reasons required
for the initial HW tests (safety pilots can better secure the
experiment if the MAVs stay in the same horizontal plane),
all MAVs were flying at the same altitude. Nevertheless, the
method works properly also in a 3D space as shown in the
example of the simulation runs in Figure 13. The 3D position
of the center of the swarm is shown in Figure 12 - Right.
The avoidance manoeuvre performed by the MAVs to avoid
collisions is more aggressive in the vertical direction because
the MAVs must keep a larger security margin along the Z
axis due to the air flow interference between MAVs. This
causes that the altitude of the swarm oscillates more than
the positions along the two horizontal axis.

V. CONCLUSION

A minimalist fully decentralised coherent swarming algo-
rithm for control of MAV swarms with minimum sensory
requirements and without any communication was proposed
in this paper. A robust target following mechanism was
designed, implemented and verified, enabling the swarm
to move in an environment with obstacles into a given
location and requiring only minimal computational resources.
The overall system was verified in numerous simulations in
realistic robotic simulator V-REP.
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Fig. 11. Simulation of the target following algorithm in a environment with obstacles. The trajectory of the center of the swarm is depicted in red.
Complete video available at https://youtu.be/gqFxtVEcEdc.

0
2
4
6
8
10
12
14
16
18

0,
0

1,
6

3,
2

4,
8

6,
4

7,
9

9,
5

11
,1

12
,7

14
,3

15
,9

17
,5

19
,1

20
,6

22
,2

23
,8

25
,4

27
,0

28
,6

30
,2

31
,8

Di
st
an
ce
	[m

]

Time	[min]

1 2 3 4 5 6

-1 
0

1

2

3

4

5

6

7

8

9

0,
0

0,
4

0,
9

1,
3

1,
7

2,
2

2,
6

3,
0

3,
5

3,
9

4,
4

4,
8

5,
2

5,
7

6,
1

6,
5

7,
0

7,
4

7,
8

8,
3

8,
7

9,
1

9,
6Po

sit
io
n	
of
	th

e	
ce
nt
er
	o
f	t
he
	

sw
ar
m
	[m

]

Time	[min]

x

y

z

Fig. 12. Left: Distance of the center of the swarm to the particular target
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Fig. 13. 3D swarming. For video see http://youtu.be/
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Risk and Comfort Management for Multi-Vehicle Navigation using a

Flexible and Robust Cascade Control Architecture

Charles Philippe1,2, Lounis Adouane1, Benoı̂t Thuilot1, Antonios Tsourdos2 and Hyo-Sang Shin2

Abstract— This paper presents a new cascade control archi-

tecture formulation for addressing the problem of autonomous

vehicle trajectory tracking under risk and comfort constraints.

The integration of these constraints has been split between

an inner and an outer loop. The former is made of a robust

controller dedicated to stabilizing the car dynamics while the

latter uses a nonlinear Model Predictive Control (MPC) scheme

to control the car trajectory. The proposed structure aims to

take into account several important aspects, such as robustness

considerations and disturbance rejection (inner loop) as well as

control signal and state constraints, tracking error monitoring

and tracking error prediction (outer loop). The proposed design

has been validated in simulation while comparing mainly with

common kinematic trajectory controllers.

I. INTRODUCTION

Autonomous vehicles are getting more and more important
in the academic field as well as in the industry. Constructors
such as BMW, Volvo, Tesla and other companies such as
Uber are trying to reach the next step of autonomy for
consumer cars. Recent incidents or accidents [15] have
highlighted the need for safe and robust architectures.

The objectives of this paper are to describe the develop-
ment of a control architecture for autonomous vehicle under
the constraints specific to urban passenger transportation.
The two major categories of constraints are the safety and
the comfort of the passengers. Indicators of tracking per-
formance and health monitoring will be developed to allow
for the future development of a supervision layer in the
architecture.

In the end, the proposed architecture aims to be a generic
and easily transposable solution for single and multi-vehicle
navigation. These aims will be reached with a combination
of an MPC controller for the tracking and a robust H1
controller for yaw stabilization.

The numerical applications are done for the VIPALAB
vehicles, which are autonomous electric vehicles for urban
transportation (cf. Fig. 1).

The remainder of this paper will be organized as follows.
Section II will give an overview on the works on autonomous
vehicle control and will describe the pertinence and novelty
of the proposed architecture. Section III will explain the
design of the two blocks of the cascade control architecture.
Section IV will show comparative simulations in a range
situations for different controllers and architectures.

1 Institut Pascal, Université Clermont Auvergne, Clermont-Ferrand,
France name.surname@uca.fr

2 Cranfield University, Cranfield, United Kingdom
name.surname@cranfield.ac.uk

Fig. 1. VIPALAB autonomous transport vehicles vehicles in a coordinated
maneuver

II. TOWARDS A FLEXIBLE AND ROBUST
CONTROL ARCHITECTURE

A. Related works

The existing works on autonomous vehicle lateral control
can be separated in two main categories. There are trajec-
tory/target tracking algorithms on one side and yaw stabi-
lization algorithms on the other side. Some approaches will
be described as integrated and aim to fulfill those two tasks
at the same time. For the tracking task, kinematic controllers
are used in [14] and [3]. Depending on the implementation
they can cover a range of speeds and situations but the
lack of consideration of dynamic effects can be problematic
for highly dynamic situations. Yaw stabilization (or active
steering) schemes include [6] and [5] which use respectively
the linear robust control framework and the MPC framework.
Both approaches show very good performances, at the ex-
pense of a robustness proof in [5] with the MPC design.
As for integrated approaches, a first example based on a
nonlinear kinematic controller is presented in [8]. Empirical
terms have been added to a trajectory controller for dynamic
effects compensation. In [7] is presented another integrated
approach based on linear adaptive control. In [2] is presented
an approach based on MPC. The choice of the technique
mainly depends on the design objectives. Some other works
cover the two tasks but with separate controllers for each one,
which has the advantage to separate the objectives for each
task and give an adapted answer. These approaches usually
use two controllers in a cascade architecture. Such works
for ground vehicles include [12] and [10]. Linear control
is often used for the inner control loop. A similar cascade
architecture for aerospace applications is presented in [4]. It
is a common approach in Unmanned Aerial Vehicles (UAV)



design. Usually, these architectures fail to take into account
the comfort, safety and implementability at the same time
since they are more performance based. This is what the
proposed design aims to do.

B. Architecture design

Compared to integrated design, the advantage of cas-
cade architectures is the flexibility for multi-vehicle nav-
igation and the natural separation between kinematic and
dynamic phenomenons. Moreover, the trajectory tracking
error dynamics are not on the same time scale than the
car yaw dynamics. This separation is analoguous to the
Guidance/Control framework [9] even though it is more a
kinematic/dynamic separation.

The MPC has been used with great success to address
trajectory tracking and yaw stabilization as an integrated
approach. However it seems more relevant in this application
to separate the yaw stabilization in a cascade architecture.

The inner loop for yaw stabilization has to deal with the
uncertainty on the vehicle physical parameters. For instance
the weight and inertia of the vehicle will undergo wide
variations because of the variable passenger repartition. The
friction coefficient µ will also be unknown and unmeasur-
able.

For these reasons the linear robust control framework has
been chosen to design the inner loop controller. It enables
the robustness assessment of the controller under the model
uncertainty, which is a big asset for ensuring safety.

The designed architecture is shown in Fig. 2. The MPC
controller generates a desired yaw rate r

d

and a desired speed
v
d

to track the reference trajectory X
ref

. The inner controller
tracks the signal (r

d

, v
d

) by generating a desired steering
angle �

d

and acceleration a
d

to the vehicle. The state X
dyn

(resp. X
kin

) is the dynamic (resp. kinematic) state of the
vehicle. It will be defined in section III-A (resp. III-B).

III. PROPOSED CASCADE CONTROL
ARCHITECTURE

This architecture will have to fulfill the tasks of trajectory
following as well as target tracking in order to be fit for
multi-vehicle navigation. Trajectory following is the action
of following a predefined line (defined in (x, y) coordinates)
with a reference speed v

ref

at each point. For target follow-
ing the same information is available but only at the current
instant. More states can be known about the target, whether
by sensing or communication. As mentioned in section II,
the proposed architecture will have to handle the two tasks
while ensuring passenger comfort and safety. The inner loop
design will be described first and then the outer loop design,
since it depends on the former.

A. Inner loop design

A mixed sensitivity H1 controller has been chosen be-
cause it is an optimal design dechnique, and it has explicit
disturbance rejection and frequency domain performance
specifications. The disturbance rejection characteristics are
interesting because it will dictate the vehicle’s behaviour

TABLE I
PARAMETER VALUES FOR UNCERTAIN CAR PLANT STUDY

parameter notation value

wheelbase l
b

3m
inertial radius i

r

1.5m
cornering stiffnesses c

f

, c
r

700N/deg
actuator time constant ⌧

act

0.6s
mass m 600kg ± 30%
CG position to front axle l

f

1.4m ± 20%
speed v 3m/s ± 50%
friction coefficient µ 0.65± 50%

under wind gusts. Too strong of a reaction could be seen
as dangerous and uncomfortable.

For this application the model in the state space form is
shown in (1). It is based on the kinematic bicycle representa-
tion. It consists of a 2 degree of freedom (DoF) model for the
sideslip � and yaw rate r dynamics and a first order model of
time constant ⌧

act

for the evolution of �, the steering angle.
The overall state is X

dyn

= (�, r, �)T (resp. sideslip, yaw
rate and steering angle defined in Fig. 3). The input is the
desired steering angle �

d

. This model has been presented in
depth in [1]. It is suitable for low speed situations such as
urban traffic.

˙X
dyn

=

0

@
a11 a12 b1
a21 a22 b2
0 0 �⌧�1

act

1

AX
dyn

+

0

@
0

0

⌧�1
act

1

A �
d

(1)

The coefficients a
ij

and b
i

depend on the constants
c
f

, c
r

,m, v, J, l
b

, l
f

defined in Table I.
The following range of configurations has been consid-

ered:
• from zero passenger to four passengers of 100kg each
• speeds from 1.5m/s to 4.5m/s
• friction coeff in [0.3, 1] (from a slippery wet road to a

dry road)
• Centre of Gravity (CoG) from 1.1m to 1.6m to front

axle (because of the passenger repartition)
The corresponding uncertain variables have been summa-

rized in Table I. As a way to reduce the number of uncertain
variables, J has been considered proportional to m with the
intermediate of the inertial radius i

r

(c.f. [1]).
The result of the H1 design is shown in (2) with K

CF

being the feedforward filter and K
DR

being the feedback
filter. The filters have been approximated by second order
transfer functions to make the implementation faster.

8
><

>:

K
CF

(s) =

s2 + 21.2s+ 158.2

s2 + 20s+ 156.3

K
DR

(s) =

250(s+ 124)(s+ 1.67)

s(s+ 17.5)

(2)

The robustness analysis shows that the design is robust
to the modeled uncertainty. The performance analysis shows
that the rise time for the yaw rate is always between 0.3s and
0.8s with a nominal value at 0.5s and the system is always
well damped (as seen in Fig. 4).

Since the system is always well damped (there is no
overshoot), it will be approximated by a first order system



Fig. 2. Designed cascade architecture

Fig. 3. Dynamic bicycle model conventions
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Fig. 4. Closed-loop step response envelope

in the following developments, making for a simpler model
for the MPC.

B. Outer loop design

The outer loop controller (cf. Fig 2) needs to address the
problem of stabilizing the vehicle around a moving target or
a reference trajectory.

Even though it is a classical approach, MPC has good
qualities to address our problem: it finds an optimal solution,
can inherently deal with non linear processes such as car
steering and can include constraints on the states and control
signal (linked to comfort and safety). The prediction is also
valuable to deal with slow dynamics and to anticipate future
situations.

The main problem of MPC is that it always needs a
reference trajectory over a finite horizon. In multi-vehicle
navigation it is not always available and thus needs to be
predicted to enable the use of MPC. Fig. 5 shows a situation
where a reference trajectory for the virtual target T that V

F

(the follower) has to follow is only partially known over the

MPC horizon. In this situation the aim is to keep constant
offsets �y

ref

and �s
ref

with the trajectory of V
L

(the
leader). As the prediction horizon of the MPC depends on
the model dynamics, it is not correlated to how far the target
is to the leading vehicle. Thus a big MPC horizon and a
small leader/target distance can lead to such a situation.

Fig. 5. Partial availability of a reference trajectory in leader/follower
navigation

The reference trajectory prediction is based on the hy-
potheses that the yaw rate r and speed v of the leader are
constant. The states for the prediction are the same as the
MPC presented later in (3). It generates a reference trajectory
X̂ref(k + N |k) over the MPC prediction horizon N . The
MPC scheme can then be used seamlessly whether there is
a reference trajectory over the whole prediction horizon or
not and makes the architecture more flexible.

The chosen model for the MPC is shown in (3). At a
timestep k, the state is X

kin

(k) = (x
k

, y
k

, 
k

, r
k

, v
k

)

T

where x
k

, y
k

and  
k

are defined in Fig. 6, r
k

is the yaw rate
of the car and v

k

its speed) and the input is U = (r
d

, v
d

)

T

(the desired yaw rate and speed). The only parameters that
describe the vehicle’s dynamics are ⌧

r

and ⌧
v

, the time
constants for the yaw rate and the speed responses which
have been identified on the close inner loop (cf. Table II).
The last parameter is the sampling time T

s

of the loop. These
responses are assumed to be described by first order models.
It is a realistic hypothesis as long as the real responses are
well damped. This is the case here as seen in Fig. 4 thanks
to the inner loop designed in section III-A.
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>>>><

>>>>:

x
k+1 = x

k

+ T
s

v
k

cos 
k

y
k+1 = y

k

+ T
s

v
k

sin 
k

 
k+1 =  

k

+ T
s

r
k

r
k+1 = r

k

+ ⌧�1
r

(r
d

� r
k

)

v
k+1 = v

k

+ ⌧�1
v

(v
d

� v
k

)

(3)



The MPC scheme finds a control input U
opt

that mini-
mizes a cost function J(U), where U = (U

k

, ..., U
k+N

) is
series of control signals to test over the prediction horizon N .
This function is usually composed of a term that penalizes
the errors to the reference trajectory and other terms to
smooth the control signal.

Fig. 6. Navigation errors definition

The penalized terms are:
• X̃, the matrix of differences w.r.t. the reference trajec-

tory over the prediction horizon N
• Ê(k + N |k) the navigation errors over the prediction

horizon N. These errors are defined in Fig. 6 and further
detailed in [14]. They are a convenient way to work in
a local frame that is in the vehicle’s orientation.

• Ũ the difference between the test input signal and the
previous optimal input signal

• U� the differences between two successive input values
in the tested input signal (a.k.a. control effort)

The chosen cost function is defined in (4). It is a weighted
sum of the penalty terms:

J(U) =

˜XTQ ˜X+ Ê(k +N |k)TSÊ(k +N |k)
+ ŨTRŨ+UT

�R�U� (4)

The penalties on Ũ and U� tend to smooth the tracking
and are often encountered in nonlinear MPC schemes. The
penalty on the navigation errors allows to separately penalize
the lateral and longitudinal errors (e

x

and e
y

) and have been
preferred to the penalty on the state difference ˜X. The values
of the weight matrices Q, S, R and R� are compiled in
Table II. The raw state difference ˜X has not been penalized
except for the speed difference, which was found to smooth
the longitudinal tracking.

For comfort and safety, the following constraints have been
introduced:

• |r
d

|  r
max

• |ṙ
d

|  dr
max

• v
min

 v
d

 v
max

• |a
y,d

| = |v
d

r
d

|  a
y,max

• |a
x,d

| = �v
d

/T
s

 a
x,max

• |
d

| = |r
d

/v
d

|  
max

TABLE II
MPC CONTROLLER PARAMETERS

N 14
⌧
r

0.5s
⌧
v

1.4s
Q diag(0, 0, 0, 0, 0.1)
S diag(1, 2, 0, 0)
R diag(0, 0)
R� diag(15, 15)
r
max

30 deg/s
dr

max

50 deg/s2
v
max

4.5 m/s
a
y,max

5 m/s2

a
x,max

3 m/s2
e
x,max

0.5 m
e
y,max

0.2 m

The constraints on the yaw rate r
d

, the yaw rate derivative
ṙ
d

and the lateral/longitudinal accelerations a
y,d

and a
x,d

are here for comfort. The constraints on the speed v
d

and
the curvature 

d

are physical limitations of the vehicle. Two
additional constraints on the tracking errors have been added:
|e

x

|  e
x,max

and |e
y

|  e
y,max

. These constraints are used
to ensure the vehicle will stay within given bounds around
the target. For example, the constraint on e

y

will depend on
the road width. The numerical values used for the constraints
are compiled in Table II. The optimization function used for
the simulations is the fmincon Matlab optimization function
under constraints. The input constraints will always be re-
spected (it restricts the search space) and the function will
try to find a solution that respects the additional constraints
on the tracking errors, unless impossible. In the latter case,
the optimization function’s output will mention that the
constraints were not respected. This information can be used
to prevent the violation of constraints before it actually
happens. Finally, the MPC scheme runs approximately in 20
seconds for a 10 seconds Simulink simulation with a modern
computer (a 2013 Intel i5 equipped laptop) and a loop rate
of 10Hz.

C. Conclusion

The proposed architecture is comprised of two loops
in cascade that aim to solve the trajectory tracking/target
following problems under comfort and safety constraints.
The task separation allows to split the constraints and to
focus on different aspects of the problem at each stage as
well as allowing a simpler design overall.

IV. SIMULATIONS AND RESULTS
A. Model Used

The model used for the simulations consists of a 3DoF
bicycle chassis model with a linear tyre model (for both the
longitudinal and lateral forces). The simulations have been
performed in Simulink.

The model for the simulations is based on the one pre-
sented in section III-A. The rotational wheel dynamics have
been added in order to have a realistic longitudinal behaviour.
Thus the state vector is defined as X = (�, r, v,!

f

,!
r

)

T

with the three first states already defined in (1)and !
f

(resp.



!
r

) is the front (resp. rear) wheel rotational speed. The
input vector is U = (�

d

, a
d

)

T , the desired steering angle
and longitudinal acceleration. These inputs are transformed
into actual wheel angle and acceleration by the {actuator +
controller} systems modeled by first order transfer functions
of time constant 0.6s (resp 1s) and damping 0.8. The front
and rear axles inertias are J

f

= J
r

= 0.45kg.m�2 and the
longitudinal tyre stiffnesses are C

l,f

= C
l,r

= 1e4N. The
other model parameters will be within the range of values
used for controller design (cf. Table I). Unless specified
otherwise, the nominal values have been taken.

B. Simulation scenarios

Comparisons will be made with two kinematic controllers.
The first controller is the one presented in [14] and [13].
For simplicity it will be referenced as the ”Vilca” controller.
It is a nonlinear control law designed for both dynamic
target following and waypoint navigation. It is based on
a Lyapunov function design and is a recent example of a
flexible kinematic controller. The other one is the ”Pure Pur-
suit” controller [11], a widely used kinematic controller for
trajectory tracking because of its simplicity and efficiency. It
is a non linear controller that computes a curvature to reach a
point on the trajectory at a look-ahead distance. This distance
is usually proportional to the vehcile speed with a coefficient
k
PP

within a lower and upper bound (cf. Table III). Both
algorithms compute the steering angle corresponding to
the desired curvature under kinematic hypotheses, thus not
taking into account actuator delays and slip.

For the simulations, the virtual target follows a sinusoidal
path at a constant speed (cf. Fig 7). For the MPC controller
it is assumed that no information of the target’s future path is
available to put it in difficult conditions. As a consequence,
the prediction module described in section III-B will be used.
It is on the other hand assumed that the trajectory is entirely
available when using the pursuit controller, thus giving it
more favorable conditions.

Two test case are presented:
• Behaviour comparison: A test at low speed to compare

the behavior of the three controllers. For this test the
nominal values for the car model will mostly be used.

• Safety and comfort assessment: A test at a higher
speed and non-nominal car model values to check the
robustness of the approaches. This test will also serve
to check if the comfort constraints with our approach
are respected in more agressive maneuvers.

The common (resp. variable) parameters for the simulation
scenarios are compiled in Table III (resp. Table IV-B).

C. Behaviour comparison

All the nominal parameters for the model have been taken
except the speed which is 2m/s. The MPC shows a very
good tracking compared to the two other methods (cf Fig.
8). However the control signals (Fig. 9) and the comfort
indicators (Fig. 10) are approximately of the same magnitude
for the three approaches. In easy maneuvers like this one
the proposed architecture behaves well but has an edge on

TABLE III
COMMON SIMULATIONS PARAMETERS

parameter value

initial vehicle position (1, 1) (m)
initial vehicle heading 30�

target path curvature variation rate 0.1 Hz
max target path curvature 1/15m�1

Vilca’s law coefficients K
V

(1, 2.2, 8, 0.1, 0.01, 0.6)
Pursuit law look-ahead coeff. k

PP

0.5
Pursuit law look-ahead dist. bounds [1, 5] (m)
outer loop sampling time T

s,g

1/10s
inner loop sampling time T

s,c

1/50s

TABLE IV
VARIABLE SIMULATION PARAMETERS

parameter value

First simulation Second simulation
initial target position (1.5, 1.5) (m) (2, 2) (m)
initial target heading 30� 40�

Target speed 2m/s 4m/s
vehicle mass 600kg 750kg
friction coefficient µ 0.65 0.4

neither the pursuit controller or on Vilca’s controller in terms
of comfort.

D. Safety and comfort assessment

In this simulation, the safety has been assessed by check-
ing the tracking performance under a change of mass, friction
coefficient and speed. The respect of the comfort constraints
with the proposed cascade architecture has been tested and
compared with the behaviour of the other controllers. In this
series, the target initial position was further from the vehicle
initial position (cf. Table IV-B) to study the behaviour of the
controllers when a more agressive maneuver is required to
follow the target.

The tracking performance of the designed cascade archi-
tecture is now far better than both the Pursuit controller
and Vilca’s controller (cf. Fig. 11). The latter one shows an
unstable oscillatory behaviour at these higher speeds because
it neither anticipates the trajectory nor the actuator delay.
The performance of the cascade architecture also shows the
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Fig. 7. Example of path for the simulations (target and follower)
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Fig. 8. Tracking performance (1st series)
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Fig. 10. Comfort indicators (1st series)

effectiveness of the inner controller to stabilize the yaw
dynamics with a non nominal model. The control signals
(Fig. 12) show an effective capping of both the desired
speed and yaw rate with the cascade architecture, leading
to a faster tracking errors convergence while respecting the
introduced constraints. The comfort indicators (cf. Fig. 13)
show undamped oscillations for both the Pursuit and Vilca’s
controller, and a slight overshoot for the cascade design. It
could be removed with finer tuning of the MPC controller
or the use of the real target’s trajectory information.
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Fig. 11. Tracking performance (2nd series)
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V. CONCLUSIONS
In this paper has been proposed a cascade architecture for

autonomous vehicle navigation. This architecture seamlessly
fills the tasks of trajectory/path tracking as well as dynamic
target following and thus can cope with multi-vehicle sce-
narios. The architecture is divided into a robust low-level
yaw stabilization controller that focuses on the vehicle’s
dynamics and a high-level tracking MPC controller that
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focuses mainly on the kinematics. This architecture shows
an improvement in tracking performances, safety and flexi-
bility compared to usual kinematic controllers for trajectory
tracking. It is not intended to have an edge on performances
compared to integrated approaches for trajectory tracking but
to improve robustness and implementability. Further work
will be carried out to check the performances of a linear
MPC controller as well as a robustification of the MPC
scheme. Real time implementability will be evaluated and
Linear Parameter Varying (LPV) techniques for the low-level
controller (parametrized by speed) will be investigated to
improve its performance and operational envelope.
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Reactive Dubins Traveling Salesman Problem for Replanning of
Information Gathering by UAVs

Robert Pěnička1, Martin Saska1, Christophe Reymann2 and Simon Lacroix2

Abstract— We introduce a novel online replanning method
for robotic information gathering by Unmanned Aerial Vehi-
cles (UAVs) called Reactive Dubins Traveling Salesman Prob-
lem (RDTSP). The considered task is the following: a set of
target locations are to be visited by the robot. From an initial
information gathering plan, obtained as an offline solution of
either the Dubins Traveling Salesman Problem (DTSP) or the
Coverage Path Planning (CPP), the proposed RDTSP ensures
robust information gathering in each given target location by
replanning over possible missed target locations. Furthermore,
a simple decision making is a part of the proposed RDTSP
to determine which target locations are marked as missed and
also to control the appropriate time instant at which the repair
plan is inserted into the initial path. The proposed method
for replanning is based on the Variable Neighborhood Search
metaheuristic which ensures visiting of all possibly missed
target locations by minimizing the length of the repair plan
and by utilizing the preplanned offline solution of the particular
information gathering task. The novel method is evaluated in a
realistic outdoor robotic information gathering experiment with
UAV for both the Dubins Traveling Salesman Problem and the
Coverage Path Planning scenarios.

I. INTRODUCTION
This paper presents a new robust approach for solving the

robotic information gathering by Unmanned Aerial Vehicles.
In this task, a set of locations is to be visited by the
robot to collect sensory data. The proposed method called
Reactive Dubins Traveling Salesman Problem (RDTSP) is an
online approach that uses the UAV’s onboard computational
resources for replanning and decision making to ensure that
all given target locations are visited, regardless of possible
disturbances during the information gathering task, that can
lead to missing measurements from some of the target
locations.

The first and typical application of the proposed method
arises in the Coverage Path Planning (CPP) [1] scenarios
where a predefined region is given, and the task is to find
appropriate waypoints (sensor measurement locations) such
that the whole area is scanned by the onboard sensor. For
the aerial robotics, a simple zigzag path (further also called
’sweeping’ path) is usually sufficient as there is no need for
avoiding obstacles during the coverage mission.

The second considered scenario is the information gath-
ering specified as the Dubins Traveling Salesman Prob-
lem (DTSP) [2], where its multi-robot case is shown in

1Authors are with Faculty of Electrical Engineering, Czech
Technical University, Technicka 2, Prague, Czech Republic
{robert.penicka|martin.saska}@fel.cvut.cz

2Authors are with LAAS-CNRS, INSA, Université de
Toulouse, 7 Avenue du Colonel Roche, Toulouse, France
{christophe.reymann|simon.lacroix}@laas.fr

Fig. 1: Example of information gathering as a solution
of Dubins Traveling Salesman Problem for multiple UAVs
(MDTSP) on left, and the data collection as a camera
detection of colored objects with number recognition (on
right)

Figure 1. The DTSP is a variant of the well known Traveling
Salesman Problem (TSP) [3] for Dubins vehicle, which we
use as a simple model of considered UAV for constructing
smooth constant speed paths. Contrary the CPP, the DTSP
uses a predefined set of target locations, and the task is to
find a minimal length path over all target locations. Notice
that after finding the appropriate waypoints in the area, the
CPP is a special case of the TSP or in our case a special
case of the DTSP.

Using UAVs for obtaining sensory data in such pre-
defined locations in the environment is always influenced
by uncertainties in robot motion, due to wind disturbances
and imprecision of the dynamic model, among other factors.
Another source of uncertainty is introduced into the system
by imperfect sensors used for the particular application.
All these aspects together may cause that some places of
interest are not perceived, or the obtained information is not
sufficient. Often it is possible to detect online (during the
mission) that a required location was not visited properly by
identification of a deviation from the pre-planned trajectory,
or that the obtained sensory measuring is not valid. The
current approach is to collect all the locations with identified
missing sensory information after the mission and to plan
an additional flight over these places to complement the
data. The proposed RDTSP, however, identifies the missing
target locations online and applies the repair plans during the
mission.



The typical solution of the information gathering mission
either for CPP or DTSP is done offline prior to the mission,
and during the execution, a simple trajectory following is
used. However, defining the path for sweeping scenarios
is rather simple by using the zigzag path, the solution of
NP-hard DTSP is computationally demanding. The optimal
solution of the DTSP (for a given sampling of heading angles
of Dubins vehicle) can be obtained using a transformation
of the DTSP into an Asymmetric TSP (ATSP) [4] and then
solved by e.g. Concorde TSP solver [5]. Therefore the further
introduced RDTSP method uses the offline precalculated
path for the information gathering and replans over the
missed target locations such that the new repair part of the
plan (generally a constrained solution of DTSP over missed
locations) is inserted into the original plan.

The proposed Reactive Dubins Traveling Salesman Prob-
lem is an online algorithm that uses the predefined path
from either CPP or DTSP and ensures the visit of all target
locations by replanning over the missed target locations.
Since the optimal solution of the DTSP is computational
demanding, the proposed RDTSP method utilizes the pre-
computed plan and inserts the repair plan over the missed
target locations into the existing plan between adjacent
target locations. The existing approaches for the information
gathering and surveillance by UAVs [6], [7], [8], [9] focus on
the planning of the whole mission offline (as a solution of the
DTSP) and do not consider possible replanning over missed
target locations. The proposed VNS-base DTSP planner
keeps planning during the mission and minimizes the overall
path length not only by considering a different sequence of
visiting the missed targets, but also by finding the location
of applying the repair plan. Furthermore, a decision making
approach is used to determine when the replanning is applied
to revisit the missed locations and also to determine which
target locations are considered as missed.

The remainder of this paper is organized as follows. The
problem statement of the proposed RDTSP is specified in the
next section. The overall system architecture is introduced
in section III. Section IV describes the proposed method for
RDTSP. First experimental results are presented in V and
section VI concludes the paper.

II. PROBLEM STATEMENT

The proposed Reactive Dubins Traveling Salesman Prob-
lem is based on the idea of utilizing the offline computed
initial plan for information gathering in the online iterative
improvement of the repairing plan that covers the missed
target locations. The RDTSP method uses an initial path
P

init

which is a feasible Dubins path for information gath-
ering over the required target locations. We expect the target
locations S = {s1, · · · , sn} to be ordered according to the
occurrence inside P

init

.
For the purpose of RDTSP for the targeted Unmanned

Aerial Vehicle, we use the kinematic model of Dubins ve-
hicle [10]. The state of the vehicle q = (p, ✓)

T

= (x, y, ✓)

T

is described by the position p = (x, y) 2 R2 and the

heading angle ✓ 2 S1. We expect a constant velocity v of
the information gathering vehicle that is controlled by input
u to either go straight or turn.

q̇ =


ṗ

˙
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�
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ẋ
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˙
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u

⇢

3

5
, u 2 [�1, 1] . (1)

The Dubins vehicle (1) is specific for its minimal turning
radius ⇢ which can be, for the considered UAV, derived from
the equation of circular motion ⇢ = v

2
d

/a

max

, where v

d

is
desired constant speed and a

max

is the maximal acceleration
allowed by the UAV. The distance L

d

(q

�

i

, q

�

j

) between two
states q

�

i

and q

�

j

of the Dubins vehicle is then the shortest
Dubins maneuver out of the six possible maneuvers [10].

For the RDTSP we expect an online deployment where
the replanning of the whole initial path after missing some
locations is not possible due to the fact that the DTSP is
NP-hard, thus very computationally demanding for a large
number of target locations. Instead, we propose the VNS-
based method that uses the initial DTSP plan, and try to find
a Dubins path over the missed locations such that the path
can be inserted into the original plan between two adjacent
locations.

After starting the execution of the initial plan, the current
position inside the plan is described by an index number
c 2 (1, n) that belongs to the location s

c

which is the last
location that has been attempted to visit. The set S

m

contains
k missed target locations. A solution of the RDTSP can be
described as a permutation ⌃ = (�1, · · · ,�k+2) to visit the
missed locations in S

m

, where �1 > c is location on the
initial plan somewhere in the future, �

k+2 = �1 + 1 is the
location where the repair plan connects back to the initial
plan, and s

�

i

2 S

m

for i 2 (2, k + 1) being the missed
target locations.

Furthermore the considered Dubins vehicles requires de-
termining respective heading angles at the target locations
from ⌃. The heading angles can be described as a vector
⇥ = (✓

�1 , · · · , ✓�k+2), where ✓

�1 and ✓

�

k+2 are set to the
values from the initial plan P

init

and the heading angles at
the missed target locations need to be found together with
the permutation of the missed locations ⌃.

In other words we want to find the starting location inside
the future part of the plan, from which the repair plan would
be started, together with the sequence of visits to the missed
locations such that the produced path has minimal length.
The addressed RDTSP can be described as an optimization
problem to minimize the length L

path

of the Dubins tour
over the missed target locations:

minimize
⌃,⇥

L
path

=

k+2X

i=2

L
d

(q

�

i�1 , q�i

)

subject to �1 = s 2 (c+ 1, n) ,
�

k+2 = �1 + 1 .

(2)



III. SYSTEM ARCHITECTURE

The software architecture of the proposed system is built
on top of the system developed at Czech Technical Uni-
versity and University of Pennsylvania for our participation
at the MBZIRC competition in Abu Dhabi (see [11] for
a description of the initial version of the CTU system
primarily designed for formation flying [12], [13], [14]
and swarm applications [15], [16], [17]; experiments with
the current version of the MBZIRC system can be found
at http://mrs.felk.cvut.cz/projects/mbzirc). The core of the
system, based on Robot Operating System (ROS), is a Model
Predictive Control (MPC) algorithm capable of following
any given trajectory feasible for UAVs (the MPC controller
was built from our solution designed for flying in GPS-
denied environment, which is capable of UAV stabilization
and trajectory tracking using only embedded micro-controller
[18], see http://mrs.felk.cvut.cz/projects/cesnet for deploy-
ment of the system in task of scanning of large historical
buildings). The system allows giving a trajectory specified by
a sequence of waypoints sampled at a predefined frequency,
which is post-processed and smoothed using known UAV
motion constraints. For precise trajectory following, a state
estimation mechanism is integrated fusing data from a variety
of sensors. GPS data, IMU output, an output from image
processing from two cameras, a range finder for altitude
measurement, and in some applications also Differential GPS
can be used in the feedback of the controller.

Decision Making

VNS-RDTSP
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Sampler

Controller

Sensors and 
State estimator
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New Plan

New Plan
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Fig. 2: Software architecture. Arrows represent messages,
blocks ROS components. The dashed line symbolizes com-
munication with lower level components.

Figure 2 illustrates the components of the system relevant
to the scope of this paper. The mission consists of visiting a
predefined list of targets (positions where the sensory data
have to be captured), which are collected into a sweeping
trajectory or for which a predefined DTSP solution can be
computed in advance and fed as an input to the system. The
situation assessment node processes the sensory outputs as
well as the current estimated UAV state to track the status
of the current target in the plan. When flying over a target,
this node will assess if the measurements are good enough
and upon failure of the sensor reading or error in position
exceeding an allowed threshold, declares the target as missed.

This status is passed to the decision making node, which
gathers the list of missed targets. Positions of the missed
targets are used by the VNS-DTSP node (we use VNS -
Variable Neighborhood Search based DTSP) solving the
defined RDTSP problem to repair the plan by optimizing a

DTSP tour over these targets. Each time the VNS-DTSP node
finds a better solution, in the form of a local plan update
including at least one previously missed node, a decision
is made whether to use it or wait for a potentially better
one. When the updated plan is deemed good enough for
its execution, it is fed back to the situation assessment node
which waits for the UAV to be in a state that allows seamless
switching to the new plan, which is then sampled, post-
processed and sent to the controller.

IV. PROPOSED APPROACH FOR THE RDTSP
Because the Dubins TSP problem is NP-hard, the exact

optimization scheme requires, in general, a long computation
time and is not suitable to find good solutions in online
settings. In fact, no algorithm is capable of finding optimal
solutions to the DTSP (without sampling the heading angles)
for very large number of points at this moment, which is
the case of our predefined overall mission plan. Moreover,
in most of the information gathering applications, a simple
sweeping or DTSP trajectory over the required places of
interest is preferred, and there is no need to change the
overall plan completely. Therefore we seek only to locally
repair the given plan by re-visiting the missed sensory
locations during the mission.

As new missed targets may come in at any moment, and
due to the anytime nature of the VNS algorithm, we need to
be able to decide when to stop the optimization and switch
to the current best plan. We control the VNS-DTSP scheme
from the decision making node by providing:

• the current plan, serving as a blueprint for plan updates
• a list of missed targets S

m

, to be inserted in the current
plan

• current position c inside the current plan
The decision to stop optimizing the current set of missed

targets and to execute the newly adapted repair plan is then
taken based on three criteria: the proximity to the node at
which the current plan update starts (the plan is updated just
before reaching the repair plan start), the time elapsed since
the current best solution was found, and based on number of
missed locations together with chance of missing currently
approaching location.

A. Reactive Dubins Traveling Salesman Problem

The proposed solution of the Reactive Dubins Travel-
ing Salesman Problem (RDTSP) is based on the Variable
Neighborhood Search (VNS) metaheuristic for combinatorial
optimization [19]. The used VNS method iteratively switches
between shake and local search procedures, where the shake
randomly changes the actual best solution of the problem
and local search then tries to find on such randomly created
solution a new and better solution than the currently best
one. VNS employs a predefined neighborhood structures
N1,...,l

max

further described as an operation on the problem
solution which is the planned repair path. A Randomized
variant of the VNS (RVNS) is used, which tries iteratively a
number of same random operations during the local search
procedure.



For finding the appropriate heading angles at the missed
target locations, we propose a sampling based approach
where the heading angles ✓

i

2 h0, 2⇡) are equidistantly sam-
pled into m values. The heading angles are then determined
by a graph search over all heading samples for location
sequence ⌃ and the ones with the minimal path length are
used.

The proposed VNS-based solution of RDTSP uses follow-
ing neighborhood structures. The randomized shake proce-
dure uses:

• Path Move (l=1) randomly selects part of the repair
plan between s

�2 and s

�

k+1 , and moves it to a different
position inside the plan.

• Path Exchange (l=2) works similar to the path move,
but selects two random non overlapping parts of the
plan between s

�2 , s
�

k+1 and exchange their position.
• Start Exchange (l=3) is a special neighborhood struc-

ture that randomly changes the location s

�1 where
the repairing path starts which also changes the end
of repairing plan to s

�

k+2 = s

�1 + 1. To limit the
computational demand and also to focus on prior start
of the repairing path, the start exchange is limited by the
maximal distance d

max

which is a number of locations
ahead of the current one s

c

to which the s

�1 is randomly
changed.

During one iteration of the local search procedure, the
Randomized VNS tries one of the following neighborhood
structures for a number of time that is equal to k

2.

• Point Move (l=1,3) randomly moves one location inside
the solution into different position inside the plan.

• Point Exchange (l=2) selects randomly two target
locations and switch their positions.

The VNS-based algorithm for the proposed RDTSP is
summarized in Alg. 1. The planning algorithm is started
every time S

m

contains at least one missed location and the
local optimization keeps trying to improve the repair path
until it is applied by the decision making node which clears
the set of missed target locations S

m

.
The algorithm is written for the online execution during

the mission, where both the set of missed locations S

m

and
the current index of location c are changing. During the
deployment, the current index c increases which requires
to change the considered staring locations s

�1 and ending
locations s

�

k+2 of the repair path to be s

�1 > c and s

�

k+2 =

s

�1+1 which is done by adjustStart on line 3. Whenever the
c increases, the algorithm changes automatically the starting
position to the one inside d

max

that produces the shortest
repair path. Furthermore, the introduction of new missed
locations into S

m

requires addition of the location to the
existing repair plan (addToPath on line 5) which is done
greedily. By this manner, the proposed VSN-base algorithm
for RDTSP benefits from reusing the existing repair plan
during the deployment and tries to optimize it to minimize
the additional path length required to revisit the missed target
locations.

Algorithm 1: VNS based method for the RDTSP
Input : P

init

– initial plan
Input : d

max

– start lookahead distance
Input : l

max

– maximal number of neighborhoods
Input : m – Number of heading angles samples
Changing Input: S

m

– Set of missed locations
Changing Input: c – actually passed location index in P

init

Output : P – Actual RDTSP repair plan
1 P  createInitialPath(S

m

) ; // greedily

2 while Repair plan is not applied do
3 if c changes then
4 adjustStart(P ,c) ; // ensures s

�1 > c

5 if new missed target s
i

2 S
m

then
6 addToPath(P ,s

i

) ; // greedily

7 l 1
8 while l  l

max

do
9 P 0  shake(P , l)

10 P 00  localSearch(P 0, l)
11 if L

path

(P 00) < L
path

(P ) then
12 P  P 00

13 l 1
14 else
15 l l + 1

V. EXPERIMENTAL RESULTS

The proposed RDTSP method has been tested in a realistic
outdoor experiment with the UAV depicted in Fig. 3. The
Dubins vehicle model is used for the hexarotor UAV to
produce smooth paths over the target locations using constant
speed trajectories that are preferred due to the precision of
sensory measurements in the information gathering scenario.

Fig. 3: The hexarotor UAV used during the experimen-
tal verification of the proposed RDTSP in scenario with
initial plan obtained as the DTSP (for more details see
http://mrs.felk.cvut.cz/ecmr17rdtsp)

Two different scenarios have been used to verify the
performance of the online replanning of the RDTSP. The
first scenario is based on precomputed coverage path plan
(’sweeping’ plan) where the given area is covered by the
simple zigzag plan (see section V-A). The second scenario
uses an offline open-loop DTSP plan over specified target
locations. Section V-B describes the second scenario.



For both scenarios1, the same configuration of the pro-
posed RDTSP has been used. The maximal distance in which
the VNS-based method considers the disconnection from the
original plan and applying the repair path has been set to
d

max

= 20. The nominal forward speed of UAV during the
experiment has been set to constant speed v

c

= 2.5

m

s

. The
RDTSP further uses the number of sampled heading angles
m = 16 and turning radius of the Dubins vehicle ⇢ = 4m.
The turning radius has been selected with respect to the
maximal acceleration a

max

= 3

m

s

2 of the used hexarotor
UAV.

The decision making node in the conducted RDTSP exper-
iments has been used for determining whether the specified
target locations were visited and also for determining when
the calculated repair plan is applied. The comparison of the
target locations position and UAV odometry was used to
assess the missing of a target location with decision tolerance
distance of 1m. Furthermore, to test the real replanning
ability of the proposed method, the decision making used
an artificially introduced probability p

miss

= 0.2 of missing
the target location (which simulates an error in the sensory
data measurements). Furthermore, the decision of applying
the repair path (also done by the decision making node) has
been set to a simple variant where the new plan is applied
every time the UAV reaches a starting position of the repair
path with two or more missing target locations.

A. RDTSP in coverage scenario

The conducted experiment of RDTSP in the Coverage
Path Planning scenario uses a simple zigzag plan over the
specified area with equidistantly sampled target locations
(see Figure 4).
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Fig. 4: Initial coverage zigzag path plan between starting and
ending positions with equidistantly sampled target locations.
The positions of the UAV (’Traveled path by UAV’) shows
the odometry measurements of the UAV that includes the
two applied repair plans to revisit the target locations missed
during the mission.

1We refer to http://mrs.felk.cvut.cz/ecmr17rdtsp for
more information and video from the outdoor experiment that further
visualizes the real time performance of RDTSP method.

During the experiment, a total number of six target loca-
tions were missed, either due to the real displacement of the
UAV position from the original plan or due to the artificially
introduced random missing of the target. The initial three
targets, as shown in Fig. 5, were revisited by the first repair
path and the other three by the second replanning, always
by connecting the repair plan between two adjacent target
locations on the original coverage plan.
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Fig. 5: Two repair plans applied by the RDTSP method
during the execution of the coverage scenario.

B. RDTSP in DTSP scenario

In the RDTSP scenario with the initial path as the Dubins
Traveling Salesman Problem, a total number of 20 target
locations were specified. The initial plan, an open-loop
version of the DTSP, was found by conversion of the DTSP
into the ATSP and then optimally solved using the Concorde
solver. The results of the experiment are depicted in Figure 6
and Figure 7, where the two missed target locations at the
beginning of the mission are revisited by one repair path that
is significantly shorter compared to the case of visiting the
missed locations after the mission.
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Fig. 6: The initial Dubins Traveling Salesman Problem plan
over specified target locations together with the odometry
measurements of the UAV including the additional repair
path over missed target locations.
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Fig. 7: The repair path applied after missing two target
locations in the beginning of the DTSP scenario

The experimental verification shows that the proposed
RDTSP is a robust method for the information gathering
tasks, both for the CPP and DTSP scenarios, where all the
missed target locations were revisited by the repair paths. The
introduced online method minimizes the overall length by
connecting the repair plan into the initially computed offline
plan. Especially Figure 6, with the DTSP scenario, shows the
benefits of the online replanning with lookahead distance,
where the final path length is minimized by selecting the
appropriate target location of connection the repair plan.

VI. CONCLUSIONS

In this paper, we introduced a novel method for infor-
mation gathering by UAVs called Reactive Dubins Trav-
eling Salesman Problem. The method uses a precomputed
information gathering path from either the Coverage Path
Planning for scanning of a given area or from the Dubins
Traveling Salesman Problem where the length of the path
over all given target locations is minimized. The proposed
VNS-based online algorithm for the RDTSP uses the pre-
defined path during the mission execution and ensures the
robustness of information gathering task by replanning the
initial plan for visiting possible missed target locations due
to disturbances in sensory measurements or localization. The
proposed method was verified in realistic outdoor informa-
tion gathering experiments with hexarotor UAV and shows
the robustness of the proposed online replanning approach
in both CPP and DTSP scenarios. For the future work, we
intend to investigate different strategies and improvements
for the decision making, where the application of the repair
plan is based on the real sensor measurements.
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Science Foundation (GAČR) under research project No.
17-16900Y. The support of the Grant Agency of the
Czech Technical University in Prague under grant No.

SGS17/187/OHK3/3T/13 to Robert Pěnička is also grate-
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Abstract— A polygon for movement and task execution by the 
humanoid robot NAO was defined in the form of a 2D map. A 
series of tasks was designed for the robot to accomplish during its 
scouting mission. A localization algorithm using markers and the 
robot’s camera was developed, as well as algorithms for 
navigation, path planning, and robot motion. A GUI for mission 
definition, supervision, and control, along with manual robot 
tele-operation, was developed. A finite automaton was defined 
which enables switching between autonomous, semi-autonomous, 
and manual operation modes. The developed modules were 
integrated with modules for audio and visual perception and the 
complete system was tested on a chosen scouting mission. 

Keywords: NAO, humanoid robot, localisation, navigation, 
GUI, autonomous task execution 

I. INTRODUCTION 
Robotic technology is advancing in large steps, enabling a 

variety of robot applications in unstructured environments 
such as scouting, inspecting, rescuing, and intervening in 
dangerous situations. International robotic competitions such 
as DARPA and ARGOS challenges have set new standards 
for professional service robots, requiring from the robots full 
autonomy of operation, advanced manipulation skills, 
awareness of the environment, learning capability, 
adaptability, and the ability of collaboration with other robots 
and humans [1, 2]. This leads to increased demand for 
creating a robot with a set of functionalities including 
artificial intelligence, environment awareness, locomotion, 
energy efficiency, control mode switching, and mission 
comprehension. Costs of using advanced human-like and 
human-size professional service robots for implementing and 
validating new control concepts are not affordable for most 
academic research laboratories. Fortunately, small scale 
humanoid robots such as NAO [3], Bioloid [4], and Darwin-
OP [5] have recently become technologically and 
economically acceptable enough to be used instead. 

The work presented in this paper was inspired by the 
ARGOS challenge (Autonomous Robot for Gas and Oil Sites) 
announced in 2014 by the French oil company Total [2]. In 
line with the request for a 24/7 robot-based inspection of an 
off-shore oil platform or similar oil/gas facility, the aim of this 
research was to explore the possibility of the NAO humanoid 
robot autonomously performing a scouting mission in a 
previously known space and to develop a supervisory system 
with a human-machine interface. To perform its task, the 
robot must be able to locate itself in the given space, plan its 
path and navigate to the selected positions, and perform a 
series of tasks for which the space is equipped. While 
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collecting information about the environment, the robot is 
expected to manoeuvre without human intervention and be 
safe for humans, the environment, and itself. An autonomous 
robot can also have adaptive abilities, and by learning it can 
adapt to the surrounding environment even if the environment 
changes. In addition, it can find new ways for faster or better 
fulfilment of tasks [6]. The scouting mission of a NAO robot 
comprises several actions such as visiting known locations 
with measuring instruments (e.g. temperature, pressure), 
reading them, reporting to the surveillance system, signalling 
possible alarms, and tackling issues related to valves. During 
the inspection mission the robot should respond to the sound 
of the alarm by going into a predefined safe area and should 
also take care of its own battery level by visiting a charging 
station and recharging itself. If the robot hears the sound of a 
steam leak or gas leak, it first goes to the place where it 
knows the valves are located and checks if any of them are 
open. If all the valves are closed, it goes to the nearby pipeline 
to look for cracks and, if circumstances demand, the mission 
results are signalled to the surveillance system. 

The paper is structured in the following way. The second 
section contains important technical specifications of the 
robot used as well as some details of the background of the 
software implementation. The third section contains a 
description of the used spatial localisation algorithm, and in 
the fourth section the planning of the walking path and the 
motion control of the robot are described. The fifth section 
describes the entire developed system, from an overview of 
the finite automaton used to a brief explanation of the roles of 
the implemented classes and modules. After describing the 
course of the mission the robot manages autonomously, 
several conclusions and plans for further work are presented. 

II. HARDWARE AND SOFTWARE USED IN WORK 

NAO H25 robots (see Fig. 1) are small size humanoid 
robots characterized by an appealing appearance and the 
ability of verbal and visual communication with people as 
well as cooperation with other NAO robots. Their ability to 
communicate and collaborate also allows them to be an 
integral part of cooperative human-robot societies. 

As with humans, the most desirable ability for successful 
inclusion of NAO robots in cooperative human-robotic 
systems is watching and quickly interpreting what is seen. 
Therefore, in order to successfully navigate, manipulate 
objects, and solve complex tasks, the robot needs to be 
capable of advanced image processing, locating and 
identifying objects in 2D and 3D space, intelligent grasping, 
listening, interpreting and executing commands, mastering 
social skills, coping with irregular situations, and acquiring 
specific skills related to the performance of a given task. 

Autonomous Task Execution within NAO Robot Scouting Mission 
Framework 
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Figure 1. NAO H25 robot 

The NAO H25 has 25 degrees of freedom. It possesses 2 
loudspeakers and LED indicators to interact with the user and 
environment. It also has two cameras, four microphones, two 
ultrasound sensors (sonar), two infrared transceivers / 
receivers, and nine tactile and eight pressure sensors 
distributed over its body. Through a Wi-Fi network, the robot 
is able to communicate with a control centre and other NAO 
robots connected to the network. The NAO robot software 
(NAOqi, Choregraphe) comes pre-packaged with the robot 
and contains a number of ready-to-use functions and 
behaviours, but also allows and encourages adding new ones 
created using common high-level programming languages 
(Python, C++). In this work some ready-to-use functions 
available under the GNU General Public License (GPL), 
developed within the MRPT (Mobile Robot Programming 
Toolkit) project [7,8] were also used.  

For implementation of a human-robot interface (HRI) 
with widgets some ready-to-use functions available under the 
GNU General Public License (GPL) within the Qt 
framework [9] were used. For this purpose a specific “signals 
and slots” way of communication among HRI components 
was adopted [10]. This has allowed for prompt reactions of 
the NAO robot to sudden events in the environment, based 
on the implemented finite state automaton. 

III. LOCALIZATION PROBLEM 
Localisation of a mobile robot is a crucial condition for 

achieving any degree of autonomy. In a typical case of 
indoor robots moving on a flat surface, localisation is defined 
as the estimate of robot poses, i.e. its x and y coordinates and 
the orientation given by the angle θ. 

In this paper, global localisation is achieved using unique 
markers deployed in the environment (Fig. 2), which make it 
possible to determine the robot's current position without 
knowing its initial position or its position in the previous 
step, and ensure that robot autonomy is not compromised 
even in the so-called “robot kidnapping scenario” in which a 
mobile robot is suddenly moved to an arbitrary location 
while working, creating great difficulties and introducing 
insecurity in most localisation algorithms [11]. 

The main assumption of the robot localisation process is 
that there is a well-known map of the space where the 
mission and all the planned movements take place. In this 
paper, a probabilistic grid occupancy map is used [12]. It is a 
metric type of map, which means that it represents the 

geometric properties of the space it describes, by dividing it 
into a network of fields of the same size and assigning each 
of them a numerical value. This value represents the 
probability that that part of the space is occupied - that is, 
that it represents a barrier to robot movement [13]. In order 
to make the implementation more efficient and avoid 
numeric errors due to computations with very close 
probability values ranging from 0 to 1, the data in the matrix 
representing the grid occupancy map is entered using the 
natural logarithm of the so-called odds function, or function 
of chance (Fig. 3). 

 
Figure 2. Example markers used for global localization 

 
Figure 3. The logarithm of the odds function [8] 

At any given moment, from the known logarithm of the 
odds function lk written in the map matrix, it is possible to 
retrieve the probability of the field occupancy represented by 
the random variable Sij, which is in the row i and column j, 
with a simple operation: 

� � 1
1 kij lP S occupied

e�  
�

 (1) 

The maps used in this paper have been constructed so that 
one pixel in the picture represents one centimetre in reality, 
and its brightness is a measure of probability of space 
occupancy, with a wholly black field meaning a safe 
obstacle, and a wholly white field representing a free space. 

The polygon built for robot movement and equipped with 
objects to carry out the mission is shown in Fig. 4, while the 
grid occupancy map corresponding to the displayed space is 
given in Fig. 5. Following the conventions of tagging in the 
field of image processing, the origin of the global coordinate 
system is located in the upper left corner of the image, and its 
y axis points down. 



  

 
Figure 4. The indoor environment for robot inspection 

 
Figure 5. Grid occupancy map for space shown in Fig. 4 

A list of markers present in the mission space and their 
coordinates in the global coordinate system are well-known 
to the robot. When attempting localisation, the robot turns its 
head until it sees a total of two markers it recognises from its 
list of known markers, then uses the developed local module 
LRDetectionMarker to retrieve their coordinates in its own 
local coordinate system. 

Incorporating the robot's sonar into the localisation 
process proved to be unhelpful, because the robot’s 
ultrasonic sensors were too unreliable, even with filtering 
outliers using the median of a certain amount of collected 
sensor readings, and disrupted the accuracy of the 
implemented algorithms. The probable cause for this is 
multiple ray reflection from relatively close walls with many 
corners, and it is possible that results would be better in less 
crowded spaces. 

A. Calculation of global coordinates  
After the robot has successfully detected two well-known 

markers and determined their coordinates in its local 
coordinate system, it is possible to determine the coordinates 
and the robot's orientation in the global coordinate system. 
The observed case is two-dimensional, which simplifies parts 
of the calculation.  

Coordinate systems are shown in Fig. 6, with (x1g, y1g) 
and (x2g, y2g) as coordinates of the markers in the global 
coordinate system, (x1l, y1l) and (x2l, y2l) as the markers’ 

coordinates in the local coordinate system of the robot, and 
(xr, yr) as coordinates of the robot (the origin of the local 
coordinate system of the robot) in the global coordinate 
system. The angle θ is the angle between the two x 
coordinate system axes and represents the orientation of the 
robot. 

Between the robot coordinate system and the global 
coordinate system, the only possible transformations are 
Euclidean (rotation and translation): 
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Figure 6. Robot position and two markers in the local and global coordinate 

system 

 

A very valuable feature of rigid transformations – a class 
which Euclidean transformations belong to - is that only two 
pairs of corresponding points are needed for uniquely 
determining the transformation from one coordinate system 
to another. Specifically, in this case, the pairs are the known 
coordinates of each of the two found markers in both the 
local and the global coordinate system. 

From this, it is possible to write a system of four 
equations with four unknowns: 
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By solving this system, the cosθ, sinθ, tx, and ty values are 
obtained, thus establishing the connection between the two 
coordinate systems - the requested matrix H. 

To determine the position of the robot in the global 
coordinate system, it is necessary to transform the local 
coordinates (0, 0) using the inverse of matrix H: 
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For fast computation of the inverse matrix, single value 
decomposition (SVD) is used, which returns the result even 
when the matrix is singular or near singular. Robot 
orientation θ is determined from the now known values of 
sinθ and cosθ using the atan2 function that takes into account 
the quadrant in which the angle θ is located. Finally, because 
of the aforementioned definition of the global coordinate 
system in Fig. 6, the obtained global y coordinates change the 
sign, i.e. mirroring over the x axis is applied. 

IV. NAVIGATION PROBLEM 
The exploration mission of the robot can be set by the 

operator as a destination point on a map or as a set of sites 
that the robot has to navigate (patrol). Confirming the 
selected position will trigger path planning to that point and 
allow the NAO robot to walk. During patrolling, the robot 
takes the next point in the sequence, plans a path, and tries to 
move to the appropriate position in the polygon. Upon 
arrival, the visited point is deleted from the sequence and the 
patrol procedure is repeated until all the given points of the 
patrol mission have been visited. 

During patrol mission planning or single destination 
setting it is only possible to select free fields on the map. If 
the field is free, or if the following condition is valid: 

� � 0.5 �ijP S occupied  (5) 

then its closest environment is checked. Considering the size 
of the robot itself, all fields within a 25 cm radius of the 
considered field need to be free in order for the field to be 
included in the mission, i.e. it is demanded that the field be 
sufficiently distant from any obstacle so that the robot can 
approach the position safely and without interfering with the 
obstacle in any way. 

Path planning is done using the MRPT tool grid map 
processing methods and takes two steps: 
- The obstacles represented by the occupied map fields are 

enlarged so that the size of a single field corresponds to 
the safety radius of the robot for which the path is 
planned, which ensures that even one free field on the 
map means that there will be no collision of the robot 
with obstacles in the environment – in this work, as 
mentioned earlier, this value is set to 25 cm. 

- The shortest path to the destination is searched for using 
the value-based iteration algorithm based on the Markov 
decision-making process, with the maximum permissible 
distance between the two endpoints set at a length of 20 
cm, which emerged as the optimal choice during 
experiments [8]. 

A. Robot movement 
For motion control and walking, the built-in ALMotion 

module is used, covering four main control areas [14]: 
-  Control of motor torques (stiffness) 
- Control of joint positions (path generation, interpolation 

between given positions) 
- Control of walking (stride length and frequency) 

-  Control of the effectors in the Cartesian space (built in 
inverse kinematic solver, Whole Body Control function). 

Each walk started with the ALMotion module commands 
starts and ends with a phase in which both legs provide 
support in a 0.6 second time interval. The foot path within 
the step (during the leg swing phase) is determined by SE3 
interpolation, which, similarly to spline interpolation taking 
into account the initial and final velocities on the trajectory 
segments, ensures smooth transitions [14]. 

The robustness of the robotic walk with regards to 
relatively small external disturbances is ensured by closing 
the feedback loop with the sensors in the leg joints of the 
robot. This control loop is designed to reduce the oscillation 
of the torso resulting from the walking movement of the 
robot. The NAO can thus pass over different surfaces while 
walking, e.g. can cross the edge of a carpet, parquet or tiles, 
which opens up many possibilities for use in environments 
that are not specifically adapted to the robot's functioning. 

Before the start of each walk, the robot is placed in a 
neutral, stable initial position for walking, so called standInit. 
Then the moveTo command gives the desired x and y 
coordinates and orientation θ in the local coordinate system 
of the robot. The embedded ALMotion modules then perform 
the planning of the walk to the given stride frequency. 

As all path planning is performed in the global coordinate 
system while the destination targeting and selection happens 
in the local coordinate robot system, the target coordinates 
calculated during the path planning are transformed into local 
coordinates using the transformation matrix H defined by (4).  

Robot localization is performed after each successfully 
completed walking interval in order to ensure that the 
transformation matrix is updated regularly and all 
calculations are performed with the latest available data from 
the environment. The main reason for this is the exceptional 
unreliability of feedback obtained from the robot's odometry, 
which leads to a significant error in estimating the robot's 
real-world position even after very small distances and can 
have serious consequences, such as collisions leading to 
damage to the robot or the environment. 

Since the scouting mission includes tasks related to 
reading instrument values and performing a visual inspection 
of the pipes and valves, at the times when the robot moves to 
perform these tasks it must be ensured that the camera used 
for each task (top camera in the case of inspecting pipes and 
instruments, bottom camera in the case of inspecting valves) 
is correctly aligned.  

Additionally, as the global positions and orientations of 
objects relevant to the mission are known, it is necessary, 
upon approaching areas close to which it is possible to 
perform the desired task, to confirm the accuracy of the robot 
position by re-localisation and re-centering using the most 
recently acquired data, the robot is commanded to turn 
around its own orientation-determining axis by the angle 
difference between its current and desired orientation.  



  

Experiential evaluation of distances acceptable for 
successful performance of tasks has indicated reliable 
performance for up to 40 cm away from the observed object, 
with a viewing angle not exceeding 60 degrees. The 
important positions on the map and the orientation that the 
robot needs to assume in each are shown in Fig. 7. 

 
Figure 7. Positions and orientations for performing tasks (from left to right: 

pipe, valves and instrument) 

V. CONTROL SYSTEM STRUCTURE 
Controlling the entire system is achieved by using a 

mission controller represented by a finite automaton (Fig. 8). 
The states MANUAL, AUTO, and SEMI represent the basic 
operating modes of the system. At start-up, the system 
immediately switches to MANUAL mode. The states marked 
with GO TO SAFETY and GO TO RECHARGING 
represent the system states after reacting to critical events 
(alarm and low battery) in which the system will remain 
(final states). The state OPERATOR NOTICE is a strictly 
transient state. Transitions between the three main states may 
occur at the request of a user - when the status selection key 
is pressed - or as a reaction to external events (e.g. 
recognition of the sound of steam exiting a pipe, or the 
robot’s message that it has failed to localise itself). 

 
Figure 8. System states and transitions within finite automaton 

A. Manual mode 
In MANUAL mode, the user interface displays a live 

video feed from the top camera of the robot (Fig. 9). By 
pressing the arrow keys, the robot moves in the 
predetermined direction for as long as the key is pressed, and 
when the key is released the movement stops. The buttons 
marked with STRAFE allow the robot to be pushed 
sideways, while the left and right arrow keys mean turning 
the robot around its own orientation axis. 

 
Figure 9. User interface in manual mode 

In all modes, the current battery level is displayed and 
refreshed every 30 seconds, and pressing the emergency stop 
button marked EMERGENCY STOP interrupts any currently 
active motion of the robot. 

B. Semi-automatic mode 
In semi-automatic mode (SEMI), robot localisation can 

be manually started, and paths to a desired point on the map 
can be planned. After a path has been successfully planned, it 
is shown on the map and it becomes possible to press the 
appropriate button to send the robot to the given location. 

Patrol planning and starting a predefined mission are 
performed in this mode. The patrol is defined by pressing the 
left mouse button on the desired location on the map to select 
a target point, which is then added to the number of points 
the robot must check during the patrol. Points from the patrol 
can be erased one by one, or the patrol planning can be 
completely cancelled and point selection restarted. It is also 
possible to manually request tasks such as reading 
temperature value from a presumably visible instrument, 
checking valve states, and looking for cracks in pipes. 

C. Automatic mode 

In the automatic mode (AUTO), a patrol or predefined 
mission is performed (Fig. 10). In this mode, the robot 
responds to the alarm, steam sound, and low battery level by 
planning its route and moving to the appropriate places, 
while in all other modes it only notifies the operator about 
these important events through the user interface. 

Significant events during system operation and events 
that are being reported by the robot are recorded in the log 
file, together with a timestamp. The functionality of the 
entire system is realised using a series of developed C++ 
classes and modules [15]. The modules LRMarkerDetection, 
LRInstrumentsValvesDetection, and LRBatteryStatus that 
serve for audio-visual perception of the environment are 
described in detail in [16]. Image processing algorithms have 
been developed to allow the robot to observe valves in order 
to see if they are open or closed, and to find and count cracks 
on an observed pipe. Apart from this, the robot can detect the 
analogue measuring instrument in its environment and read 



  

the value shown by its hand. The robot is capable of 
detecting a loud noise and, by using different features 
calculated from recorded short audio snippets, it classifies the 
detected sound and recognizes whether it is an alarm sound 
or the hiss of steam or leaking gas. 

 
Figure 10. User interface in automatic mode 

D. Mission description 

A mission that relies on the aforementioned modules has 
been conceived. NAO fulfils the role of the inspection robot 
for the given space by visiting it, checking the room 
temperature, and responding to different stimuli from the 
environment. The mission flow is shown in Fig. 11. 

Figure 11. Mission flow 

VI. EXPERIMENTAL RESULTS 

For the purposes of testing the developed system and all 
its functionalities, a special polygon was prepared (Fig. 4). 
The mission cannot start until the robot is given at least one 
point as part of a patrol. By pressing the start key, the system 
switches to automatic mode and the robot starts the given 
patrol. After visiting all the given points, the robot moves to 
the known instrument location - a thermometer where it must 
read the temperature value (Fig. 12). By successfully 
performing this part of the task and reporting the readout 
value to the user interface, and thus to the operator 
monitoring the system operation, the mission is considered 
completed and the robot enters the semi-automatic mode and 

waits for further instructions. If the instrument is not detected 
or the value has not been read successfully, the supervisory 
interface is notified. 

 
Figure 12. The robot reads the value displayed on the instrument 

If the robot receives an alarm while it is on the go, it at 
once interrupts everything that it is doing, tells the interface 
that the alarm is received, plans the fastest way to the 
previously defined safe space and goes to safety. Similarly, if 
the battery level falls below the default 15% threshold, the 
robot interrupts the patrol and mission and goes to the 
recharging slot that has been pre-defined (Fig. 13). 

 
Figure 13. The robot is in the safe place 

If the sound of steam or gas leak is observed, the robot 
interrupts the patrol and goes to the place where it knows the 
valves are located in order to check them (Fig. 14). 

 
Figure 14. The robot checks if the valve is open 

If none of the valves are open, the robot moves to the 
place where it can observe the pipes in order to find cracks 
on them (Fig. 15). If there are no cracks on the pipes, the 
robot enters the semi-automatic mode and waits for further 
instructions. If it detects an open valve or cracks on the pipes, 



  

it notifies the user interface and enters the manual mode so 
that in the potential future implementation of a complete 
remote robot operator interface, the operator could control 
the robot to repair the failure or close valves if necessary. 

 
Figure 15. The robot seeks cracks on the pipes 

VII. CONCLUSION 
The aim of this work was to investigate the possibility of 

developing a system consisting of a series of separate 
elements that allows a humanoid robot NAO to 
independently perform scouting missions in the space 
provided. The problem of robot localisation was resolved by 
using cameras and markers. Planning movement paths while 
patrolling the environment was implemented, enabling the 
robot to autonomously operate in a known indoor space. 
Developed modules for interaction with the environment and 
collecting audio and visual information were integrated into 
the user and control interface. A series of automated 
reactions to environmental events and behaviours triggered in 
critical conditions have been achieved. A graphical user 
interface has been developed, with a finite automaton 
mission controller handling automatic, semi-automatic, and 
manual modes of operation, so that the operator can monitor 
the work of the robot or, if necessary, take control over it. 

For closer study of the developed system, a testing 
polygon was prepared. The most common problems showing 
up in the work are the result of poor lighting because the 
robot heavily relies on its cameras and subsequently the 
quality of the images retrieved from them. Robot autonomy 
is greatly limited due to the relatively short battery life of the 
NAO robot. For this reason, battery level-based control has 
been introduced as a safety measure. Going to the recharging 
point in the current system implementation is only for 
experimental purposes because the NAO robot cannot 
recharge itself. Using the newly developed NEST [17] 
autonomous recharging equipment, the functioning of the 
entire system could be significantly improved. The problem 
that arises is the emergence of major deviations from the 
desired path during a robot walk, especially in terms of 
orientation. The robot's feet are slippery, and the built-in 
odometry is very unreliable, so that safe walking is possible 
only over small distances before it becomes necessary to 
introduce corrections by repeating the localisation process, 
which significantly slows the movement. By introducing 
repeating localisation and correction of robot orientation 
before performing certain tasks that require the robot to 

closely look at the subject, the performance of tasks during 
the mission has greatly improved. 

For further development, it would be beneficial to include 
control of the robot's arms in the interface, which would 
allow for a broader range of tasks to be executed 
autonomously or remotely. Robot navigation could be 
enhanced with the development of a predictive robot motion 
model that would allow corrections both during and after the 
motion, and with the definition of a new step sequence, the 
robot's walk would be improved and stabilised. Localisation 
using pre-known maps in can be replaced by simultaneous 
localization and mapping algorithms (SLAMs), which, 
though essentially much more demanding in implementation 
and computing, significantly increase the degree of robot 
autonomy and allow for adaptation to larger changes in the 
environment, especially with the addition of more advanced 
modes of robot movements to the system (e.g. climbing 
stairs, tilting and crawling under an obstacle). 

Some of the results obtained while testing the control 
algorithms and realised software solutions are shown in the 
video clip of this work which can be watched at [18]. 
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Scalable Multirotor UAV Trajectory Planning
using Mixed Integer Linear Programming

Jorik De Waen1, Hoang Tung Dinh2, Mario Henrique Cruz Torres2 and Tom Holvoet2

Abstract— Trajectory planning using Mixed Integer Linear
Programming (MILP) is a powerful approach because vehicle
dynamics and other constraints can be taken into account.
However, it is currently severely limited by poor scalability. This
paper presents a new approach which improves the scalability
regarding the amount of obstacles and the distance between the
start and goal positions. While previous approaches hit compu-
tational limits when the problem contains tens of obstacles, our
approach can handle tens of thousands of polygonal obstacles
successfully on a typical consumer computer. This performance
is achieved by dividing the problem into many smaller MILP
subproblems using two sets of heuristics. Each subproblem
models a small part of the trajectory. The subproblems are
solved in sequence, gradually building the desired trajectory.
The first set of heuristics generate each subproblem in a way
that minimizes its difficulty, while preserving stability. The
second set of heuristics select a limited amount obstacles to
be modeled in each subproblem, while preserving consistency.
To demonstrate that this approach can scale enough to be useful
in real, complex environments, it has been tested on maps of
two cities with trajectories spanning over several kilometers.

I. INTRODUCTION

Trajectory planning for multirotor UAVs is a complex
problem because flying is inherently a dynamic process.
Proper modeling of velocity and acceleration are required to
generate a feasible trajectory that is both fast and safe, that is,
the UAV should be able to effectively navigate corners while
maintaining momentum. The fastest trajectory is not always
the shortest one, since the UAV’s velocity may be different.
The UAV dynamics are often not the only constraints placed
on the trajectory. Different laws in different countries also
affect the properties of the trajectory. The operators of the
UAV may also wish to either prevent certain scenarios or
ensure that specific criteria are always met.
In this paper we present a scalable approach which is capable
of generating fast and safe trajectories, while also being
easily extensible by design. We model the trajectory planning
problem as a Mixed Integer Linear Program (MILP). The
trajectory is represented in discrete time steps where each
step describes the UAV’s dynamic state at that moment. An
objective function encodes one or more properties, like time
or trajectory length, to be optimized. A general solver is then
used to find the optimal solution for the problem. Because
the problem is defined declaratively, additional constraints
can easily be added.

1Jorik De Waen is a student at KU Leuven, 3001 Leuven, Belgium
jorik.dewaen@student.kuleuven.be

2Hoang Tung Dinh, Mario Henrique Cruz Torres and Tom
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We demonstrate our approach in 2D environments. We
assume that all obstacles are polygons, static and known
in advance. Our algorithm is designed for offline planning,
ensuring that a feasible trajectory exists before the UAV
starts executing its task. Other papers have used MILP for
trajectory planning [1], their approaches could not be used
to generate long trajectories through complex environments.
Our main contribution is an approach which improves the
scalability by dividing the problem into many MILP subprob-
lems. Each subproblem models only a part of the trajectory.
The subproblems are solved sequentially. A first set of
heuristics uses a Theta* path to generate the subproblems.
The second set of heuristics select which obstacles should
be modeled in each subproblem, limiting the amount of
obstacles that need to be modeled while ensuring that no
collisions can occur.

Schouwenaars et al. [1] were the first to demonstrate
that MILP could be applied to trajectory planning problems.
They used discrete time steps to model time with a vehicle
moving through 2D space. Obstacles are modeled as grid-
aligned rectangles. To limit the computational complexity,
they presented a receding horizon technique so the problem
can be solved in multiple steps. However, this technique is
essentially blind and could easily get stuck behind obstacles.
Bellingham [2] recognized that issue and proposed a method
to prevent the trajectory from getting stuck behind obstacles,
even when using a receding horizon. However Bellingham’s
approach still scales poorly in environments with many
obstacles.
Flores [3] and Deits et al. [4] use Mixed Integer Pro-
gramming with functions of a higher order to model the
trajectory as a continuous curve. The work by Deits et al. is
especially relevant to this paper, since they also use convex
safe regions to solve the scalability issues when faced with
many obstacles. Recent work [5], [6], [7] has focused on
online operation and control of the individual rotors of the
UAV. Other than the work by Deits et al. [4], we did not
find any literature which attempts to improve MIP trajectory
planning performance in scenarios with many obstacles.

The paper is structured as follows: In Section II, we
discuss the MILP trajectory planning model we used in the
algorithm. Section III introduces our new algorithm which
segments the problem to improve performance. In Section
IV, we discuss the performance of the algorithm using
several testing scenarios.



II. MODELING PATH PLANNING AS A MILP PROBLEM

This section covers how a trajectory planning problem can
be represented as a MILP problem. The problem represen-
tation is based on the work by Bellingham[2].

A. Time and UAV state

The trajectory planning problem can be represented with
N discrete time steps and a set of state variables at each time
step [2]. The number of time steps determines the maximum
amount of time the UAV has to reach its goal.

p0 = p
start

(1)

p
n+1 = p

n

+�t ⇤ v
n

0  n < N � 1 (2)

Eq. (1) and (2) represent the state of the UAV at each
time step. For each time step n, the position in the next
time step p

n+1 is determined by the current position p

n

,
the current velocity vector v

n

and the time step size �t.
Velocity, acceleration and other derivatives are represented
the same way. The number of derivatives needed depends
on the specific use case.

B. Objective function

The objective is to minimize the time before the UAV
reaches the goal position.

minimize �
N�1X

n=0

done

n
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Eq. (3) shows the objective function [2]. Reaching the goal
causes a state transition from not being done to being done.
This is represented as the value of binary variable done

n

.
When done

n

= 1, the UAV has reached its goal on or before
time step n.

done0 = 0, done
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Eq. (4) states that the UAV must reach its goal eventually.
Lamport’s state transition axiom method [8] was used to
model state transitions. In Eq. (5), the state will be done
at time step n + 1 if the state is done at time step n or if
there is a state transition from not done to done at time step
n+ 1, represented by cdone

n+1.
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The goal position requirement is fulfilled if the UAV is closer
than ✏

p

to the goal position in both dimensions [2].

C. UAV state limits

Modeling the maximum velocity of a UAV requires cal-
culating the the velocity vector’s 2-norm which is non-
linear. However, the maximum velocity constraint can be
approximated to an arbitrary degree using multiple linear
constraints [2]. The acceleration and other vector properties
of the UAV can be limited in the same way.

(a) (b)

Fig. 1: A visual representation of how obstacle avoidance
works. Fig. 1a shows the UAV’s current position as the
black circle. The color of the edges of the obstacle represent
whether or not the UAV is in the safe zone for that edge.
An edge is yellow if the UAV is in the safe zone, and red
otherwise. Fig. 1b shows the safe zones defined by a yellow
and red edge in yellow and red respectively.

D. Obstacle avoidance
The most challenging part of the problem is modeling

obstacles. Any obstacle between the UAV and its goal will
inherently make the search space non-convex. Because of
this, integer variables are needed to model obstacles. Assum-
ing that obstacles are convex polygons, for each obstacle, the
UAV needs to be on the “safe” side of at least one edge to not
collide with the obstacle (see Fig. 1). Indicator constraints
were used to model obstacle avoidance. This requires one
boolean variable slack per edge. If slack is false, the UAV
is on the safe side of the edge. For each obstacle at least one
of the slack variables need to be false. For every convex
obstacle o with the coordinates of vertex i being x
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Modeling obstacles this way is problematic because an
integer variable is needed for every edge of every obstacle,
for every time step. MILP scales exponentially with the
amount of integer variables [9], so performance is mostly
determined by the amount of obstacles and time steps.

III. SEGMENTATION OF THE MILP PROBLEM

In this section we propose a preprocessing pipeline that
makes the problem more scalable. Alg. 1 shows the outline
of the algorithm.

First, we find an initial path with the Theta* algorithm
(line 2). Unlike a trajectory, a path is not time-dependent
and does not take dynamic properties into account. Then,
we find all the turns in that path (line 3). After that, we
generate path segments based on those turns (line 4). Each
path segment contains the information needed to construct



Algorithm 1 General outline

1: T  {} . The list of solved subtrajectories
2: path THETA*(scenario)
3: events FINDTURNEVENTS(path)
4: segments GENSEGMENTS(path, events)
5: for each segment 2 segments do
6: UPDATESTARTSTATE(segment)
7: GENSAFEREGION(scenario, segment)
8: GENSUBMILP(scenario, segment)
9: T  T [ { SOLVESUBMILP }

10: end for
11: result MERGETRAJECTORIES(T )

a MILP subproblem. Finally, for each segment, a MILP
subproblem is constructed and solved (line 8-9). Before
the MILP subproblem is solved, a heuristic selects several
obstacles to be modeled in the problem. A genetic algorithm
generates a convex safe region which is allowed to overlap
those selected obstacles only (line 7). Because the UAV must
stay within the safe region, it cannot collide with obstacles.
For all but the first segment, the starting state for the UAV in
the MILP problem is updated to match the final state of the
UAV in the previous segment (line 6). Once all the segments
have been solved, their trajectories are merged into the final
result (line 11). Because the starting state in a segment is the
same as the final state in the previous segments, the resulting
trajectories can be appended to each other without further
processing.
Our goal is to divide the problem into subproblems so that
only a minimal number of obstacles need to be modeled
in each subproblem, while still resulting in a relatively
fast trajectory. Subproblems based on shorter segments with
fewer obstacles are easier to solve, but the UAV will need
to travel at a lower velocity. This is because there is no
information available about the next segment. If the next
segment contains a tight turn, the UAV may not be able to
slow down enough if it is going too fast. Longer segments
allow the UAV to travel faster, but they need more time to
solve.
For the best results, we want to find segments which are as
large as possible but contain as few obstacles as possible. By
generating a segment for each turn in the Theta* path, we can
make the segments just large enough so the UAV can always
slow down in time to execute the turn. This way the UAV
will always turn efficiently, without making the segments too
large to solve in an acceptable amount of time.
An important downside of segmenting the problem is that
our algorithm is unlikely to find the optimal trajectory.

A. Finding the initial path
The first step in Alg. 1 is finding the Theta* path (line

2), which will be used to divide the problem into segments.
The MILP problem generated from each segment needs an
intermediate goal to guide the UAV closer the final goal
position.
We use Theta* [10] to find an initial path which connects

Fig. 2: A typical A* path in red compared to a Theta* path
in blue. The gray rectangle is an obstacle.

Fig. 3: The red/yellow shapes are the obstacles modeled
in the MILP problem, using the same color scheme as
in Fig. 1a. The blue shapes are the remaining obstacles.
The green circles depict the transitions between segments.
The dark gray shape is the convex safe area generated by
the genetic algorithm. The solid black circle represents the
current position of the UAV, with the hollow circles showing
the position in previous time steps.

the start and goal positions. Theta* is a variant of A*
which eliminates the jagged paths associated with A* as
demonstrated in Fig. 2. This path does not take any of
the vehicle dynamics into account. Multirotor UAVs can
hover, so the UAV can always follow this path by moving
in straight lines and stopping at each node of the path. This
ensures that successful navigation to the goal position is
possible.

B. Detecting turn events

Because the shortest path between two points in Euclidian
geometry is a straight line, any turn at a node in the Theta*
path must have at least one obstacle on the inside of that
turn. A turn without an obstacle on the inside can always
replaced by a shorter, straight line segment. This means that
by definition these ”inner” obstacles make the search space
non-convex. A shape is convex if every point on the line
between any two points inside the shape is also inside the
shape. Because moving in a straight line between two valid
positions on either side of the turn is not possible, the search
space must be non-convex if turns in the Theta* path exist.
Non-convexity of the search space is the main cause for the
poor performance of Mixed Integer Programming [4]. We
have shown that the turns in the path correspond with parts
of the problem which must be non-convex. Because of this,
we have chosen to generate the segments such that there
is at most a single turn in each segment. This limits the
non-convexity for each subproblem, significantly improving



execution time.
In some cases, a Theta* path contains multiple nodes for
a single turn. Alg. 2 groups those nodes together into turn
events.

Algorithm 2 Finding Turn Events
1: function FINDTURNEVENTS(path)
2: �max max. acc. distance * turn tolerance
3: events {} . The list of turn events found so far
4: i 1 . Skip the start node, it can’t be a turn
5: while i < |path|� 1 do . Skip the goal node
6: event {path(i)} . Start new turn event
7: turnDir  TURNDIR(path(i))
8: i i+ 1
9: while i < |path|� 1 do

10: if ||path(i� 1)� path(i)|| > �max then
11: break . Node is too far from previous
12: end if
13: if TURNDIR(path(i)) 6= turnDir then
14: break . Node turns in wrong direction
15: end if
16: event event [ {path(i)} . Add to event
17: i i+ 1
18: end while
19: events events [ {event}
20: end while
21: return events

22: end function

In the Theta* path, all but the first and last nodes are
turns in the path. The second node is always the first node
in a new turn event (line 5). Subsequent nodes in the path
which are not too far away from the previous node (line 9)
and turn in the same direction (line 12) are added to the
current turn event (line 15). The maximum distance between
nodes in the same turn depends on the maximum acceleration
distance of the UAV and a turn tolerance parameter (line
2). The maximum acceleration distance is the distance the
UAV needs to accelerate from zero to its maximum velocity,
or slow down from the maximum velocity to zero. Once a
node is found which does not belong in the event, the event
is stored (line 18), a new event is created for that node (line
5) and the process repeats until no more nodes are left.

C. Generating path segments
Each path segment contains the information needed to

construct a MILP subproblem. Alg. 3 constructs the segments
using turn events. Each segment needs to be large enough so
the UAV can safely approach and exit each turn. A multirotor
UAV can always safely navigate a turn if it can come to a
complete stop before the turn. That is satisfied if the segment
starts at least the maximum acceleration distance away from
the turn. If the segment starts even earlier, the UAV has
more space to maneuver and can navigate the turn more
efficiently. However, as the segment gets larger, so does the
difficulty of the segment. The approach margin multiplier
determines the expansion distance around turn events, based

Algorithm 3 Generating the segments
1: function GENSEGMENTS(path, events)
2: segments {}
3: catchUp true

4: lastEnd path(0)
5: for i 0, |events|� 1 do
6: event events(i)
7: if catchUp then
8: expand event.start backwards
9: add segments from lastEnd to event.start

10: lastEnd event.start

11: end if
12: nextEvent events(i+ 1)
13: if nextEvent.start is close to event.end then
14: mid middle between event & nextEvent

15: add segment from lastEnd to mid

16: lastEnd mid

17: catchUp false

18: else
19: expand event.end forwards
20: add segment from lastEnd to event.end

21: lastEnd event.end

22: catchUp true

23: end if
24: end for
25: add segments from lastEnd to path(|path|� 1)
26: return segments

27: end function

on the maximum acceleration distance.
To generate the segments, Alg. 3 considers each turn event
in turn. It keeps track of the end point of the last segment
it generated with lastEnd. When constructing a segment, it
considers the distance between the end of the current turn
event and the start of the next turn event. On line 13, two
events are too close to each other if they are separated by
less than three times 1 the expansion distance. In that case,
the segment is constructed to end in the middle between
the current and next event (line 14-16). If the events are
far enough apart, the end of the current event is expanded
forwards by the full expansion distance(line 19-21). Because
the next turn event is a long distance away, the catchUp flag
is set to true (line 22), ensuring that one or more segments
are added to catch up to the start of the next event (line
7-10). To limit the size of segments, they can be no longer
than the distance the UAV can travel at maximum velocity
in T

max

time.

D. Generating the safe region for each segment
The last step of preprocessing determines which obstacles

will be modeled in the MILP subproblem for each segment.
Not all obstacles need to be modeled in the MILP problem

1Requiring three (instead of two) times the expansion distance as sepa-
ration between turn events ensures that the segment between those turns is
also at least as long as the expansion distance. This prevents some issues
that can occur with very short segments.



Algorithm 4 Genetic Algorithm
1: function GENSAFEREGION(scenario, segment)
2: pop SEEDPOPULATION
3: for i 0, N

gens

do
4: pop pop[ MUTATE(pop)
5: EVALUATE(pop)
6: pop SELECT(pop)
7: end for
8: return BESTINDIVIDUAL(pop)
9: end function

10: function MUTATE(pop)
11: for each individual 2 pop do
12: add vertex with prob. P(add vertex)
13: OR remove vertex with prob. P(remove vertex)
14: for each gene 2 individual.chromosome do
15: randomly nudge vertex
16: if new polygon is legal then
17: update polygon
18: else
19: try again at most N

attempts

times
20: end if
21: end for
22: end for
23: return BESTINDIVIDUAL(pop)
24: end function

to prevent collisions. Obstacles on the inside of turns in the
Theta* path ”cause” those turns and make the search space
non-convex. However, collisions with obstacles which are
further away or on the outside of the turn can be avoided
without the reducing the convexity of the search space.
We select the obstacles to be modeled in the MILP by
constructing the convex hull of the start and goal positions
of the segment, as well as all Theta* path nodes between
them. Any obstacle which overlaps this convex hull will be
modeled.
The convex hull can be considered a safe region. If the UAV
stays inside this region, it cannot collide with obstacles since
any obstacle that overlaps with the safe region is modeled
in the MILP problem. However, this safe region restricts the
movements of the UAV more than necessary.
To make the safe region less restrictive, we use a genetic
algorithm which attempts to grow it. We use a genetic
algorithm because it can provide acceptable solutions with
a minimum of development effort. In our implementation
(Alg. 4), each individual in the population represents a single
legal polygon. A legal polygon is convex, does not self-
intersect, can only overlap with the selected obstacles and
contains every node in the Theta* path for that specific
segment. The latter requirement prevents the polygon from
drifting off. Each individual has a single chromosome, and
each chromosome has a varying number of genes. Each gene
represents a vertex of the polygon.
The only operator is a mutator (line 4). Contrary to how
mutators usually work, the mutation does not change the

(a) Up/Down Scenario

(b) A small part of the
San Francisco Scenario

(c) A small part of the
Leuven Scenario

Fig. 4

original individual. This means that the every individual can
be mutated in every generation, since there is no risk of
losing information. This mutator can add or remove vertices
of the polygon by adding or removing genes (lines 12-13),
but only if the amount of genes stays between a specified
minimum and maximum. The mutator attempts to ”nudge”
every vertex/gene to a random position inside a circle around
the current position (line 15). If the resulting polygon is not
legal, it retries a limited number of times (line 16-19).
Tournament selection is used as the selector, with the fitness
function being the surface area of the polygon (line 5-6).
Fig. 2 Shows the obstacles modeled in the MILP problem
in yellow and red, as well as the polygon generated by the
genetic algorithm in dark gray.

IV. RESULTS

We test our algorithm in several different scenarios. Each
scenario was tested with two different problem sizes. All
tests were executed on an Intel Core i5-4690K running
at 4.4GHz with 16GB of 1600MHz DDR3 memory. The
reported times are averages of 5 runs. The machine runs
on Windows 10 using version 12.6 of IBM CPLEX. Fig. 4
shows these scenarios visually. Table I shows a table with
detailed information about the scenarios and execution times.
Table II shows the parameters used in the execution of the
algorithm.

A. Up/Down Scenario

The first test scenario has very few obstacles, but lays them
out in a way such that the UAV needs to slalom around
them. The small scenario has only 5 obstacles, while the
larger one has 9. Fig. 4a shows the large variant. This is a
challenging scenario for MILP because every obstacle causes
a turn, making the problem significantly less convex. Without
segmentation on the small version of the scenario, the solver



scenario #obstacles world size path length #segments Theta* time GA time MILP time score
Up/Down Small 5 25m x 20m 88m 7 0.09s 1.10s 20.8s 26.6s
Up/Down Large 9 40m x 20m 146m 11 0.14s 1.62s 40.1s 43.6s
SF Small 684 1km x 1km 1392m 28 2.04s 9.56s 59.2s 105.7s
SF Large 6580 3km x 3km 4325m 84 18.14s 18.21s 231s 316.0s
Leuven Small 3079 1km x 1km 1312m 29 2.29s 29.83s 152s 95.9s
Leuven Large 18876 3km x 3km 3041m 61 18.74s 83.69s 687s 217.6s

TABLE I: The experimental results for the different scenarios

grid size 2m turn tolerance 2
approach multiplier 2 population size 10
# generations 25 max. nudge distance 5m
min. # vertices 4 max. # vertices 12
P(add vertex) 0.1 P(remove vertex) 0.1
max nudge attempts 15 T

max

5s
time step size 0.2s

TABLE II: The parameters used for testing

does not find the optimal trajectory within 30 minutes. If
execution is limited to 10 minutes, the best trajectory it finds
takes 26.0s to execute by the UAV. That is less than a second
faster than the segmented result while it took more than 20
times more execution time to find that trajectory. For the
larger scenario with 9 obstacles, the solver could not find
a trajectory within 30 minutes. This scenario clearly shows
the advantages of segmentation, even if there only are a few
obstacles.

B. San Francisco Scenario
The San Francisco scenario covers a 1km by 1km section

of the city for the small scenario, and 3km by 3km section
for the large scenario. Fig. 4b shows the small variant. All the
obstacles in this scenario are grid-aligned rectangles laid out
in typical city blocks. Because of this, density of obstacles is
predictable. This scenario showcases that the algorithm can
scale to realistic scenarios with much more obstacles than is
typically possible with a MIP approach.

C. Leuven Scenario
The Leuven scenario also covers both a 1km by 1km

and 3km by 3km section, this time of the Belgian city of
Leuven. This is an old city with a very irregular layout. The
dataset, provided by the local government2, also contains full
polygons instead of the grid-aligned rectangles of the San
Francisco dataset. While most buildings in the city are low
enough so a UAV could fly over, it presents a very difficult
test case for the trajectory planning algorithm. The density
of obstacles varies greatly and is on average much higher
than in the San Francisco dataset. The algorithm does slow
down compared to the San Francisco dataset, but still runs
in an acceptable amount of time. As visible in Fig. 4c, there
are many obstacles clustered close to each other, with many
edges being completely redundant. For a real application, a
small amount of preprocessing of the map data should be
able to significantly reduce both the amount of obstacles as
the amount of edges.

2
https://overheid.vlaanderen.be/

producten-diensten/basiskaart-vlaanderen-grb

V. CONCLUSION

Trajectory planning using MIP was previously not compu-
tationally possible in large and complex environments. The
approach presented in this paper shows that these limitations
can effectively be circumvented by dividing the path into
smaller segments using several steps of preprocessing. The
final trajectory is generated by a solver so the constraints
on the trajectory can easily be changed to account for
different use cases. The experimental results show that the
algorithm works well in realistic, city-scale scenarios, even
when obstacles are distributed irregularly and dense.
We demonstrate that our new approach can be used to im-
prove the scalability of MILP trajectory planning. However,
more work is required to use the algorithm with an actual
UAV. Extending the algorithm to 3D is the next step. We
expect the extension to 3D to bring more performance chal-
lenges due to the higher dimensionality of the solution space.
A complimentary, short-term online planner is necessary for
a physical UAV to execute the generated trajectory.
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Probabilistic Modeling of Gas Diffusion with Partial Differential
Equations for Multi-Robot Exploration and Gas Source Localization
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Abstract— Employing automated robots for sampling gas
distributions and for localizing gas sources is beneficial since it
avoids hazards for a human operator. This paper addresses
the problem of exploring a gas diffusion process using a
multi-agent system consisting of several mobile sensing robots.
The diffusion process is modeled using a partial differential
equation (PDE). It is assumed that the diffusion process is
driven by only a few spatial sources at unknown locations
with unknown intensity. The goal of the multi-robot explo-
ration is thus to identify source parameters, in particular,
their number, locations and magnitudes. Therefore, this paper
develops a probabilistic approach towards PDE identification
under sparsity constraint using factor graphs and a message
passing algorithm. Moreover, the message passing schemes
permits efficient distributed implementation of the algorithm.
This brings significant advantages with respect to scalability,
computational complexity and robustness of the proposed ex-
ploration algorithm. Based on the derived probabilistic model,
an exploration strategy to guide the mobile agents in real time
to more informative sampling locations is proposed. Hardware-
in-the-loop experiments with real mobile robots show that the
proposed exploration approach accelerates the identification of
the source parameters and outperforms systematic sampling.

Index Terms — multi-agent exploration, gas source localiza-
tion, mobile robot olfaction partial differential equation, factor
graph, sparse Bayesian learning, message passing

I. INTRODUCTION

Robotic platforms are particularly suitable for exploration
of dynamic gas distributions. In our understanding and in the
context of this paper, such an exploration task covers issues
like mapping of gas distributions and identification of gas
sources. Specifically, this paper examines the task of finding
gas sources, e.g. leaks. While gas distribution maps appear
as a byproduct of our approach, gas distribution mapping
is not in the main focus of this paper. In searching for the
sources we exploit measurements of the gas concentration
in the environment. As an application one may think of a
technical accident or disaster response scenario, where toxic
material is leaking and the location has to be identified.
Such a scenario implies threats for a human operator and
indicates the benefits of an automated sampling of the gas
concentration. Therefore, we consider a robotic platform
equipped with a gas sensor for exploring gas distributions.

1Institute of Communications and Navigation of the German
Aerospace Center (DLR), Oberpfaffenhofen, 82234 Wessling, Germany,
thomas.wiedemann@dlr.de, christoph.manss@dlr.de,
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Employing robotic platforms for chemical sensing and gas
source localization is an active and emerging research field
(see [1] for a survey). Where a single robot would be able to
only serially sample the gas concentration at different times,
a multi-robot system is capable of taking measurements at
different locations at the same time. This is of advantage for
analyzing the dispersion process, since the gas dispersion is
dynamic, and the time-variant nature of gas dispersion is an
important property, that should be taken into account [2].
Besides, a multi-robot system has additional advantages:
i) multiple robots can achieve the exploration task faster;
ii) a multi-robot system is more robust, since it possesses
natural redundancies; and finally iii) the individual robots
can make use of synergies, e.g. share the computational
costs of algorithms. Even though it seems reasonable to
employ a multi-agent system, an open issue is the design of
an automated exploration strategy. This exploration strategy
should guide a single or a swarm of robots to the sampling
locations in an efficient way and should avoid unnecessary
measurements. The development and analysis of such an
intelligent distributed exploration algorithm to identify the
sources of the gas dispersion is the main focus of this paper.

The exploration or sampling problem is closely related
to optimal sensor placement techniques. In literature, some
approaches consider this as an observer design problem. In
those cases an observer performance is optimized by adapt-
ing the sensor location, e.g. in [3] to estimate a distributed
process described by a partial differential equation. Another
approach is a probabilistic treatment of the sampling process.
In this context there are different criteria to measure the
informativeness of the samples [4]. In literature, this is also
referred to as an optimal experimental design problem [5].
More details on these topics can be found in [6], where the
author gives an introduction to optimal sensor location and
experimental design problems. A probabilistic or statistical
view is also a contemporary and relevant research topic in
the context of gas distribution mapping [7], [8]. Further, the
benefit of using statistical properties of the gas distribution
in an adaptive sampling strategy has already been shown in
first real-world experiments [9].

The contribution of this paper is twofold: First, we propose
a new adaptive model-based exploration strategy for multiple
mobile robots. Second, we present an approach to evaluate
this exploration strategy within a hardware-in-the-loop ex-
periment. For the exploration we are following the ideas
of an uncertainty or entropy driven exploration [10]. This
means that the sampling scheme of the robots prefers regions



with high uncertainty. In other words, if the system has
currently little knowledge about a region in the environment,
it will guide robots to this location in order to carry out the
next measurements. The approach is similar to our previous
work [11]. However, in this paper robots possess a global
view of the whole environment in contrast to the greedy
algorithm in [11] where the robots only consider their direct
neighborhood for a new measurement, Still, it is necessary to
be able to quantify the uncertainty of our model parameter in
different regions in the considered environment. To this end,
we propose to make use of a model of the gas diffusion in the
environment. In particular, since the gas diffusion is time and
space variant, we use a partial differential equation (PDE) as
a mathematical model. For the evaluation of the proposed
multi-robot exploration, we developed a hardware-in-the-
loop experimental setup. In general, it is difficult to evaluate
gas distribution exploration in realistic experiments due to the
difficulty in measuring ground truth gas concentrations. In
addition, interesting gas distribution for realistic application
may be of toxic nature and dangerous to handle. Therefore,
we simulate the gas dispersion in the robots environment. In
contrast to the gas dispersion, the robots themselves are not
simulated. We employ a real multi-robot system to test our
system and algorithm with ”real world” constraints. In this
way we are able to analyze how our distributed algorithm
cope with realistic communication constraints like data rate,
package delay or jitter. Further, limitation arising from the
robotic platform, e.g. speed limits, collision avoidance and
low-power on board computers, can be studied.

The outline of the paper is as follows: First, in Section II
we explain the exploration strategy in detail and how it
is implemented in a distributed fashion. In Section III we
describe the experimental setup of the hardware-in-the-loop
experiments and evaluates the performance of the proposed
exploration strategy.

II. EXPLORATION STRATEGY

This chapter describes the design of the exploration strat-
egy. We first introduce the gas diffusion model, which is
used in a second step to quantify the uncertainty in different
regions.

A. Environment Model

As a mathematical model for the gas dispersion we use
the 2D diffusion equation which can be described with the
linear parabolic partial differential equation (PDE) [12]:

@f(x, t)

@t
� �f(x, t) = u(x, t). (1)

This equation models the dynamic behavior of gas concen-
trations f at a location x and time t given the diffusion
coefficient . The right hand side u(x, t) represents the
inflow of material, i.e. the spatial source strength distribution
we want to identify. In a first step the PDE is numerically
approximated via the Finite Difference Method (FDM) [13].
Therefore, we discretize space and time by dividing our
region into grid cells and considering temporal evolution of

gas concentration in each cell at discrete time steps n. Since
we used the FDM, our numerical approximation results in a
linear equation r

c

for each grid cell c:

r
c

(f [n],f [n � 1], u
c

[n]) = 0. (2)

The FDM treats the concentration and source strength across
a cell as constant. The 1D vectors f [n] and u[n] aggregate
the 2D concentration field and 2D source strength distribu-
tion for all grid cells at time stamp n. Both are unknown
and have to be estimated based on measurements. This is
the purpose of the exploration. A measurement done by a
robot will be modeled as:

y
k

[n] = M [n]f [n] + ⇠, (3)

with M [n] being a measurement matrix selecting the cell
from f [n] that is currently visited by the robot. Additionally,
⇠ represents a measurement noise mostly defined by the
sensor characteristics.

B. Uncertainty Quantification

For the uncertainty driven exploration procedure, we need
a way to distinguish two cells with respect to their uncer-
tainty. In order to quantify the uncertainty, we transform our
model to a probabilistic representation. In the probabilistic
framework all variables are treated as random variables and
could be described by probability density functions (PDF).
This permits us computing second order moments of the
PDFs, e.g. the variance of a Gaussian distribution. The
second order moments can be interpreted as measure of
entropy or informativeness of a parameter. It is the second
order moment of the source strength we propose to use as
an uncertainty quantification of a cell.

For the probabilistic formulation, the linear equations
of (2) are relaxed. Thereby we assume that the equations
hold only with a certain precision ⌧

s

, with some random
deviations from zero. We assume that those derivations or
residuals in all grid cells are spatially and temporally white
and statistically independent from each other. The precision
⌧
s

reflects some uncertainty of our model assumptions. In
this way the conditional probabilistic density function for all
concentrations and sources can be formulated as follows:

p(f [n]|f [n � 1],u[n]) /
CY

c=1

e�
⌧s
2 (rc(fc[n],fc[n�1],uc[n]))

2

.

(4)
The measurement model (3) could be transformed to

p(y[n]|f [n]) /
KY

k=1

e�
⌧m
2 (M [n]f [n]�yk[n])

2

, (5)

where the sensor noise is modeled as white with a variance
1/⌧

m

.
In our approach we do not need any assumption regarding

the exact number of sources, their position or strength. We
only utilize the prior knowledge that sources are sparsely
distributed in the considered environment. In other words,
we do not know the exact number of sources, but there are



only few of them and their number is of the same order
of magnitude as the number of robots. In the probabilistic
setting we are able to introduce prior knowledge according
to the Bayes theorem. Here, we make use of a sparse prior
and Sparse Bayesian Learning techniques [14] (SBL). SBL
applies a hierarchical prior, where the actual prior itself is
parametrized by an additionally introduced hyper-parameter
�[n] as

p(u
c

[n]
���

c

[n]) = N(u
c

[n]|0, ��1
c

[n]). (6)

By the combination of this prior and a hyper-prior p(�
c

[n]) /
1/�

c

[n] the Automatic Relevance Determination (ARD) ver-
sion of SBL [15] leads to emergence of sparsity in the
Bayesian context of u[n]. For a more descriptive interpreta-
tion, the prior can be compared to a regularization method.
Whenever no information is available in a grid cell, the zero
centered Gaussian prior will drive the source strength to zero.

Putting all together according to the Bayes Theorem the
posterior PDF of our problem becomes:

p(f [0]...f [N ],u[0]...u[N ],�[0]...�[N ]|y[0]...y[N ]) =
NY

n=0

p(y[n]|f [n])p(f [n]|f [n � 1],u[n])

CY

c=1

p(u
c

[n]
���

c

[n])
CY

c=1

p(�
c

[n]).

(7)

In order to evaluate the source strength in a single grid cell,
it is possible to calculate the marginal PDF based on the pos-
terior. Generally, the marginal results from integrating over
all other variables and parameters. In contrast, in this paper
we use a distributed algorithm that enables the multi-robot
system to cooperatively calculate all marginal distributions.
The marginal PDF for all u

c

[n] can be approximated by a
Gaussian distribution. So we can use the variance of the PDF
p(u

c

[n]), i.e. the second order central moment, as a gauge
for the uncertainty of cell c. More precise: the higher the
variance the higher the uncertainty regarding the estimated
source strength in a cell.

C. Distributed Implementation

Let us consider how to calculate the marginal PDF of all
cells based on the probabilistic formulation of the posterior,
since these marginals are the foundation of the uncertainty
quantification. Further, we want to calculate them in a dis-
tributed fashion in order to take advantage of the multi-agent
system. Therefore, in a first step we introduce a graphical
representation of our posterior PDF. This representation is
used in a second step, where we apply a message passing
algorithm to calculate the marginals in a distributed fashion.

1) Factor Graph Representation: An interesting property
of our posterior PDF (7) is the fact that the function is nicely
factorized. There are three factors for each cell and one
factor for each measurement. A factorized function can be
graphically represented with a Factor Graph (FG) [16]. A FG
is an undirected bipartite Bayesian network being composed
of value nodes, which represent random variables, and factor

Fig. 1: Factor Graph: This graph represents the part of the posterior PDF
associated with a single grid cell. It models the relations between variable
nodes (spheres) by factor nodes (cubes).

nodes, which model functional dependencies between them.
(See [17] for a more detailed introduction to FG.) In our
case the FG models the relationships between the different
random variables f

c

[n], u
c

[n] and �
c

[n]. Figure 1 shows the
part of the overall graph for one cell and one time instance.

The node Y
c

represents a measurement and it only exists
if a measurement was taken in the corresponding cell. The
node R

c

puts the neighboring concentration values of the grid
cell into a relation with the source strength. This relationship
arises from our PDE and the numerical approximation. The
nodes G

c

and H
c

model the factors of the posterior PDF
that correspond to the parametric prior p(u

c

[n]
���

c

[n]) and,
respectively, the hyper-prior p(�

c

[n]).
2) Message Passing Algorithm: The FG is in general the

foundation of message passing algorithms. In the probabilis-
tic context, these algorithms are a powerful tool to calculate
marginal distributions. Mostly, it is used in coding theory for
error detection and correction. In this paper we make use of
them to calculate the marginal distribution of our posterior
PDF (7). More precisely, we make use of the sum product
algorithm [18] (also called loopy belief propagation) and
variational message passing [19]. Messages are sent between
nodes of the factor graph along the edges. There are two
possible types of messages: messages from factor nodes to
variable nodes and vice versa. The sum product algorithm
provides update rules according to which the messages are
calculated. In general the outgoing messages of a node are
functions of incoming messages (For the specific calculation
rules see [17], [19]). By iteratively exchanging messages
between nodes, the outgoing messages of variable nodes
converge to the marginal distribution of the corresponding
variable or parameter. For messages corresponding to our
hierarchical prior in the graph, analytical tractability is not
given. However, for this part of the graph we use variational



message passing (VMP) [19] to circumvent the issue by
analytical approximation techniques. The messages them-
selves represent beliefs, i.e. probabilistic distributions. Since
we designed our posterior PDF properly and thanks to the
VMP, all messages stay in the same class of distribution. E.g.
the outgoing message of a node u

c

[n] is always Gaussian
distributed and therefore could be parametrized by only two
values: mean and variance. We stress that the overall factor
graph contains a lot of edges and a lot of message-updates
have to be calculated. But all updates can be calculated in
closed-form and correspond to relatively simple calculations.

Moreover, the main advantage of the message passing
algorithms is the fact that it could be easily implemented
in a distributed fashion. Even so many messages have to
be calculated, they can be updated in random order or
parallel. Thus, the framework is very suitable for a distributed
implementation.

Actually, we divide the overall factor graph in different
parts. A simplified version of the overall factor graph and
the partitioning of this graph are shown in Fig. 2. The
different parts correspond to different 2D region of our
environment. Each region is assigned to one robot of our
multi-agent system and each robot is able to calculate all
messages of its own part of the graph. The robot only has
to exchange the messages along the border of its partition
(red arrows) with its neighbors. By iteratively calculating
and exchanging messages the outgoing messages of u

c

[n]
converges to the marginal PDF. Based on the variances each
robot proposes a certain number of relevant points in the
region it is responsible for to all other robots.

Fig. 2: Distributed Factor Graph: This figure illustrates the overall factor
graph. This is a simplified version without measurement nodes and time
dependencies. The graph is spatially split into four regions, where the big
arrows represent messages sent between different regions.

D. Exploration Procedure

Our exploration strategy utilizes the uncertainty quantifica-
tion of the estimated source strength for each cell c 2 C with
C being the set of all cells in our environment. The cells are
rated according to the inverse variance, i.e. precision ⌧

c

[n], of
the source strength marginal p(u

c

[n]) / N(û
c

[n], ⌧
c

[n]). A
set P of cells with the lowest precisions - i.e. with the highest
uncertainties - serves as a proposal for new way points for
the robots. Therefore, each robot a proposes K cells from

way point 
proposals

measurements
Robot 1 Navigation

select next way point

move to next 
way point

do measurement

check next way point 
reached or collision?

Robot 1 Calculation

solve PDE and 
calculate marginal PDF

Fig. 3: Exploration Procedure: The exploration is implemented with two
main loops. The right loop solves the PDE and produces new way point
proposals, the left one controls the individual robots.

the region C
a

✓ C of the environment it is responsible for:

⌧
c1  ⌧

c2  ...  ⌧
cK  ⌧

c(K+1)
 ...; ⌧

ci 2 C
a

P
a

=
K[

i=1

c
i

(8)

The K most uncertain points of each region are combined
to the set P = {c 2

S
P
a

} for the whole environment. From
this set P each robot selects one way point. We like to
emphasize that therefore the movement of a robot is not
limited to the region it is responsible for with respect to
the calculations. Actually, the robot can choose from the
whole set P . Their choice is based on two criteria: i) Each
robot adds to the precision of a proposed way point a penalty
based on its distance to the way point and selects the one
with the lowest value. In this way the robots not only favor
points with high uncertainty but also those which are close-
by. ii) If another robot is already on its way to a point,
this point is neglected. Therefore it is necessary that a robot
communicates its decision to all other robots.

After the decision is made, a robot moves to the selected
way point. To avoid collisions with other robots, we im-
plemented a reactive collision avoidance mechanism. On its
way, the robot monitors the distance to all other robots based
on received position information. If the distance drops below
a defined safety threshold, the robot stops and selects another
way point from the proposals that would increase the critical
distance. Finally, when a robot reaches its goal, it takes
a measurement which is incorporated in the probabilistic
solution of the PDE.

The overall procedure is depicted in Fig. 3. As can be seen,
the robotic navigation and solving the PDE are actually two
separate loops. The loops are connected by the data exchange
of proposed way points and measurements. We would like to
stress that in this way the navigation part of each robot could
be realized in an asynchronous fashion, where no robot has
to wait for results of others.



III. EVALUATION

In order to evaluate our approach we designed a hardware-
in-the-loop experiment. This means that we use a real robotic
system but we simulate the gas dispersion taking place in the
environment of the robots.

A. System Setup

We developed a small robot for our experiments. The main
part is a Raspberry Pi 2, a low power single-board computer
with Linux OS (900MHz quad-core ARM Cortex-A7 CPU,
1GB RAM). From this computer it is possible to send
velocity commands to a micro-controller that implements
a velocity controller for two motors driving the tracks of
the robot. The experiments were done in a laboratory with
the commercial optical tracking system. This system is able
to track active infra-red LEDs on the robot and provides
the current position and orientation of each robot with high
accuracy. On the robot’s computer a position controller
is implemented that compares the actual pose from the
tracking system and the nominal pose demanded by the
exploration strategy. We employ five robots. Their computers
are connected to an 802.11 wireless LAN communication
system. By this, they get their own position data and are able
to exchange messages among each other. For the software
implementation and the inter-process communication we
make use of the Robot Operating System (ROS) 1.

The gas diffusion is simulated for a two dimensional case.
The data are generated according to equation (1). Whenever
a measurement is demanded by the exploration procedure for
one robot, this equation is evaluated at the current position of
the robot. Additionally, we disturb the measurement by the
additive white noise ⇠. For the evaluation of the PDE a Finite
Volume Method solver [20] is used. At the boundary we have
chosen a Dirichlet boundary condition f(x, t) = 0, except
for the right border, where we use a Neumann boundary
condition @f(x,t)

@x

= 0. For the virtual gas simulation we
considered the concentration and source strength unit-less.
The discrete grid size, the time difference between two
discrete time stamps and the diffusion coefficient  are set to
1 in the simulation. However, later on the concentration field
is fitted to our laboratory with a scale of 6m times 2.4m.

B. Results

We evaluate the proposed exploration strategy in compar-
ison against exploration with a predefined sweeping trajec-
tory. The sweeping trajectories are generated by dividing the
environment into five equal regions and fitting a meander
into each region. In this way the measurements will fully
cover the whole environment after a certain time, i.e. each
grid cell is measured at least once. This strategy might be
reasonable, if no prior knowledge or model assumptions are
available. We compare the performance by means of speed
and quality of the estimates. Regarding speed we consider the
number of measurements needed to converge. In order to see
how well the spatially distributed sources u[n] are identified,

1http://www.ros.org/

Fig. 4: Lab Environment: The picture shows our lab during an exper-
iment. The simulated concentration field is projected to the ground in
a post-processing step. A video of an experiment can be found here:
https://youtu.be/UJYwdzrDTL4

we use the so-called earth mover’s distance (EMD) measure,
which is an analog of a Wasserstein metric for discrete dis-
tributions [21]. The EMD measures the effort to “displace”
one distribution onto another one and is particularly useful
for comparing sparse functions. Specifically, we compare the
estimated vector u[n] with the ground truth vector û with
all elements set zero except for the three cells containing a
source (û

c

= 1.0 at x = �0.2m, y = �1.8m; û
c

= 1.0 at
x = �0.6m, y = 1.0m; û

c

= 0.8 at x = 0.4m, y = 1.6m).
The results are shown in Fig. 5 with the aid of an

example experiment. Fig. 5a and 5b visualize the trajectories
of the meander and the proposed exploration strategy. The
proposed exploration strategy is adaptive. In other words
it reacts to measurements. Therefore, the trajectory is not
deterministic and not predictable. The trajectory in Fig. 5b
is an example and will look different in another simulation
run, because of different initial conditions and randomness
caused by measurement noise. The trajectories are plotted
as an overlay above the simulated concentration field at the
time, when the sources are correctly identified. From the
figure it gets obvious that this distribution is driven by three
sources located at the concentration peaks. Fig. 5c depicts the
performance of both strategies. The curves plot the difference
between the estimated source distribution u[n] and the true
source distribution û in relation to the number of collected
measurements.

With the meander trajectory the multi-agent system was
able to identify the source distribution after approximately
340 measurements in our example. This indicates the step in
the convergence curve towards zero in Fig. 5c. In general,
the performance of the meander highly depends on the
position of the sources. If they are already covered at the
beginning of the trajectory, of course fewer measurements
are needed. However, to be conservative the worst case
has to be considered and this means a full coverage of
the region. In our example, 360 measurements would be
necessary for that. In contrast, the curve for the proposed
exploration strategy converges with only 230 measurements
in Fig. 5c. This indicates that robots were able to identify
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Fig. 5: Results: The figure compares the performance of the meander trajectory (a) and the proposed exploration strategy (b). The trajectories superimpose
the simulated concentration field. In (c) the error regarding the estimated source distributions are plotted for both cases. The proposed exploration is able
to identify the sources with less measurement than the meander.

the sources with fewer measurements. As can be seen from
the trajectory in Fig. 5b the measurements are concentrated
around the source locations. These measurements contain
more information regarding the sources. This is the reason
for a better performance.

Additionally, the hardware-in-the-loop experiments enable
us to analyze other performance indicators of our algorithm
and system properties. For example we can measure the
gross data rates containing all overheads caused by ROS,
OS, TCP etc. Concretely, in our case a data rate of less
than 70kBytes/s is required for a communication link
between two robots. This provides us with the information to
create specifications for a communication system for future
real-world experiments. Similarly, we can investigate the
processor load of the on-board computers caused by the
algorithm. In particular, the on-board computers were able to
generate way point proposals with a update-rate of 1.0Hz.

IV. DISCUSSION AND CONCLUSION

The results of the experiments have shown that a model-
based exploration is of advantage for sampling a gas dif-
fusion process. By an intelligent exploration strategy, the
number of required measurements to identify gas sources can
be reduced. This property is favorable to applications, where
a measurement is expensive or consumes a lot of time.

The potentials of the presented approaches arise from the
uncertainty driven strategy for taking new measurements
in combination with the assumption that the sources are
sparsely distributed in the environment and their number is
small. This assumption is encoded with a prior PDF that
assumes a source to have zero amplitudes with unknown
variance. Under this assumption each found source with non-
zero posterior amplitude effectively “contradicts” this prior
assumption; as such the uncertainties of the estimated sources
in the corresponding regions grow. As a consequence, the

robots concentrate their measurements on informative re-
gions around the sources according to the proposed explo-
ration strategy. Additionally, this implies a need to employ
a multi-robot system with more agents as gas sources, since
single robots may got stuck in a neighborhood of a source
and do not discover new sources. Multiple rovers are able
to effectively reduce the uncertainty around the sources by
multiple simultaneous measurements, and individual robots
can ”escape” from the source location.

For future development of the method a key problem to
be addressed is a mismatch between the used dispersion
model and real gas dispersion under the influence of possible
turbulence and advection mechanisms that are not explicitly
represented with model (1). To account for these effects
several tactics can be explored. In particular, advection-
based diffusion can be incorporated directly into the PDE
through a convection term. In the presented framework, this
is easy to achieve, since only equation 1 and 2 have to
be modified appropriately, with the rest of the approach
left intact. Turbulence, on the other hand, can be treated
as a random effect and accounted for in the probabilistic
formulation with the model uncertainty ⌧

s

in (4).
In summary, let us mention that realistic gas dispersion

problems are quite complex dynamical processes. From a
practical perspective having a very complex model that
adequately represent reality might lead to computationally
very complex inverse problems. Instead, simpler models, like
the one used in this work, can be seen as a numerically
feasible approximation, which can be estimated based on
concentration measurements in an adequate (in the context
of robotic exploration) amount of time.
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Abstract—This paper provides a detailed analytic evaluation of

the force-current relationship for a real underactuated gripper,

whose geometry presents some differences with respect to the

cases usually considered in the literature. Differently from other

approaches, the model proposed can work in two ways: calculat-

ing the current needed to exert a given force, and calculating the

force applied by the gripper when a known current is impressed

to the motor. Calculating the current as a function of the forces

is not a trivial task; however, this is possible in the proposed

solution thanks to the use of a single input parameter describing

the set of forces applied by the gripper. The proposed approach

was tested in real experiments, demonstrating that the proposed

model is capable of providing a very good estimation in several

working conditions.

Index Terms—Underactuated gripper, grasping, force measure-

ment.

I. INTRODUCTION

Manipulation and grasping have been key topics in robotics
for a long time, with a large number of applications in
service robotics, human-machine interaction and industrial
applications. They are often coupled with perception, that can
be used to acquire prior knowledge on the environment and
driving path planning [1]. In several cases, perception is also
used as a feedback for manipulation and grasping: in this case,
besides 2D and 3D vision sensors, tactile feedback is also
very common, and it is usually provided by force/pressure
sensors [2], [3]. Furthermore, accurate sensing is of paramount
importance when manipulation and grasping applications are
addressed to fragile and deformable objects, which is the new
frontier in grasping [4].

The use of dedicated sensors guarantees high accuracy mea-
surements and is the primary method for providing feedback
to the manipulation and grasping algorithms. However, such
Direct Sensing (DS) method often requires to install extra
elements that can alter the shape of the gripper, limit its
movements and require extra work for the installation and
setup: if this is rather common in a laboratory, these overheads
are unacceptable when an industrial scenario is targeted. An
alternative to this solution is viable when cooperative robots
are being employed. Cooperative robots are meant to work
together with humans, and are equipped with a sensory system
that can detect collisions and stop the robot before it causes
damage; such sensing capability is often achieved exploiting
the actuators as sensors. For example, measuring the current
flowing through an electric engine, coupled with a priori
knowledge about robot geometry and engine characteristics,

provides information about the force applied by a robot arm.
This solution, based on Indirect Sensing (IS), offers lower
sensitivity and accuracy with respect to real sensors, but sensor
integration comes at no cost and no effort.

The scenario just outlined demonstrates that IS is worth
being investigated. This can be applied to both manipulator
arms and grippers, as long as their drivers enable inspecting
the motor status. A major difference between IS and DS is
that the former requires accurate a priori knowledge of the
robot physical characteristics to estimate the forces, while the
latter is based on direct force measurement. It is important to
observe that mechanical modeling plays a key role in IS, and
strongly depends on the physical characteristics of the robot.

This paper focuses on the mechanical modeling of a 3-
finger underactuated gripper with three phalanxes. A novel
mechanical modeling including features that are generally
neglected in the literature is introduced, in order to better apply
the theoretical analysis to the mechanical structure of a real
case.

This paper presents three main contributions. The first one
is the possible misalignment among the pivots of the median
actuating hinge, which is present in the real case considered
in this work. A discussion on how the mechanical modeling
presented in previous papers can be adapted to consider this
non ideality is reported. The second aspect considered is
computational efficiency, which is crucial when dealing with
real world applications. Indeed, a computationally inexpensive
algorithm for the position analysis of the finger is proposed. Its
performance is compared against a typical iterative solution.

The third contribution is about the relationship between the
force applied by the gripper and the currents of its electric
motors: usually, the force is expressed as a function of the
currents, that is, given the currents it is possible to calculate
the forces. Differently, this paper faces the inverse problem: a
solution for evaluating the motor current needed to obtain the
desired force on the three phalanxes is presented. This problem
is not addressed in the literature discussed in Section II.

The theoretical model presented in this paper was experi-
mentally tested using a 3-finger gripper and sensors based on
a FSR (Force Sensitive Resistor) together with a mechanical
structure to properly shape the finger in the desired configu-
ration.

The paper is organized as follows. Section II discusses
related works, especially focusing on the forces applied by
underactuated grippers. Section III presents the mechanical
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modeling, including the influence that some non idealities usu-
ally neglected in the literature have on the gripper geometry.
Experimental validation of the proposed analysis is detailed in
Section IV, while final remarks are presented in Section V.

II. RELATED WORK

Object manipulation is a fundamental feature for modern
robots. At the beginning, robotic grippers were developed with
the aim of matching the human hand in terms of dexterity and
adaptation capabilities. Early models include the Stanford/JPL
hand [5], the Utah/MIT hand [6], and the NASA Robonaut
hand [7]. In all these models, significant efforts were made to
find designs that were simple enough to be easily built and
controlled, in order to obtain practical systems.

Aiming to reduce the cost due to the control architecture
needed for complex mechanical systems with often more
than ten actuators, newer grippers were designed reducing the
number of Degrees of Freedom (DOFs), thus decreasing the
number of actuators. The Graspar hand [8] and the Cassino
finger [9] are significant examples.

Other prototypes adopt a different approach involving a
lower number of actuators without decreasing the number of
DOFs. This approach, called underactuation, adopts passive
elements such as springs or mechanical levers in order to adapt
the finger to the shape of the object to be grasped. Notable
examples include the BarrettHand [10], the SARAH hand [11],
the RTR-II-Hand [12], the SPRING-Hand [13], and the TH-3R
Hand [14].

In the literature, few works address the analysis of underac-
tuated grippers. Moreover, they either consider non-real cases,
or they propose experiments using several different fingers, but
lacking a detailed mechanical analysis. In [15] a study on an
experimental gripper composed of two phalanxes is presented.
Both the gripper and the analysis are very different from the
present approach. Particularly, the fingers of the gripper have
only two phalanxes. Furthermore, there is little focus on the
analysis of the theoretical forces.

More recent work [16], [17] studies the force capability of
a particular class of underactuated fingers, initially focusing
on a generic 2-DOF finger and its ability to seize objects with
a secure grasp. In a further work [18], the authors generalize
the analysis to n-DOF underactuated fingers. In these works

Fig. 2. Robotiq 3-Finger gripper.
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force capability is defined as the ability to generate an external
wrench onto a fixed object with a given set of phalanxes.
The relationship between force and torque is analyzed, but
the inverse relationship is not considered. Other works [19],
[20] consider a theoretical approach to underactuated grippers
based on a tendon pulley transimission mechanism.

III. ANALYSIS OF THE FORCE-CURRENT RELATIONSHIP

This study is focused on the 3-Finger Adaptive Gripper
by Robotiq1, an underactuated gripper whose fingers are
composed of three phalanxes: proximal, median and distal,
as shown in Figure 3. In particular, since the three fingers
are identically shaped, a single finger of the hand is hereby
considered. The gripper can operate either in grasp mode (i.e.
fingers wrapped around the grasped object) or pinch mode
(i.e. only the distal phalanxes make contact with the object).
Two different mechanisms actuate the finger: the first is meant
to keep the distal phalanx in proper position while closing
the finger in “pinch mode”; the second mechanism closes the
finger in “grasp mode”. Since our work is limited to grasping,
the second mechanism is the core subject of the analysis.

We consider the case of a stable grasp, so each element of
the mechanism is in equilibrium. The virtual power theorem
can be applied to obtain an equation for input torques and
output forces:
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1http://robotiq.com/products/industrial-robot-hand/



where TA is the actuating torque, while T
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and T
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are the
spring torques. The latter can be calculated as follows:
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Considering only forces normal to the phalanx, the rela-
tionship between torques and forces becomes bijective. Each
element jih of the Jacobian matrix represents the moment arm
between the i-th force and the h-th revolute-joint.
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A matrix [W ] is to be found, such that:
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It is evident that the identity matrix differs from [W] only
for the first row. Therefore, it is necessary to determine w
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✓
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. The resulting mechanism has only 1 DoF, so it is sufficient
to simply calculate the ratio between ˙✓
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. Since this
1 DoF mechanism can only revolute around O
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(see Fig. 3),
it rotates as a solid body around O

1

. Therefore it is w
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With a similar approach, variables ✓A1

and ✓
3

can be
blocked, so the second four-linkage system behaves as a solid
body. Therefore the variation of the absolute position of the
second phalanx (�✓abs

2

) equals the variation of the absolute
position of its actuating hinge (�✓A2

), as in (7):
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As we can see in Fig. 4, the virtual displacement of O
2

can be put in a relation with both the rotation of the proximal
phalanx and that of the median actuating hinge, as in (8), (9):
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From (8), (9) it results:
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Finally, w
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can be obtained recursively as in (11):
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Fig. 5. Quadrilateral nomenclature.

A. Position Analysis of the Finger

In order to calculate the elements of the [W] matrix, the
parameters h

2

and h
3

have to be obtained from the position
analysis of the finger. This is where the geometry of the
finger, which differs from the geometry considered in previous
literature, influences the results of the analysis. An algorithm
for the four-linkage system is presented, as it will be used
twice for the position analysis of the finger. It implements a
direct approach taking advantage of trigonometry. Other possi-
ble solutions can use numeric methods for non-linear systems
such as Newton method, leading to a slower computation. A
performance comparison will be presented later. Referring to
a generic quadrilateral as in Fig. 5, of which all the four sides
are known constant, the algorithm shall calculate angles ↵, �
and � corresponding to the known variable angle �. In (12)
and (13) angles � and ↵ are calculated using trigonometry.
Particularly, from (13) it is possible to obtain a solution for
cos↵ without the use of iterative methods.

cos � = �1

2

(AB
2

+BC
2 �AD

2 � CD
2

� 2 ·AB ·BC · cos�)
� = arccos(cos �) , � 2 [0,⇡]

A = AB +BC · cos(⇡ � �)

B = BC · sin(⇡ � �)

C = CD · cos � �AD

(12)



A · cos↵+B ·
p
1� cos

2 ↵+ C = 0 (13)

The algorithm can now calculate ↵ = arccos(cos↵) (given
that ↵ 2 [0,⇡]) and � = 2⇡ � ↵ � � � � so the position
analysis for the 4-linkage system is complete.

This paper proposes a method (12),(13) for computationally
inexpensive solution of the four-linkage systems that compose
the finger. In the experiment section, the performance of the
presented method is compared with that of iterative algorithms
for non linear systems, in particular with a C++ implementa-
tion of the Newton method.

Once the four-linkage angles are determined, the h param-
eter can be calculated as in (14):

h = AD · sin �

sin(⇡ � ↵� �)
�AB (14)

The presented algorithm, which calculates the angles and
the h parameter for a given quadrilateral, is to be applied at
first to the four-linkage system of the median phalanx. In this
case �

med

= ⇡+✓
3

� 
3

is the input. Parameter h
3

is calculated
as well as the angles, of which ↵

med

is needed for �
prox

that
serves as an input for the quadrilateral of the proximal phalanx.
See Fig. 3 for  

2

and  
3

. The next input (to calculate h
3

) is:

�
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� ↵
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2

(15)

Having determined all the parameters needed for [J] and
[W] matrices, the forces can be calculated:
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⇤T
= [J ]�T

[W ]

�T
⇥
TA T

2

T
3

⇤T (16)

Differently from the ideal general case in [18], the median
actuating hinge of this finger has non-aligned pivots. Part
of our work addressed this problem, demonstrating that this
difference is entirely contained in (15).

B. Obtaining the Current as a Function of the Desired Force
As it was observed, with the hypothesis of pure

normal forces the relation between
⇥
f
1

f
2

f
3

⇤T and⇥
TA T

2

T
3

⇤T becomes bijective, therefore any set of three
torques has a corresponding set of forces and vice versa.
However, even though both sets are of rank 3, the status of
the system is partially determined by the configuration of the
hand, which is expressed in the 2 coordinates ✓

2

and ✓
3

. As
a result, for a given configuration, the relation is actually of
rank 1. While this does not complicate the task of obtaining
the forces as a function of the torque (or motor current), it
can in fact make things more difficult when trying to obtain
the torque (or current) as a function of the forces exerted (or
to be exerted) by the phalanxes. In the first case (torque to
forces), each element of the input set (the torques) is in a
bijective relation with either the input current or one of the two
configuration coordinates. This means that the high level input
is as simple as a torque (or the corresponding motor current)
for a given configuration. Vice versa, when calculating the
actuating torque (or current) as a function of the desired forces,
it is not obvious how to express the input forces. Indeed, for a

given position the input is actually of rank 1, so the user can
not arbitrarily choose a set of three forces. In the presented
approach, a single parameter is defined in order to properly
represent the set of forces at a high level.

A desirable feature in a robotic hand is the ability to control
the maximum force applied. Therefore, a solution is here
proposed which takes the maximum desired force as a rank
1 input for the function, obtaining the corresponding motor
current as the output. A possible approach is to try different
values for the input current (in the function that gives the
forces as an output), until the desired force value is matched
within a given error. However, to reduce the number of
iterations, the following method can be applied. The proposed
algorithm tries to consider each phalanx as the one exerting the
maximum force; it then verifies this assumption by calculating
the corresponding actuating torque with (17), and the set of
three forces that the latter torque generates. If the force exerted
by the considered phalanx has actually the maximum value in
the set, then the corresponding motor current is taken as the
solution.
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Where each fi has to be substituted with the desired value.

The same results can be used to implement an algorithm for
the minimum applied force.

1) Calculate TA,prox, TA,med

, TA,dist with (17);
2) Calculate the set of forces for each torque with (16),

until a set is obtained where the input force is higher
than the consequential two others;

3) Pick the torque (among [TA,prox, TA,med

, TA,dist]) cor-
responding to such a set of forces.

This method can be avoided when the three functions
f
1

(TA), f2(TA), f3(TA) can be reasonably assumed as mono-
tonic in the workspace. In this case it is sufficient to apply
(17) to each phalanx and pick the minimum actuating torque
in the resulting set of three.

The ability of evaluating a priori the current corresponding
to the desired force is very important both for open-chain
control and for speed optimization of feedback systems with
pressure sensors.

C. Further Considerations on the Real Case Application

The tools and functions that have been described, extend
general previous work. Some peculiarity is added here and
some solutions are proposed for real-case problems such as
different geometry (in relation to [18]), and the need for a use-
ful and meaningful inverse function. However, a few additional



considerations have to be done. First of all, the spring torques
T
2

and T
3

can be preloaded, as it is for the gripper from Robo-
tiq. In this case, it will be Ti = �Ki,spring · (✓i + ✓i,preload),
except for resting position (i.e. ✓i = 0) in which case it will be
Ti = 0. Secondly, regarding the current control, we can simply
relate it with the input torque (TA) considering that for a DC
brushed motor the torque curve is generally linear. So it is
sufficient to multiply the current by a constant that includes the
torque/current ratio and the reduction ratio of the gears in the
specific model. In this case the motor is coupled with a 14:1
planetary gear; plus another 40:1 ratio between the endless
screw at the motor shaft and the worm gear attached to the
proximal actuating hinge. Finally, in subsection B, the angles
of the quadrilateral have been assumed 2 [0,⇡]. If adapting
this work to different cases, the convexity of the quadrilaterals
should be verified for the configurations of interest.

IV. EXPERIMENTS

In this section two different sets of experiments are pre-
sented. The first one concerns the position analysis of the
finger. It compares the performance of the algorithm proposed
in Subsection III-A against an implementation of the Newton
method for non-linear systems. On the other hand the second
experiment evaluates the effectiveness of the proposed analysis
for current-force relationship estimation. The test consists in a
comparison between the results of the algorithm and the actual
force applied by the gripper.

A. Algorithm for the Position Analysis of the Finger

The performance of the algorithm presented in Subsection
III-A was compared (in a C++ implementation) against an
implementation of the Newton method. The programs imple-
menting the two approaches were tested on a PC running
Debian 7.8.0 on a Pentium R� Dual-Core CPU T4400 @
2.20 GHz. For a set of 52 different input angles, the average
execution time was of 3000 ns and 5823.53 ns for the proposed
algorithm and the Newton method respectively. Please note
that the accuracy of the non-iterative method is directly related
to data-type precision of the used variables. The iterative
solution has been set to obtain a comparable accuracy, as it
can be seen by the reported errors.

B. Experimental Setup

As mentioned in the Section I, the proposed analysis was
tested on the 3-Finger Adaptive Gripper produced by Robo-
tiq2. The 3-Finger gripper from Robotiq has three phalanxes
per finger. Each finger has only one motor, which actuates
the Proximal Actuating Hinge (see Figure 3). Therefore the
mechanism has only 1 DoA (Degrees of Actuation) against
3 DoF (Degrees of Freedom).

The current range in the motor for the grasping motion
goes from 225 mA to 590 mA, in a linear relation with
integer values from 0 to 255. The gripper was connected to

2http://robotiq.com/products/industrial-robot-hand/

senso
r

Fig. 6. Measurement apparatus schematics

the computer via Ethernet and controlled with ROS3 (Robot
Operating System) and ROS-Industrial Robotiq package4.

The real force applied by the gripper was measured by
means of a force-sensing resistor (Interlink FSR 4025) which
has a declared range of 20 N. However, using proper condi-
tioning, it was possible to obtain good results up to 40 N.
Such value is only sufficient for measurements on the median
and distal phalanxes, while forces on the proximal phalanx
exceed the system range. The sensor choice was made in
favor of compactness, which is very useful in order to obtain
stable grasp configurations to observe. The analog signal
from the conditioning circuit was fed to an Arduino Nano6

microcontroller board, which was programmed to process the
values (being the curve non-linear) and send them to a PC.

The measures were taken with the gripper in horizontal
position, with the two inactive fingers holding the experimental
apparatus. Please note that the structure that simulated the
grasped object, was designed in order to obtain proper contact
points on each finger, as in Figure 6. Motor current feedback
was received as an integer value between 0 and 255, then
converted via the previously mentioned relation. Angles be-
tween the phalanxes were calculated by measuring the distance
occurring between markers placed at the middle of each finger.

C. Experimental Results
The proposed experiments were used to test the newly

introduced model, and should be considered as a first step
towards its complete and thorough experimental validation.
For a complete validation of the proposed model, experiments
strongly reducing the non-idealities should be planned.

Figure 7 summarizes test results for the forces on the distal
phalanx. For each execution, angles between the phalanxes, ✓

2

and ✓
3

, are represented on the axes x and y respectively, so
each point of the X-Y plane corresponds to a configuration of
the finger. The relative error

⇣
�F

Fmeas

⌘
is proportional to the size

of the bubbles. Being the axes scaled on degrees, and being
the relative error adimensional, the diagram does not explicitly
represent the error, but it is meant to compare the errors

3http://www.ros.org/
4https://github.com/ros-industrial/robotiq
5http://interlinkelectronics.com/force.php
6https://www.arduino.cc/en/Main/ArduinoBoardNano
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obtained for different configurations. For most executions, the
relative error is more than 50%, which is too high to be
completely ascribed to the uncertainty of the force sensor.
Similar results were observed for the median phalanx. Such a
gap is caused, in our opinion, by the presence of forces parallel
to the phalanxes. These friction forces significantly affect the
system by generating a moment about the point where the
actuating torque is applied, therefore altering the balance of
the virtual works. The reaction force generated by friction also
has a stabilizing effect on the system.

The results provided in this paper are a first contribution
to the understanding of the influence of non-idealities in such
a theoretical model, an investigation that was missing in the
state of the art.

V. CONCLUSIONS

This paper proposes a mechanical modeling for underactu-
ated grippers whose fingers are composed of three phalanxes.
Tests were performed on a 3-finger gripper, but can be
extended to grippers with any number of fingers. An algorithm
for a computationally inexpensive position analysis of the fin-
ger was also proposed, together with a method for calculating
the motor currents to be employed for applying a desired
force. This is very useful for driving robotic applications, in
particular when grasping targets soft and deformable objects.
The experimental results highlighted the strong influence of
non idealities in the model proposed, that would probably
affect also other similar models. In order to overcome the
strong influence of non-idealities during the experiments,
future work will make use of a device to minimize friction
on the phalanxes.
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From Monocular SLAM to Autonomous Drone Exploration

Lukas von Stumberg1, Vladyslav Usenko1, Jakob Engel2, Jörg Stückler3, and Daniel Cremers1

Abstract— Micro aerial vehicles (MAVs) are strongly limited
in their payload and power capacity. In order to implement
autonomous navigation, algorithms are therefore desirable that
use sensory equipment that is as small, low-weight, and low-
power consuming as possible. In this paper, we propose a
method for autonomous MAV navigation and exploration using
a low-cost consumer-grade quadrocopter equipped with a
monocular camera. Our vision-based navigation system builds
on LSD-SLAM which estimates the MAV trajectory and a semi-
dense reconstruction of the environment in real-time. Since
LSD-SLAM only determines depth at high gradient pixels,
texture-less areas are not directly observed so that previous
exploration methods that assume dense map information cannot
directly be applied. We propose an obstacle mapping and
exploration approach that takes the properties of our semi-
dense monocular SLAM system into account. In experiments,
we demonstrate our vision-based autonomous navigation and
exploration system with a Parrot Bebop MAV.

I. INTRODUCTION

Most autonomous micro aerial vehicles (MAVs) to date
rely on depth sensing through e.g. laser scanners, RGB-D or
stereo cameras. Payload and power capacity are, however,
limiting factors for MAVs, such that sensing principles are
desirable that require as little size, weight, and power-
consumption as possible.

In recent work, we propose large-scale direct simultaneous
localization and mapping (LSD-SLAM [1]) with handheld
monocular cameras in real-time. This method tracks the
motion of the camera towards reference keyframes and at
the same time estimates semi-dense depth at high gradient
pixels in the keyframe. By this, it avoids strong regularity
assumptions such as planarity in textureless areas. In this
paper, we demonstrate how this method can be used for
obstacle-avoiding autonomous navigation and exploration for
a consumer-grade MAV. We integrate our approach on the
recently introduced Parrot Bebop MAV, which comes with
a 30 fps high-resolution fisheye video camera and integrated
attitude sensing and control.

Our proposed two-step exploration strategy is specifically
and directly suited for semi-dense reconstructions as obtained
with LSD-SLAM. A simple but effective local exploration
strategy, coined star discovery, safely discovers free and

This work has been supported by ERC Consolidator Grant 3D Reloaded
(649323).

1The authors are with the Computer Vision Group, Computer Science
Institute 9, Technische Universität München, 85748 Garching, Germany
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Fig. 1: We propose vision-based autonomous navigation
and exploration for small low-cost micro aerial vehicles
equipped with monocular cameras. Our approach is based
on large-scale direct SLAM which determines a semi-dense
reconstruction of the environment. We integrate our approach
on a commercially available Parrot Bebop MAV.

occupied space in a local surrounding of a specific position in
the environment. In contrast to existing autonomous explo-
ration approaches, our method takes the semi-dense depth
measurement principle of LSD-SLAM based on motion
parallax into account. A global exploration strategy then de-
termines interesting volume for further local explorations in
order to sequentially discover novel parts of the environment.
We demonstrate the properties of our exploration strategy in
several experiments with the Parrot Bebop.

II. RELATED WORK
Autonomous exploration by mobile robots has been in-

vestigated over many years, mainly relying on laser scan-
ner sensors. Yamauchi [2] proposed in his seminal work
the so-called frontier-based exploration strategy that favors
exploring the frontiers of the unexplored space in the map.
Some methods define a utility function [3], [4], e.g., on paths
or view poses that, for instance, trade-off discovered area
with travel costs. The approaches in [5], [6], [7] combine
the probabilistic measure of information gain with travel
cost in a measure of utility. Rekleitis et al. [8] optimize
a utility function that favors the reduction of uncertainty
in the map, and at the same time tries to achieve a fast
exploration of the map. All of the above methods rely on
a dense map representation of the environment which is
acquired using 2D and 3D laser range sensors. In our case,
these exploration methods are not directly applicable. The
exploration process needs to additionally consider how dense



map information can be obtained from the visual semi-dense
depth measurements of our SLAM system.

Very recently, autonomous exploration by flying robots
has attracted attention [9], [10], [11], [12]. Nuske et al. [11]
explore rivers using an MAV equipped with a continuously
rotating 3D laser scanner. They propose a multi-criteria
exploration strategy to select goal points and traversal paths.
Heng et al. [12] propose a two-step approach to visual
exploration with MAVs using depth cameras. Efficient ex-
ploration is achieved through maximizing information gain
in a 3D occupancy map. At the same time, high coverage
of the viewed surfaces is determined along the path to the
exploration pose. In order to avoid building up a dense 3D
map of the environment and applying standard exploration
methods, Shen et al. [9] propose a particle-based frontier
method that represents known and unknown space through
samples. This approach also relies on depth sensing through a
2D laser scanner and a depth camera. Yoder and Scherer [10]
explore the frontiers of surfaces measured with a 3D laser
scanner. In [13] a 3D occupancy map of the environment is
acquired using an on-board depth sensor. Next best views
for exploration are selected by growing a random tree path
planner in the free-space of the current map and choosing a
branch to explore that maximizes the amount of unmapped
space uncovered on the path. Also these approaches use
dense range or depth sensors which allow for adapting
existing exploration methods from mobile robotics research.
Desaraju et al. [14] use a monocular camera and a dense
motion stereo approach to find suitable landing sites of a
UAV.

We propose an exploration method which is suitable for
lightweight, low-cost monocular cameras. Our visual navi-
gation method is based on large-scale direct SLAM which
recovers semi-dense reconstructions. We take special care of
the semi-dense information and its measurement process for
obstacle mapping and exploration.

III. AUTONOMOUS QUADROCOPTER
NAVIGATION USING MONOCULAR LSD-SLAM

We build on the TUM ARDrone package by Engel et
al. [15] which has been originally developed for the Parrot
ARDrone 2.0. We transferred the software to the Parrot
Bebop platform which comes with similar sensory equipment
and onboard control. The Parrot Bebop is equipped with
an IMU built from 3-axis magnetometer, gyroscope, and
accelerometer. It measures height using an ultrasonic sensor,
an air pressure sensor and a vertical camera, similar to the
Parrot ARDrone 2.0. The MAV is equipped with a fisheye
camera with wide 186� field-of-view. The camera provides
images at 30 frames per second. A horizontally stabilized
region-of-interest is automatically extracted in software on
the main processing unit of the MAV, and can be transmitted
via wireless communication with the attitude measurements.

1) State Estimation and Control: The visual navigation
system proposed in [15] integrates visual motion estimates
from a monocular SLAM system with the attitude measure-
ments from the MAV. It filters both kinds of messages using a

loosely-coupled Extended Kalman filtering (EKF) approach.
Since the attitude measurements and control commands are
transmitted via wireless communication, they are affected by
a time delay that needs to be compensated using the EKF
framework. Waypoint control of the MAV is achieved using
PID control based on the EKF state estimate. In monocular
SLAM, the metric scale of motion and reconstruction esti-
mates are not observable. We probabilistically fuse ultrasonic
and air pressure measurements and adapt the scale of the
SLAM motion estimate to the observed metric scale [15].

2) Vision-Based Navigation Using Monocular LSD-
SLAM: LSD-SLAM [1] is a keyframe based SLAM ap-
proach. It maintains and optimizes the view poses of a
subset of images, i.e. keyframes, extracted along the camera
trajectory. In order to estimate the camera trajectory, it tracks
camera motion towards a reference keyframe through direct
image alignment. This requires depth in either of the images,
which we estimate from stereo correspondences between the
two images within the reference keyframe. The poses of
the keyframes are made globally consistent by mutual direct
image alignment and pose graph optimization.

A key feature of LSD-SLAM is the ability to close
trajectory loops within the keyframe graph. In such an event,
the view poses of the keyframes are readjusted to compensate
for the drift that is accumulated through tracking along
the loop. This especially changes the pose of the current
reference keyframe that is used for tracking, also inducing
a change in the tracked motion estimate. Yet, the tracked
motion estimate is used to update the EKF that estimates
the MAV state which is fed into the control loop. At a
loop closure, this visual motion estimate would update the
filter with large erroneous velocities which would induce
significant errors in the state estimate. In turn this could cause
severe failures in flight control. We therefore compensate for
the changes induced by loop-closures with an additional pose
offset on the visual estimate before feeding it into the EKF.

In order to initialize the system, the MAV performs a look-
around maneuver in the beginning by flying a 360� turn on
the spot while hovering up and down by several centimeters.
In this way, the MAV already obtains an initial keyframe
map with a closed trajectory loop (Fig. 6).

IV. AUTONOMOUS OBSTACLE-FREE
EXPLORATION WITH SEMI-DENSE DEPTH MAPS

Autonomous exploration has been a research topic for
many years targeting exploration of both 2D and 3D environ-
ments. In most 3D scenarios an exploration strategy works
with a volumetric representation of the environment, such as
a voxel grid or an octree, and uses laser-scanners or RGB-D
cameras as sensors to build such a representation.

In this paper we devise an exploration strategy that builds
on a fundamentally different type of sensor data – semi-
dense depth maps estimated with a single moving monocular
camera. The difference to previously mentioned sensors lies
in the fact that only for the image areas with strong gradients
the depth can be estimated. This means that especially
initially during exploration, large portions of the map will



Fig. 2: With LSD-SLAM, only semi-dense depth measure-
ments at edges and high-texture areas can be obtained. It
provides no depth in textureless areas such as walls. This
creates indentations of unknown space in the occupancy map
(free space green, indentations red). Lateral motion (right
picture) towards the measurable points, however, allows for
reducing the indentations.

remain unknown. The exploration strategy has to account for
the motion parallax measurement principle of LSD-SLAM.

A. Occupancy Mapping with Semi-Dense Depth Maps

In this work we use OctoMap [16] that provides an
efficient implementation of hierarchical 3D occupancy map-
ping in octrees. We directly use the semi-dense depth maps
reconstructed with LSD-SLAM to create the 3D occupancy
map. All keyframes are traversed and the measured depths
are integrated via ray-casting using the camera model.

Since LSD-SLAM performs loop closures, the poses at
which the depth maps of keyframes have been integrated
into the map may change and the map will become outdated.
We therefore periodically regenerate the map using the
updated keyframe poses. While this operation may last for
several seconds, the MAV hovers on the spot and waits until
proceeding with the exploration.

Each voxel in the occupancy map stores the probability
of being occupied in log-odds form. In order to determine
if a voxel is free or occupied, a threshold is applied on the
occupancy probability (0.86 in our experiments). During the
integration of a depth measurement, all voxels along the ray
in front of the measurement are updated with a probability
value for missing voxels and measuring free-space. The voxel
at the depth measurement in turn is updated with a hit
probability value. Note that LSD-SLAM outputs not only
the computed depths but also the variance of this estimate.
Although measurements with a high variance can be very
noisy, they still contain information about the vicinity of the
sensor. Therefore we insert only free space on a reduced
distance for these pixels which assures that no wrong voxels
are added. Fig. 11a shows an example occupancy map.

B. Optimal Motion for Exploration and Mapping

By using semi-dense reconstructions, we do not make
strong assumptions such as planarity on the properties of
the environment in textureless areas. On the other hand, the
use of semi-dense reconstruction in visual navigation leads
to indentations of unknown volume which occur between the
rays of free-space measured towards depth readings (Fig. 2).
As we will analyze next, these indentations can be removed

Fig. 3: Discovered area si, s j for measured points pi, p j in
relation to the direction of motion x.

through lateral motion towards the measurable structures –
an important property that we will exploit in our exploration
strategy.

Figure 3 illustrates the problem of finding the direction
of motion x 2 R3 with kxk2 = 1 such that it maximizes
the observed free space in a 2D setting (without loss of
generality). Assuming the camera center at the origin of
the coordinate frame, the volume that is observed free in
front of the measured point is cut by the triangle formed by
the motion x of the camera and the measured point pi. The
magnitude of the vector

si =
1
2
(pi ⇥x) =

1
2

p̂ix (1)

equals the observed free area, where p̂i is a skew-symmetric
matrix formed from pi such that its product with x corre-
sponds to the cross-product between the two vectors.

To find the optimal direction we maximize (two times) the
sum of squared areas of the triangles formed by all observed
points,

S(x) = 2
n

Â
i=1

s>i si =
1
2

n

Â
i=1

x>p̂>
i p̂ix, (2)

kxk2
2 = x>x = 1. (3)

Since we want to determine the optimal motion direction
independent from its magnitude, we optimize the direction
subject to a normalization constraint.

This constrained optimization problem can be solved using
Lagrange multipliers,

L(x,l ) = S(x)�l (x>x�1), (4)

so that the optimal solution for x should satisfy the equations

—xL> =

 
n

Â
i=1

p̂>
i p̂i

!
x�2lx = Mx�2lx = 0, (5)

∂L
∂l

= x>x�1 = 0. (6)

This implies that x should be a (unit) eigenvector of the
matrix M. Moreover, the vector that corresponds to the
largest eigenvalue produces the largest observation of the
free space.

We perform Monte-Carlo simulations to further analyze
the optimal motion direction. Without any prior knowledge
about the environment structure, we assume a uniform dis-
tribution of depths in the pixels. We sample 600 points pi
according to the following distribution: u ⇠ U(0,640),v ⇠



TABLE I: Summary of eigenvectors and eigenvalues of M
over 100 random simulations where we draw image coordi-
nates and depths from uniform distributions u ⇠ U(0,640),
v ⇠U(0,480), d ⇠U(0.5,5), respectively.

eigenvalue eigenvector

7440.5±275.6 (0.012,0.996,�0.001)± (0.088,0.005,0.014)
7093.7±260.0 (0.996,0.012,�0.002)± (0.005,0.088,0.018)
1230.1±66.1 (0.002,0.001,0.997)± (0.018,0.015,0.001)
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Fig. 4: Local star discovery exploration strategy. The MAV
flies to the end of the lines in the order defined by the num-
bers, always facing the direction of the arrow corresponding
to the line.

U(0,480),d ⇠ U(0.5,5), where (u,v) are the image coor-
dinates, d is the distance, and U denotes uniform distri-
bution. The points are reprojected into 3D space using the
camera model and used for computing M. Statistics for the
eigenvalues and eigenvectors for 100 random simulations
is accumulated in Table I. It demonstrates that the optimal
direction for increasing the observed free space is a motion
parallel to the image plane, i.e. sidewards or up-down motion.

C. Obstacle-Free Local Exploration through Star Discover-
ies

The characteristics of our semi-dense SLAM approach
prevent the direct application of existing exploration ap-
proaches such as next-best view-planning or frontier-based
exploration. Frontiers of known space (occupied or measured
free) occur at indentations of unknown space as well as
between measured edges and textures on flat walls. Simply
flying to those boundaries would not allow discerning un-
known from free or occupied space at the textureless bound-
aries as monocular SLAM requires motion parallax towards
measurable structures and depth is only measured along the
line-of-sight of semi-dense depth readings. Next-best view
planning aims at choosing a new view that maximizes the
discovered unknown space at the new view pose. Since
measuring depth requires motion in our monocular SLAM
system, it could be extended to measure the discovered space
along the path to the new view point. This procedure would
be computationally very expensive, since for each potential
view pose many ray-casting operations would need to be
performed. We propose a simpler but effective local explo-
ration strategy that we call star discovery, which discovers
the indentations in the unknown volume around a specific
position in the map.

(a) First (b) Second (c) Third (d) Fourth

Fig. 5: Four steps of the proposed exploration strategy. (a)
The exploration starts at the blue circle. After an initial look-
around, the green volume is marked as free. The black lines
illustrate the paths of the first star discovery. (b) All voxels
that are free and in line-of-sight from the origin of the star
discovery are marked light green. The remaining voxels (dark
green) are marked interesting. A path towards an interesting
voxel is determined (blue line). (c) A second star discovery
(black lines) is executed at the new origin (blue). (d) The
dark green volume marks again the interesting volume. The
algorithm finds a way out of the room.

In star discovery, the MAV flies a star-shape pattern
(Fig. 4). In order to generate motion parallax for LSD-SLAM
and to discover indentations in the unknown volume, the
MAV flies with a 90� heading towards the motion direction.
Clearly, the MAV can only fly as far as the occupancy map
already contains explored free-space.

The star-shape pattern is generated as follows: We cast m
rays from a specific position in the map at a predefined
angular interval in order to determine the farest possible
flight position along the ray. The traversability of a voxel
is determined by inflation of the occupied voxels by the size
of the MAV. In order to increase the success of the discovery,
we perform this computation at l different heights and choose
the result of maximum size.

Only if the star discovery is fully executed, we redetermine
the occupancy map from the updated LSD-SLAM keyframe
map. This also enables to postpone loop-closure updates
towards the end of the exploration process, and provides a
full 360� view from the center position of the star discovery.

Our exploration strategy is also favorable for the tracking
performance of LSD-SLAM. For instance, flying an outward
facing ellipse of maximum size instead it could easily loose
track because the MAV will only see few or no gradients
when it flies close to an obstacle while facing it.

D. Global Exploration

Obviously, a single star discovery from one spot is not
sufficient to explore arbitrarily shaped environments, as only
positions on the direct line-of-sight from the origin can
be reached (Fig. 5). This induces a natural definition of
interesting origins for subsequent star discoveries. We denote
a voxel interesting if it is known to be free but not in line-
of-sight of any previous origin of star discovery.

We determine the interesting voxels for starting a new star
discovery as follows: For every previously visited origin of
a star discovery, we mark all free voxels in direct line-of-
sight as visited. Then all free voxels in the inflated map are



traversed and the ones that have not been marked are set
to interesting. With m being the number of star discovery
origins, the whole algorithm runs in O(n3 · (m+hor2 · ver)),
where hor and ver are the number of voxels inflated in the
horizontal and vertical directions. We define n as the number
of voxels along the longest direction of the bounding box of
the occupancy map.

Afterwards, we search a path in the occupancy map to one
of the interesting voxels. We look at several random voxels
within the largest connected component of interesting voxels
and choose the one from which we can execute the largest
star discovery afterwards.

As discussed above, frontier-based exploration would not
be suitable with our monocular SLAM system, as the fron-
tiers could be located on non-observable occupied structures
such as textureless walls. In order to discover these struc-
tures, we propose star-shaped local exploration moves. Our
global exploration strategy determines new origins for these
moves where freespace has been measured behind semi-
dense structures that are not on the direct line-of-sight from
the previous star discovery origin.

V. RESULTS

We evaluate our approach on a Parrot Bebop MAV in two
differently sized and furnished rooms (a lab and a seminar
room). We recommend viewing the accompanying video of
the experiments at https://youtu.be/fWBsDwBJD-g.

A. Experiment Setup

We transmit the live image stream of the horizontally
stabilized images of the Bebop to a control station PC via
wireless communication. The images are then processed on
the control station PC to implement vision-based navigation
and exploration based on LSD-SLAM. All experiments were
executed completely autonomous.

We report results of two experiments. The first experiment
has been conducted in a lab room and demonstrates our star
discovery exploration strategy. In this simpler setting, we ne-
glected depth measurements with high variance estimates and
plan the star discovery only in a single height. The second
experiment evaluates local (star discovery) and global explo-
ration strategies in a larger seminar room. We enhanced the
system in several ways towards the first experiment to cope
with the larger environment. We use depth measurements
with high variance estimates as free space measurements for
occupancy mapping as described in Sec. IV-A instead of
neglecting them. In order to increase the possible coverage of
the star discovery it is computed on several different heights
and the one with the largest travel distance is used. When
computing interesting voxels we as well use multiple heights
for the center points. The robustness of the star discovery
was improved by slightly reducing the maximum distance to
the origin and by sending intermediate goals to the PID-
controller. Finally, we start LSD-SLAM only right after
takeoff, we improved the accuracy of the scale estimation
and we readjusted the parameters of the PID-controller, the
autopilot and the look-around maneuver.

Fig. 6: Semi-dense reconstruction after the look-around in
the first experiment.

Fig. 7: The difference between 3D occupancy map before
and after star discovery. Occupied voxels are shown blue,
free voxels that were unknown before the star discovery are
green.

B. Qualitative Evaluation

1) Star Discovery: In the first experiment, we demonstrate
autonomous local exploration using our star discovery strat-
egy in our lab room. There was no manual interaction except
triggering the discovery and the landing at the end. At first,
the MAV performs a look-around maneuver. In Fig. 6 one can
see the semi-dense reconstruction of the room obtained with
LSD-SLAM. Based on a 3D occupancy map, a star discovery
is planned (Fig. 9). In this case, we used three voxels in
horizontal direction and one voxel in vertical direction to
inflate the map.

Fig. 10a shows the planned waypoints of the star discovery
overlaid with the actual trajectory estimate obtained with
LSD-SLAM. Fig. 7 shows how the executed trajectory has
increased the number of free voxels in the occupancy map.

2) Full Exploration Strategy:
In the second experiment, we demonstrate a star discovery

with subsequent repositioning at an interesting voxel in a
larger seminar room. First, the MAV took off, initialized the
scale, and performed a look-around maneuver. Afterwards,
the MAV executed a star discovery. Fig. 10b shows the
planned discovery motion and the flown trajectory estimated
with LSD-SLAM. We explain the differences by LSD-SLAM

https://youtu.be/fWBsDwBJD-g


TABLE II: Quantitative results on run-time and occupancy map statistics for the two experiments.

experiment 1 2

look-around star discovery look-around star discovery new origin
occupancy map 5.65s 13.06s 4.25s 38.43s 41.09s
inflating map 0.69s 0.76s 1.40s 2.15s 2.86s

mark voxels in sight - - - 4.93s 4.52/6.63s
way to new origin - - - 0.024s 0.065s

#voxels in bounding box 195048 211968 449565 728416 1312492
#free voxels 36071 46021 75113 106944 159294

#occupied voxels 8259 11477 6102 9673 10816
#free ÷ #known 0.81 0.80 0.92 0.92 0.94

#free ÷ #bounding box 0.18 0.22 0.17 0.15 0.12
#keyframes (approx.) 66 162 54 236 257

total #points 15411528 37828296 3152358 13776972 15002889

(a) before star discovery (b) after star discovery

(c) before star discovery (d) after star discovery

Fig. 8: Indentations in unknown volume before and after
the star discovery in the first experiment. Occupied voxels
are blue and unknown voxels are yellow. The number of
unknown (yellow) voxels is reduced through the discovery.

pose graph updates.
After the star discovery, we obtain the maps and interesting

voxels in Fig. 11 and Fig. 12. The largest connected compo-
nent found by our algorithm is the one outside the room. The
MAV planned a path towards it and autonomously executed
it. In Fig. 13 we depicted the planned path and the actually
flown trajectory estimated with LSD-SLAM.

After reaching the interesting point the battery of the MAV
was empty and it landed automatically. The step that our
algorithm would have performed next is the star discovery
depicted in Fig. 14.

C. Quantitative Evaluation

Table II gives results on the run-time of various parts
of our approach and properties of the LSD-SLAM and
occupancy mapping processes for the two experiments. The
creation of the occupancy map is visibly the most time-
consuming part of our method, especially at later time steps
when the semi-dense depth reconstruction becomes large. In
the second experiment modified parameters were used for the

Fig. 9: Exploration plan of the star discovery in the first
experiment. Occupied voxels are blue, approached voxels
are red and numbered according to their approach order (0:
origin).

creation of the occupancy map. While they proved to perform
better they also further increased the time consumption. The
remaining parts are comparatively time efficient and can be
performed in a couple of seconds. Our evaluation also shows
that star discoveries significantly increase the number of free
voxels in the map.

VI. CONCLUSIONS

In this paper, we proposed a novel approach to vision-
based navigation and exploration with MAVs. Our method
only requires a monocular camera, which enables low-cost,
lightweight, and low-power consuming hardware solutions.
We track the motion of the camera and obtain a semi-
dense reconstruction in real-time using LSD-SLAM. Based
on these estimates, we build 3D occupancy maps which we
use for planning obstacle-free exploration maneuvers.

Our exploration strategy is a two-step process. On a local
scale, star discoveries find free-space in the local surrounding
of a specific position in the map. A global exploration
strategy determines interesting voxels in the reachable free-
space that is not in direct line-of-sight from previous star



(a) First experiment

(b) Second experiment

Fig. 10: 3D occupancy map manually overlaid with semi-
dense reconstruction, planned waypoints of the star discovery
and executed trajectory (planned waypoints in red or pink,
occupied voxels in blue, actual trajectory as estimated by
LSD-SLAM as blue cameras, loop closure constraints as
green lines).

discovery origins. In experiments, we demonstrate the per-
formance of LSD-SLAM for vision-based navigation of a
MAV. We give qualitative insights and quantitative results
on the effectiveness of our exploration strategy.

The success of our vision-based navigation and exploration
method clearly depends on the robustness of the visual
tracking. If the MAV moves very fast into regions where
it observes mostly textureless regions, tracking can become
difficult. A tight integration with IMU information could
benefit tracking, however, such a method is not possible
with the current wireless transmission protocoll for visual
and IMU data on the Bebop.

Also a more general path planning algorithm based on the
next best view approach is desirable. This however requires a
more efficient way to refresh the occupancy map when pose
graph updates happen.

In future work we will extend our method to Stereo LSD-
SLAM [17] and tight integration with IMUs. We may also

(a) Free voxels (green)

(b) Traversable voxels (green) in the inflated map

Fig. 11: Occupied (blue), free and traversable voxels in the
second experiment.

use the method for autonomous exploration on a larger MAV
with onboard processing.
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Abstract— In this paper, we present a robust system of self-
directed autonomous robots evolving in a complex and public
spaces and interacting with people. This system integrates high-
level skills of environment modeling using knowledge-based
modeling and reasoning and scene understanding with robust
image and video analysis, distributed autonomous decision-
making using Markov decision process and Petri-Net planning,
short-term interacting with humans and robust and safe navi-
gation in overcrowding spaces. This system has been deployed
in a variety of public environments such as a shopping mall,
a center of congress and in a lab to assist people and visitors.
The results are very satisfying showing the effectiveness of the
system and going beyond just a simple proof of concepts.

I. INTRODUCTION

Public spaces in large cities are increasingly becom-
ing complex and unwelcoming environments. Public spaces
progressively become more hostile and unpleasant to use
because of the overcrowding and complex information in
signboards. It is in the interest of cities to make their
public spaces easier to use, friendlier to visitors and safer to
increasing elderly population and to citizens with disabilities.
Meanwhile, we observe, in the last decade a tremendous
progress in the development of robots in dynamic, complex
and uncertain environments. The new challenge for the near
future is to deploy a network of robots in public spaces
to accomplish services that can help humans. Inspired by
the aforementioned challenges, COACHES project addresses
fundamental issues related to the design of a robust system
of self-directed autonomous robots with high-level skills of
environment modeling and scene understanding, distributed
autonomous decision-making, short-term interacting with hu-
mans and robust and safe navigation in overcrowding spaces.

COACHES project provides a modular architecture inte-
grated in robots. We deployed COACHES at Caen city in
the ”Rives de l’Orne” shopping mall. It is a cooperative
system based on fixed cameras and mobile robots. The
fixed cameras can do object detection, tracking and events
detection (objects or behavior). The robots combine these
information with the ones perceived via their own sensors,
to provide information through its multi-modal interface,
guide people to their destination, show tramway stations and
transport goods for elderly people, etc.... The COACHES
robots use different modalities (speech and displayed in-
formation) to interact with the mall visitors, shopkeepers
and mall managers. The project has enlisted an important

end-user (Caen la mer) providing the scenarios where the
COACHES robots and systems will be deployed.

II. OVERALL SYSTEM DESCRIPTION

A. General Architecture and functionalities
The general architecture of the embedded software, in each

robot, has the following components (Figure 1): (i) Modelling
and reasoning: Modelling a variety of static/dynamic knowl-
edge about the environment formally in three knowledge
bases (KB): (SEM) static properties of entities in the environ-
ment and their relations, (COM) general static common sense
knowledge about shopping malls (taxonomic knowledge
and defaults), and (TEMP) short-term/long-term temporary
knowledge about entities in the environment obtained from
observations and interactions with humans. Utilizing SEM
and TEMP, COM also involves common sense knowledge to
derive simple goals of assistance, advertisement and security.
These goals are sent to the planner. (ii) Perception: A system
for detecting and tracking people using fixed cameras has
been implemented. Such a system is able to detect particular
events such as entering in a particular area of the shopping
mall and sending an advertising message to the robot. (iii)
Interaction interface: A GUI has been developed allowing
a person to interact with the robot and expressing his
requests in terms of assistance. The GUI has been realized
in order to be fully customizable for different scenarios
and different user profiles, allowing for personalized short-
term interactions as described in [1]. (iv) Markov Decision
Process and Petri-Net Plans planning: a task language based
on Progressive Reasoning Units (PRUs) has been developed
to express all assistance tasks of the robot, an appropriate
MDP-based planning algorithm to computed the policy to
accomplish the task and PNP-based planning to transform a
policy into an execution Petri-Net plan to deal with execution
error. Details on the implementation of this framework are
provided in [2]. For the development of the software robotics
components, we used the Robot Operating System (ROS)
(www.ros.org), which is the standard middleware for robotics
applications. In particular, we used the last stable version
ROS Indigo and the last LTS (Long Term Support) version
of the Linux/Ubuntu Operating System.

We then extend this architecture to multi-robot settings
by developing the following general principles : let robots
A = {A1, A2, . . . , An} receive from different KB modules



a set of goals G = {g1, g2, . . . , gk} where goals concern ad-
vertisement, patrolling, assisting and escorting. We consider
that goals are sorted according to their type assuming that the
type convoys some goal’s priority. In our case, we consider
that security goals have a higher priority than assistance goals
and the advertisement goals have the lowest priority.

Let assume that KB modules communicate their local
generated goals to each other leading to the same set of
goals handled by different decision-making modules of dif-
ferent robots (Figure 1). The general principale consists in
receiving information from external sensor (external cameras
in our case) by communicating these information through
the network (wireless). The KB modules receive the same
information and thus generate the same list of goals. Each
KB sends this list of goals to its decision making module to
generate a policy of accomplishing one or many goals.
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Fig. 1. General architecture of multi-robot decision-making module

B. Communication

KB modules communicate to exchange the informa-
tion concerning the status of execution and also the
level of interruptibility allowing, at the receipt of a
list of goals, to consider only robot that could ac-
complish the goals according to their current status.
The list of messages exchanged between different mod-
ules (KB, DEC and EXEC) and between robots are :
msg new facts #id coming from the local perception to
the local KB; msg new external facts #id coming from
the local KB to the other robots; msg end local goals #id

coming from the local EXEC module to the local
KB; msg end external goals #id coming from the lo-
cal KB to the other robots; msg selected goals #id

coming from the local DEC module to KB local;
msg selected external goals #id coming from the local
KB to the other robots; msg goals values #idrobot com-
ing from the other robots.

The general principal is depicted in Figure 2 where each
robot has a local Knowledge base, a local decision maker
and a local executor interacting each other and exchanging
information with the other robots through a communication
infrastructure. In our current case, we consider a direct
communication between robots assuming that they evolve
in an environment where their ranges of communication

cover all the space as in the mall. Limited communication
ranges issues are let to the future work. However, we use a
procedure allowing robots to move towards a central point
to establish the communication and update their KB.

KB

DECISION

EXEC

List of goals

Generated

at tme t:  Gt

Goal G* selected

by the robot

π(G*) policy

Goal G* of the robot

sent to the other robots
Goals Gi * accomplished

By the other robots

Message of the

Accomplishment
end of goal G*

Fig. 2. Communication between KB, decision and execution modules

III. IMAGE AND VIDEO ANALYSIS FOR PERCEPTION

In this section, we describe the adopted techniques for
detecting and tracking people from fixed and mobile cameras.
Fixed cameras are mounted in the shopping mall to analyze
the behavior of the people in order for detecting particular
events (e.g. interactions, standing in front of a shop for a
while, etc.). Mobile cameras, mounted on the robot, are used
for detecting and tracking people in the environment during
the navigation of the robot and are useful for approaching
people. A detailed description of both the systems is provided
in the following sections.

A. Fixed Camera System
The fixed cameras are used for detecting specific events,

like entering a specific area of the shopping mall, and sending
the coordinates of the detected event to the robot. The system
is based on the following steps: (i) Background Subtraction,
(ii) Person Detection, (iii) Re-projection on the map, (iv)
Tracking, and (vi) Event Detection (see the general scheme
in Fig. 3).

In order to reduce the person search space in the image, a
background subtraction method has been adopted. In partic-
ular the Fastest Adaptive Foreground EXtraction (FAFEX)
method of Pennisi et al. [3] has been used. The output of
FAFEX is a foreground mask containing the blobs, which are
the possible candidates to be people. Each blob is classified
as person or not a person by using a Support Vector Machine
(SVM) classifier, based on Histograms of Oriented Gradients
(HOG) [4], trained on the INRIA Person dataset 1. Then,
the detections are reprojected onto a map of the shopping
mall by using a Homography technique. To track the people
inside the environment, a tracker, called PTracking [5], has
been used. Then, in order to detect events such as entering
a particular area of the shopping mall, an event detection
module has been developed. By selecting specific areas of
the shopping mall, such a module is able to recognize if a
person entered one of those areas, which could be used as
inputs to the navigation system of the robot.

1http://pascal.inrialpes.fr/data/human/



Fig. 3. Fixed Camera System scheme.

Fig. 4. The 3D Person Detection and Tracking module is based on 3 main
steps: 1) 3D Segmentation, 2) Person Detection, and 3) Tracking.

Fig. 5. The bounding box of the 3D cluster is converted in 2D image
coordinates for extracting the correspondent RGB patch.

B. Robot Perception

The cameras mounted on the robot are used for detecting
and approaching the people inside the shopping mall. To this
end, we developed a framework for 3D person detection and
tracking framework as shown in Fig. 4. The system is based
on three steps: (i) scene segmentation, (ii) person detection,
and (iii) person tracking. The robot is equipped with an
RGB-D camera (i.e. Asus Xtion), which is mounted on the
top of the robot. Thanks to the depth and camera location
information, the system is able to straighten the 3D scene and
to compute the point cloud. Then, the points under 5cm of
height are excluded from the cloud assuming that they belong
to the floor. The same assumption is made for all the points
above 2m of height (we assume that a person is tall less
than 2 meters). The remaining points are grouped by using a
clustering method based on the Euclidean distance [6]. Each
cluster is considered as a candidate to be a person. In order
to verify this, RGB patches are extracted by converting the
3D bounding box of each cluster in a 2D image bounding
box (see Fig. 5).

To recognize if a patch is a person, an approach based on
the Aggregate Feature Channels (ACF) [7] has been adopted.
The ACF method computes the features as the aggregation
of multiple features. In our current implementation we used

Fig. 6. a) Detection: the green bounding boxes represent the detections
and b) the numbered box are the tracks.

Fig. 7. Multi-modal HRI architecture.

the L, U, and V color components, the HOG features and,
the gradient magnitude. All these features are integrated into
the Fastest Pedestrian Detector in the West (FPDW) [8].
Then, to classify a single patch, a boosting tree classifier
has been trained by using the INRIA person dataset. Such
a strategy increases the detector speed maintaining robust
detection performance (see Fig. 6a). Finally, a multiple target
tracker is used for tracking the detected people. The tracker
uses the appearance model of each detection together with
a euclidean distance approach for carrying out the data
association step. The target appearance is represented by
using the combination of the RGB color information and
the Speed Up Robust Features (SURF) [9]. Such features
are reduced by using a sparse dictionary. Then, an on-
line Adaboost classifier, one for each detection, is trained
using such a dictionary. A Kalman filter is used for filtering
out the noise of each detection (see Fig. 6b). A track
is assigned to the current detection if, the confidence of
one classifier is the largest possible and is greater than a
minimum threshold c (experimentally evaluated), and if the
euclidean distance between the related Kalman prediction
and the current detection position is less than a predefined
threshold e (experimentally evaluated).

Thanks to such a system, the robot is able to track the
people inside the environment and to understand if a person
wants to approach it by measuring the relative proximity
distance.

IV. MULTI-MODAL HUMAN-ROBOT INTERACTION

The interactions realized in the COACHES scenario are
characterized by being short in time with many users who
are not expert and who have not been trained about the
capabilities of the robot. In this context, the use of an HRI
system offering multiple modalities of interaction can greatly
increase its usability and improve user experience, since the
users can choose the modality more comfortable to them.



Figure 7 illustrates the overall architecture of our HRI
system. Inputs to the system are a Petri Net Plan (PNP)
describing the robot behavior, a user profile and a multi-
media library.

The PNP is generated by the reasoning and planning
module of the system (as it will be described in next
section V) and contains both robotic actions (e.g., move,
goto) and interaction actions. The execution of this plan is
managed by the PNP Executor module which derives the
execution of each action to the safe navigation component
in the case of robotic actions or to the multi-modal HRI
component in the case of interaction actions.

The execution of interaction routines is managed by the
Interaction Manager (IM). The IM acts as a server that
executes the interaction actions when requested by the PNP
Executor and returns the input of the user in the form of
PNP conditions which are evaluated by the PNP Executor
to enable the corresponding transitions to make evolve the
course of the PNP.

Currently, the IM manages two components: a C# speech
server using the multi-language Microsoft Speech Recogni-
tion and Synthesis engine and, a Python GUI on a touch-
screen. This allows for the use of the following modalities
of interaction: output of information is provided visually in
the form of texts or images displayed on the Python GUI or
by voice using a Text-to-Speech (TTS) component while the
input from the user can be given by using the touch-screen or
via spoken commands interpreted by the Automatic Speech
Recognition (ASR) system.

V. DISTRIBUTED REASONING, DECISION-MAKING AND
EXECUTION

A. Semantic reasoning
Since the relevant knowledge about the environment is

heterogeneous (e.g., static/dynamic, spatial/nonspatial), we
classify the knowledge bases into three parts: Semantic Map
(SEM), Commonsense Knowledge Base (COM), and Tem-
porary Knowledge Base (TEMP). SEM and COM represent
the static knowledge about the environment while TEMP
represents the temporary knowledge and can be updated due
to observations or human-robot interactions.

1) Knowledge Base for Semantic Map: We define a
semantic map (SEM) for an environment which consists
of a set of entities, a set of spatial relations and a set of
non-spatial relations. The entities include access points (e.g.,
doors) of places like stores, restaurants, elevators, escalators,
restrooms, etc. The spatial relations include qualitative spa-
tial relations, like “next-to” and “up-down” directions. The
nonspatial relations include the names of stores, what kind
of objects they sell and wheel-chair accessibility condition.
Overall, these two sorts of relations describe static knowl-
edge about the shopping mall.
Entities of a shopping mall can be represented by a set
of atoms of the form entity(entityID). Qualitative
spatial relations of the entities in the environment can
be represented by a set of atoms, like acc(store1,

store2) (to describe accessibility of store1 from store2)

or dir(store1, store2, next-to) (to describe relative
direction of store1 from store2). Nonspatial relations of
entities can be represented by atoms, like name(store1ID,
abc), sells(abc, shirts), and hasRamp(store1ID).
We represent the names of the stores, which product they
sell and if they have a ramp for stroller or wheelchair
access as nonspatial relations. These nonspatial relations are
necessary for computing a personalized path. For example, if
a customer with stroller asks “Where can I buy shoes?”, the
robot should consider stores which sell shoes and has ramp
for stroller access. After finding the possible goal locations,
the path finder module computes the path. This computation
also requires nonspatial relations, because the path should
not include routes without stroller access.

We can represent the entities and qualitative spatial rela-
tions as a directed graph. The vertices of the graph denote
the entities, whereas the edges denote the accessibility rela-
tions of the entities. We can also label the edges with the
directionality relations.

2) Knowledge Base for Commonsense Knowledge: We
define commonsense knowledge base (COM) in a shopping
mall with two parts. The first part is about taxonomic
relations between entities (e.g., “French restaurant is a restau-
rant”). We represent these relations as an ontology. The
second part is about default knowledge related to shopping
malls (e.g., “Children usually desire toys”). Since these
relations necessitate nonmonotonicity, we represent them as
ASP rules.
Taxonomic knowledge of a shopping mall consists of hi-
erarchies of classes and their relationships. We model the
nonspatial relations of entities, and taxonomic commonsense
knowledge about these entities as a formal Shopping Mall
Ontology. We represent this ontology in OWL (Web Ontol-
ogy Language) [10], [11], and use DL reasoners, such as
PELLET [12], to extract relevant knowledge from the ontol-
ogy using the query language Sparql [13]. Default knowl-
edge about entities in a shopping mall can be represented in
Answer Set Programming (ASP) [14]. For instance, we can
represent the default commonsense knowledge “Normally, a
package belongs to the adult next to it.” by the following
rule:

belongs(X,P) :- object(X,package), nextTo(X,P),
instanceOf(P,adult), not -belongs(X,P).

Similarly, we can represent “Normally, a package is sus-
picious if it does not belong to anyone.” by a rule in ASP.
Then, if the robot sees a package which does not belong to
anyone, it can infer (using the ASP solver CLINGO [15]) that
the package is suspicious with the commonsense knowledge.

3) Knowledge Base for Temporary Knowledge:
We define temporary knowledge base (TEMP) in a
shopping mall as ASP facts, like disabled(c1),
promotionAt(store1), noAccess(elevator), and
interestedToBuy(c1, cosmetic). These knowledge
can be obtained from observations via perception or from
human-robot interactions. The mall manager may tell the
robot that the elevator is broken. The robot can recognize



that the customer asking a question is at a wheelchair.
The shopkeepers may tell the robot that they have some
promotions over the weekend. These temporary knowledge
can be represented as follows:

The robot will use this temporary knowledge, in addition
to the knowledge bases SEM and COM, to infer a list
of possible goals. Whenever a customer asks for a place,
we add that place with goalLoc(X) predicate. Whenever
a customer asks for a product, we add that product with
interestedToBuy(C,X) predicate.

B. Distributed decision-making
Once local KB synchronized, each robot computes the

value of its optimal policy to accomplish a goal and thus
communicates a vector of values to the other robots. Each
robot computes the vector values of the goals and receives
from the others their vector values. From these exchanged
information, each robot maintains a matrix of values of
the couple (robot, goal). This global information gathered
from local information allows each robot to select the best
goal using a distributed market-based auctioning. Indeed,
each robot i maintains a matrix M

h
i per goal priority h.

Robots concern goals of lower priority when goals of higher
priorities are allocated. The matrix is constructed as follows:

1) each robot i computes the optimal value
V

⇤,gl
i to accomplish goal gl. Value vector

(V ⇤,g1
i , V

⇤,g2
i , . . . , V

⇤,gk
i ) represents the values of

optimal policies accomplishing goals in the list. This
vector represents the line i of the matrix.

2) Each robot j sends its value vector to each others,
allowing them to complete their matrix

3) Each robot i has thus a matrix :
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The allocation of goals to the robots is performed by
a distributed decision-theoretic market auction, where each
robot i computes for each goal g a value Vi(g )of following
a policy accomplishing it. The agent ↵ proposing the best
value is elected to accomplish this task.

(↵, g

⇤
) = argmaxAi,gkVAi(gk) (1)

It’s possible there exist many robots ↵ able to accomplish
the goal g⇤ with the same value and thus the equation has
a lot of solutions. When many robots optimize the accom-
plishment of the goal g⇤, we allocate the goal to the robot
with the minimum regret. The Regret of not accomplishing a
goal g⇤ is a loss in value when accomplishing the best goal
other than g

⇤. More formally,

regretj(g) = V

⇡⇤

j (g)�max

g0 6=g
V

⇡⇤

j (g

0
)

Let Sg be the set of robots ↵ optimizing the value of
accomplishing the goal g (solutions of Equation 1), the

best robot to which we allocate the goal g is given by the
following equation:

↵

⇤
= min

↵2Sg

regret↵(g)

If this equation has many solutions, we can proceed in the
same way with the other goals and so on.

C. Execution monitoring
A crucial feature for deploying robots in public spaces is

their ability of reliably executing their plans in presence of
uncertainty about the world and the user interactions and of
perception noise.

During the COACHES project, we have studied a method
for improving robustness of the plan generated by the deci-
sion making modules. This processing step (called Robusti-
fication) during the plan generation phase aims at improving
the robustness of the plan to situations that are not modelled
in the planning domain.

To this end, we use the Petri Net Plan (PNP) formalism
[16] and the plan execution framework is formed by the
following elements: 1) Plan translation into PNP [17], 2)
Execution Rules (ER) [2], 3) ROS action execution.

Briefly, the policy or the conditional plan generated by the
planner is first transformed into a PNP. This is a straightfor-
ward procedure since Petri Nets can easily represent trees
and DAG. Finally, the actual execution of the robot actions
and interactions is performed by the PNP engine. Each
action name in PNP is mapped into an action that can be
either a robotic action or an interaction action (interpreted
by MODIM, as described in Section IV).

VI. EVALUATION METHODOLOGY AND RESULTS ON
REAL ROBOTS

A. Evaluation methodology
Evaluation of a complex system like the one developed in

the COACHES project requires a specific methodology and
setup. While the evaluation of the components presented in
the previous sections of this paper is described in the relative
papers, here we want to focus on the overall evaluation of
the entire system by the actual users (i.e., customers of the
shopping mall).

For such a user evaluation, we have designed the experi-
mental protocol that is described in this section. The actual
execution of the experiment is planned for July 6-9, 2017
in a public event in the shopping mall Rives de l’Orne in
Caen, where we aim at involving around 100 users2. The
experimental protocol we propose here has been successfully
applied in the different scenario of a teaching assistant robot
[18], where several COACHES components were used to
implement the system.

More specifically, the experimental protocol will be based
on the Godspeed Questionnaire Series (GQS) [19], a com-
mon evaluation method for HRI. GQS will be used to asses
the success of the robot, evaluating the emotional states

2Results of these experiments will thus be ready by mid-July 2017.



of people during the interaction. The questionnaire will be
submitted to users (customers and vendors of the shop-
ping mall) characterized by different features (independent
variables). The measure of the GQS features (dependent
variables) and the consequent statistical analysis will allow
for an important user evaluation of the COACHES robots.A
sketch of the experimental methodology is the following: (1)
Definition of the independent variables (e.g., type of user:
customer/vendor, gender, age, task to be executed, type and
level of interaction with the robot, etc.); (2) Selection of the
users, following a between-user approach, each user will par-
ticipate to a single test; (3) Filling the paper questionnaires
by the users before and after the experience with the robot;
(4) Statistical analysis of all the collected data.

The output of the statistical analysis will be useful to
assess the effectiveness of the COACHES approach in
achieving the considered tasks as well as the user feelings
about the system.

B. Public demonstration
We ran a demonstration of the two robots collaborating to

guide visitors to researchers offices and to various services
in our lab with the same tasks as in the mall. The mission
was made of 3 layers: first, the robots come to predefined
wait-points near entrances, where they offer assistance to
visitors. Second, visitors use the touchscreen (fig.8) to ask
for services like a specific office. Finally, the robot escorts
the visitor (fig. 9.a) to the destination and then returns to
a free wait-point. Each step is planned jointly by the two
robots to avoid conflicts (fig. 9.b).

Fig. 8. Interaction with visitors

(a) (b)
Fig. 9. a) Escorting to office; b) Robots coordination

VII. CONCLUSION AND FUTURE WORKS

We presented a practical and novel models for cooperative
robots for assistance in public areas by sharing tasks and
interacting with people. We developed a framework allowing
a fleet of robots to reason and synchronize their local static
and dynamic KBs by exchanging appropriate information
and to develop an augmented MDP using a value matrix for
a marked-based auctioning to better coordinate the robot ac-
tivities. We also presented a module of perception dedicated

to the people detection and tracking, face detection and 2D
escorting with different algorithms and a multi-modal human
robot interaction. We developed a software allowing a fleet
of robots to assist in a cooperative way a group of peoples
by sharing autonomously tasks and maintain interaction with
people they assist. A video is available on the web site
presenting the overall behavior of the system with two robots
at greyc.coaches.fr.
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Semantic Monte-Carlo Localization in
Changing Environments using RGB-D Cameras

Marian Himstedt, Erik Maehle

Abstract—The localization with respect to a prior map is a
fundamental requirement for mobile robots. The commonly
used adaptive monte carlo localization (AMCL) can be found
on most of the mobile robots ranging from small cleaning
robots to large AGVs. While achieving accurate pose estimates
in static environments, this algorithm tends to fail in the
presence of significant changes. Recently published extensions
and alternatives to AMCL observe the environment over longer
times while building complex spatio-temporal models. Our
approach, in contrast, utilizes object recognition and prior
semantic maps to enable robust localization. It exploits the fact
that putative changes in the environment can be predicted based
on prior semantic knowledge. Our system is experimentally
evaluated in a warehouse environment being subject to frequent
changes. This emphasizes the importance of our algorithm for
challenging industrial applications.

I. INTRODUCTION

Mobile robots require a robust estimate about their pose
with respect to a prior map to provide services and to ensure
safe navigation. Occupancy grid maps are commonly used
since they provide valuable input not only for localization,
but also for path planning and obstacle avoidance. A number
of requirements for all of these modules have to be met in
order to obtain a robust system while avoiding to maintain
multiple maps for each of them. Special attention is required
in changing environments. For localization, it is necessary to
find sufficient correspondences among the prior map and the
current observation. For global path planning, it is beneficial
to avoid all known obstacles, while local planning layers can
account for minor changes or dynamic objects. It appears
rather important to ensure that the global topology in terms
of traversability is not violated.

Existing systems for map-based localization can be sum-
marized as follows, they:

1) assume a static environment or
2) continuously map and preserve the latest state for

future tasks or
3) have to observe their working space over longer times

in order to identify and predict systematic changes
It is rather unlikely that implementations based on (1) are
able to provide robust localization results in changing en-
vironments. Depending on the kind and extent of change,
the pose estimation can slightly drift or completely diverge
from the true pose. Systems based on category (2) are
likely to risk the above mentioned requirement of global

All authors are with the Institute of Computer Engineering, University of
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traversability of path planning. If, for instance, a large
obstacle is placed inside a hallway, which is observed by
a mobile robot, this subspace in the map will be labeled
occupied based on a single observation. This, in turn, might
entail that parts of the map become inaccessible from the path
planning’s perspective until the update will be reverted based
on novel observations. This event can be noticed in numerous
robotic applications, e.g. pallets and parked vehicles in
warehouse hallways or humans in populated public spaces.
Without further evidence about the nature of change, the
systems based on (2) might ensure localization performance
but potentially generate unnavigatable maps. The observation
and incorporation of changes in map subspaces over time
is investigated by approaches based on the category (3).
These were demonstrated to achieve promising results in
localization while still maintaining valid maps for naviga-
tion. The underlying models, however, typically require a
quantitative number of observations for achieving relevant
information about map subspaces that can be utilized for
predictions and uncertainty estimation. Due to the missing
domain knowledge, the process can become of substantive
complexity when analyzing individual grid cells of large
maps while raising the crucial question whether robotic
navigation can actually benefit from all this information.
This becomes particularly apparent when modeling the free
space of large corridors being frequently passed by humans
or robots. Visited cells of this space constantly undergo state
transitions. How is this distinguished from transitions caused
by semi-static objects as, for example, pallets at reloading
points or parked vehicles?

Contrary to the systems based on (1) - (3), we introduce
Semantic Monte Carlo Localization (SMCL) which augments
existing methods by object recognition to enable robust
localization while maintaining valid maps for navigation in
changing environments. Our approach copes without the
need of long-term observations or continuous mapping. The
key idea is to recognize objects being commonly present in
the target environment. Our approach utilizes semantic maps
being generated once based on the common object classes.
Our measurements are originated from a RGB-D camera
providing depth and color data from which object classes
can be inferred. The probabilistic association of places in
the map and observations is supported by this information.
Measurements are incorporated according to the expected
contribution of the associated object class which can be
determined a-priori.

Our approach is experimentally evaluated on an automated



guided vehicle (AGV) in a warehouse environment which is
subject to frequent changes. This application requires reliable
localization over periods of time. Full autonomy is required
once the AGV has passed a teach-in drive with the support
of a human supervisor. We demonstrate that SMCL is able
to robustly estimate the AGVs global pose throughout all
experiments. We expect that our approach is valuable for
service robots in environment types being subject to changes
whose roots can be determined a-priori: e.g. humans in
populated environments, palleted goods in warehouses or cars
on streets.

Our key contributions:
• Robust localization in changing environments using

semantic perception
• No continuous observation or mapping of environment
• Use of RGB-D cameras instead of laser range finders

II. RELATED WORK

This sections provides an overview of work which is
related to localization in changing environments. This mainly
addresses the research field of map-based localization, how-
ever, for the sack of completeness, we further include relevant
work in place recognition and SLAM focusing on changing
environments.

A. Map-based Localization

The most common method for map-based localization is
given by the Monte Carlo localization (mcl), often imple-
mented and referred to as adaptive Monte Carlo Localization
(amcl) [19]. The majority of work in this field are extensions
of amcl. The early work of Thrun et al. suggests to explicitly
detect and model short readings being a frequent source of
association problems due to dynamic objects such as humans
[19]. Thanks to this extension, the authors reported on
more reliable pose estimations for an automated tour guide
robot in a museum [2]. Meyer-Delius et al. presented
the idea of temporal maps being able to capture dynamic
changes over multiple time frames through agglomerated
incorporation of temporary local maps and a global map
[12]. With the experience gained from this idea, Tipaldi
et al. further suggested the use of Hidden Markov Models
(HMM) to model state transitions of individual grid cells
of a global map [20]. Their system learns state transitions
«free ! occupied» and vice versa. A Rao-Blackwellized
particle filter (RBPF) is used to infer the robot pose in
this map representation. Saarinen et al. presented the
concept of independent markov chains which, similarly to
[20], are learnt for each grid cell [16]. The stochastic
process counts events of state transitions and based on that
allows to predict probabilities of dynamic changes. In [17],
the authors further demonstrated the robustness in dynamic
environments based on a MCL variant utilizing a Normal
Distribution Transform (NDT). More recently, Krajnik et
al. proposed Frequency Map Enhancement (fremen) which
builds probabilistic functions of time to model environments
[10]. A mixture of amcl and the SLAM algorithm gmapping

[5] is used to continuously build spatio-temporal maps and
enable global localization w.r.t. a prior map. Based on
sets of observations made at varying times and timescales,
this representation learns to predict putative changes and
frequently incorporates recent information. In order to ensure
robust state estimates over longer periods of time, the authors
suggest to regularly re-initialize the global localization (amcl)
at a known place (charging station).

Atanasov et al. incorporate semantic observations in
localization using the Matrix Permanent [1]. Similarly to our
approach, the authors match object observations to a prior
map, however with the main objective of recognizing places
rather than enabling robustness in changing environments by
means of a-priori knowledge about potential object reloca-
tions.

B. Place Recognition

Since place recognition can be used for the global lo-
calization of a robot w.r.t. a prior map. The majority of
the state-of-the-art in this field differs from our approach
since they rather enable topological localization and loop
closure detection than locally accurate metric localization.
Nevertheless they share the same challenge: The association
of places in the environment being subject to change. Milford
et al. suggested to identify place correspondences across
substantive changes by utilizing sequences of low-resolution
image representations [13]. Churchill et al., in contrast, make
use of high-level image features and incorporate varying
environmental conditions as new experience [3]. Also the
authors of [14], [18], [15] presented methods for establishing
robust correspondences across changes in seasons, day time
and weather conditions.

C. SLAM

The application of SLAM for long-term robot pose estima-
tion has been investigated by several researchers. Labbe et
al. [11] and Hartmann et al. [6] proposed solution for SLAM
with appearance-based loop closure detection which were
reported to be capable of multi-session mapping. Einhorn et
al. utilize the normal distribution transform (NDT) to infer
loop closure candidates and estimate transformations of graph
nodes [4]. Either of the authors relocalize a mobile robot in
a SLAM graph [11], [4], [6] while constantly incorporating
new observations in the map.

D. Summary

Algorithms for map-based localization incorporate changes
based on continuous observations of the environment. The
systems presented in [10] and [14] are able to predict
changes once the environment has been sufficiently observed.
The robustness in [10] is achieved based on frequent re-
initializations and repeated mapping. None of the related
approaches incorporates semantic perception to enable robust
localization in the presence of significant changes right after
building an initial map. Existing SLAM-based systems keep
running all the time while constantly overriding the map.
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Figure 1: The graph provides an overview of our semantic perception framework. It demonstrates how the key contribution
of this paper, the semantic localization, is integrated. The input RGB-D sensor data is passed to the first component in
order to recognize known objects (object recognition). This module generates a 2D projection of the 3D point cloud with
measuring points being at either a specified height for unknown objects or at object-specific height references, e.g. the first
horizontal pillar of a rack. This range scan is supplemented by object class labels for each beam. SMCL evaluates the
annotated range scan and estimates the vehicle’s pose w.r.t. the prior semantic map.

Without appropriate semantic perception this is undesirable
for a number of applications since the maps rapidly become
unnavigable.

III. SEMANTIC PERCEPTION

The semantic perception framework is a key element of
our system. It consists of the components object recognition,
semantic mapping and semantic localization. Their function-
alities are described in the following. Fig. 1 illustrates the
overview of the entire system highlighting also the parts of
object recognition and semantic mapping. This demonstrates
their positions within the overall system and its connections
to other components.

A. Object Recognition

The object recognition is the fundamental requirement of
our semantic navigation system. An exhaustive presentation
of the object recognition system the reader is referred to our
previously published work in [8]. The principle is outlined
in the following:

1) Firstly, the input depth data is processed by an efficient
contour-based segmentation which identifies segment
boundaries based on range and height discontinuities.

2) Geometric properties of segments, specifically the ob-
ject height and width, are estimated.

3) The a-priori given object class database is searched for
correspondences based on the geometric features.

4) For all putative matching object classes:
a) A region of interest (ROI) in the RGB image

is defined around the object observation with
coordinates being obtained by step (1).

b) Features are extracted from the ROI which are
obtained from the fc7-layer of a Convolutional
Neural Network.

c) The feature vector is evaluated using a multi-class
Support Vector Machine.

d) The class with minimum distance is selected.
e) If the distance is below a threshold ⌧

cl

then those
points associated with the observed object are
assigned the corresponding class labels.

For the application of warehouse environments as it presented
in this paper, we aim at recognizing the following object
classes: (high-level) rack, gate, pallet, forklift, human.

Each of the object classes is of particular interest for
robotic navigation. The storage goods placed inside a
rack are constantly moved which potentially decreases the
localization accuracy within warehouse hallways. Gates are
typically opened and closed multiple times a day. Due to their
widths they significantly contribute to the pose estimate when
approaching them. Bypassing humans and even more parked
or moving forklifts can cause increased localization errors.
The class forklift comprises all relevant vehicles that can
potentially be observed. The detection of pallets is beneficial
since they are frequently moved in warehouses which results
in major changes in the environment, particularly at reloading
areas whose appearances constantly switch from widely open
to occupied. We observed that the mentioned object classes
are the most common and relevant ones for this type of
environment. All other objects are labeled as unknown.

B. Semantic Maps

A semantic map m is built based on a regular grid with
each grid cell m

i

describing an occupancy probability and
an associated class label. It is generated based on odom-
etry readings and RGB-D data using a graph-based SLAM
system. During mapping, we constantly search for objects
being of interest for the target environment, particularly for
navigation purposes. Measurement point sets associated with
recognized objects are maintained by the SLAM algorithm.



Figure 2: The semantic layer is plotted on top of an occupancy grid map. Grid cells are supplemented by object class labels.
Gates and racks are identified based on our object recognition system. Reloading areas (red) are inferred from multiple
pallet observations outside of racks. Single pallets as well as those placed at reloading areas are incorporated in the map but
ignored for localization purposes. Charging stations (purple) tagged with a checkerboard sign are automatically mapped.
They are used as initialization of SMCL in this work.

The final points in the map coordinate frame are projected
into semantic map grid. Grid cells being hit by the object
observations are assigned the corresponding class label. The
object class is estimated from a putative uncertain set of
observations. The semantic maps incorporate the classes rack
and gate detected by our object recognition system. These
are supplemented by charging stations and reloading areas.
Charging stations are recognized based on predefined signs
whereas reloading areas are inferred from the observation
of multiple pallets in open space areas. Even though this
is technically possible, we omit storing objects which are
likely to change their positions. Here this addresses the object
classes pallet, forklift and human. Fig. 2 shows an example
of a semantic map. A more exhaustive description of the
semantic map generation can be found in our prior work [9].

IV. LOCALIZATION

Given a semantic map m as described in Section III-B, a
particle filter is used in order to perform global localization.
The robot’s state at a discrete time step t is expressed by
its pose x

t

= (x, y,j) containing the 2D location (x, y) and
orientation j. The state x

t

is predicted based on odomet-
ric readings which are incorporated by the motion model.
The observation model evaluates sensor measurements z

t

obtained from the RGB-D sensor with respect to the prior
map.

A. Motion model
The motion u

t

= (v
t

,w
t

)

T carried out by the robot
is modelled by its translational velocity v

t

and rotational
velocity w

t

. The odometry is subject to noise which can
occur due to a variety of sources, for instance: wheel slip,
varying inflation pressures of tyres or load balance of the
vehicle. In order to incorporate this uncertainty in our motion
model, we add zero mean Gaussian noise sv with standard
deviation sv as detailed in [19]:
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The state transition from the previous state x
t−1 to the

predicted state x0
t

after �t units of time is defined by the
following motion model:
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B. Observation model

The observation model utilizes the latest range sensor
measurement to evaluate each particle xk

t

. Given the map m
and the observation z

t

, we estimate the observation likelihood
p
�
z
t

|xk

t

,m
�

for the k-th particle.
The key contribution of our work affects the observation

model. Traditionally it consists of a range model projecting
end points of sensor beams in the map coordinate frame
originated at the particle’s state xk

t

. The occupancy value
of the hit grid cell m

i

is evaluated and the distance r
mi is

estimated. Our approach additionally considers object class
labels of semantic grid maps to evaluate correspondences of
range measurement points and grid cells. We will further
refer to the sensor observation of an individual beam k at
time t as zk

t

= {r, o}k
t

with r being the measured range and
o the estimated object class for the k-th beam.

1) Range model: This model evaluates the particle set
according to the differences of the measured range rk

t

and
the range projected from the particle’s pose to the map grid
cell m

i

being hit by rk
t

. The closest cell m
i

is found using
nearest neighbour search as exhaustively described in [19].

Given the ranges rk
t

and r
mi , the likelihood p

r

of measur-
ing rk

t

given m and particle state x
t

can be estimated as:

p
r

�
rk
t

|x
t

,m
�
= exp

✓
� |rk
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� r
mi |

2�2
r

◆
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with �2
r

describing the expected measurement uncertainty.
This range model is the core of the likelihood field sensor

model which is also used in AMCL providing the basis to
compute a particle’s weight.



2) Object model: The semantic perception is integrated
inside the object part of the observation model. It incorpo-
rates class-specific observation uncertainties which can occur
due to objects of similar visual appearance or geometric
properties. The object correspondence matrix describes
this a-priori knowledge which expresses the probability of
measuring a certain object class given the object class of the
cell o

mi :

p
o

�
ok
t

⌘ o
mi

�
= p

�
ok
t

| o
mi

�
(4)

The object correspondence matrix does not have to be
symmetric, hence O

ij

6= O
ji

is a valid constraint. This
enables to specifically account for single-sided observation
uncertainties. The matrix used for our system is given by
Table I.

Predicted Class
Rack Pallet Gate Forklift Human Unknown True Class
0.99 ✏min 0.5 ✏min ✏min 0.5 Rack

– – – – – – Pallet
0.5 ✏min 0.99 ✏min ✏min 0.5 Gate
– – – – – – Forklift
– – – – – – Human

0.5 ✏min 0.5 ✏min ✏min 0.99 Unknown

Table I: The object correspondence matrix describes the a-
priori probabilities of measuring certain object classes. As
already mentioned, the dynamic classes pallet, forklift and
human are not stored in the map and hence their observation
does not contribute to the pose estimate. The value ✏

min

is
a small nonzero value to avoid numerical issues.

3) Model fusion: The presented sub-models for range and
object perception are probabilistically fused within a common
sensor model. The individual components of this mixture
are weighted in order to account for sensor and environment
characteristics. For instance, the weights of the range model
can be adjusted according to the measurement accuracy of the
depth sensor. The weight for the object model can be set with
respect to the classification accuracy or overall uncertainty
being expected.

The mathematical derivation for the mixture model pk

given the measurement zk
t

can be expressed as follows:

pk(zk
t

|x
t

,m) = z
r

· p
r

+ z
o

· p
o

(5)

with z
r

and z
o

denoting the prior weighting factors for
the individual components. All measurements z

t

at time t
are incorporated according to:

p(z
t

|x
t

,m) =

Y

k

pk (6)

4) Summary: The presented semantic sensor model pro-
vides an extension to the generic likelihood field model.
More precisely, the association of putative correspondences
of projected measurement end points and map grid cells is
established using the latter. Instead of purely evaluating

particles based on the estimated spatial displacements, the
semantic model considers additional information that can be
observed using RGB-D cameras. Similarly to the generic
likelihood field, the pose estimate will be more accurate
and robust the more correspondences are found. The key
difference, however, is that the semantic sensor model sig-
nificantly mitigates or even disables the contribution of false
correspondences which is not the case for the generic sensor
model. The latter literally matches any observed obstacle to
the closest one in the map which may result in significant
pose deviations. For estimating the pose w.r.t. to the prior
map it is important to use stable correspondences. Points
inside a subspace of the map being subject to frequent
changes, which are not necessarily predictable, rather confuse
the localization algorithm than contributing to robustness or
accuracy.

V. EXPERIMENTS

We evaluate the presented approach for semantic local-
ization by experiments carried out in a warehouse which
consists of a multitude of common objects expected for this
type of environment. The data is collected using a reach
truck which has been fully automated for a research project.
For the purpose of semantic mapping and localization, we
manually steered the vehicle inside the warehouse. The
RGB-D data utilized by our system is recorded using two
Asus Xtion cameras with one being aligned forwards and
one sidewards with respect to the vehicle’s direction of
travel. We use the following parameters for our evaluation:
↵1, ...,↵4 = [1.0, 1.0, 1.0, 1.0] , �

r

= 0.2m, z
r

= 0.5,
z
o

= 0.5, p
occ

= 0.7, p
free

= 0.3, t
svm

= 0.4

A. Datasets

A number of datasets were recorded given the described
setup. This set consists of different experiments focusing
on particular problems the state-of-the-art algorithm AMCL
faces in changing environments. We will shortly describe
each of the datasets in the following.

1) Static: This dataset was captured subsequently to the
mapping process with no objects being moved in order to
estimate the baseline localization accuracy of the presented
approach.

2) Gate: The vehicle is steered towards an open sectional
gate which was closed within the mapping process. Three
pallets are placed below the open gate area. However,
the boundaries of the pallets are 0.65m apart from the
actual gate and hence are outside of the recorded map area.
This demonstrates a common highly dynamic area inside a
warehouse with the gate being frequently opened and closed.

3) Rack: The reack truck is driven through a hallway
surrounded by high-level racks. The pallets of the lower
sections are slightly moved about 0.1m towards the hallway.
This experiment investigates the impact of changing content
inside racks on the localization accuracy. This effect can
be observed due to accumulated errors occurred during
automated reloading processes or more obviously due to



pallets being stocked by humans in environments with both
automated systems and human operators.

4) Reloading: Particularly larger free space areas of ware-
houses are subject to changes due to palleted goods being
frequently moved. We recorded a trajectory which passes a
typical reloading area of a warehouse in order to analyze the
algorithm’s robustness in the presence of significant changes.

5) Mixed: This dataset investigates the algorithm’s perfor-
mance over longer time covering a trajectory length of about
269 m and period of time of about 28 min. The environment
is constantly reconfigured during this experiment.

B. Ground truth

The ground truth trajectory for each dataset is estimated
using a SICK S-300 laser range finder. Thanks to the large
field of view (270°), long range (30m) and sub-centimeter
accuracy of the sensor, we are able to provide high-resolution
ground truth data. Since also a laser-based localization sys-
tem (such as AMCL) would be affected by the environment
changes being investigated, a SLAM algorithm is used to
generate individual maps and estimate the traversed paths.
The underlying graph-based SLAM framework which makes
use of a joint map and pose estimation is described in [7]. In
order to align the trajectories to a common global frame, a
checkerboard detection system with known absolute pose is
placed on top of a charging station. The latter is also utilized
as additional, highly accurate, loop closure detection. Note
that this system is not utilized in any way by the localization
algorithms being evaluated here. The accuracy of the ground
truth is below 0.03m.

C. Results

Figure 3 illustrates the results obtained for SMCL and
AMCL respectively.

1) Static : Both, AMCL and SMCL provide robust and
accurate results. The position accuracy is at about 0.21m in
the mean.

2) Rack : The results of AMCL are adequate for minor
changes inside the racks. However, once a significant amount
of storage content is moved, the localization error of AMCL
increases. Since AMCL does not distinguish particular ob-
jects, it estimates the vehicle’s pose w.r.t. the rack’s changing
content which can be palleted goods or the pillar. SMCL, in
contrast, correctly identifies the high-level racks and relies on
the first horizontal pillar for the localization which ensures
robust and accurate results within warehouse hallways. The
error of SMCL remains constantly to its baseline whereas the
error of AMCL increases by about 0.1m which is related to
the amount and degree of the change inside the racks.

3) Reloading: It can be observed that AMCL fails once
the vehicle enters the spacious reloading area in front of
the gate. The pose estimate significantly deviates due to a
notable amount of change being present in this area. The
error of AMCL increases to about 2.38m. The particle filter
of AMCL diverges in this experiment and does not recover

without re-initialization. SMCL correctly identifies pallets in
this area and robustly tracks the vehicle’s pose.

4) Gate : As expected, AMCL literally pushes the vehicle
towards the occupied map area being actually covered by the
gate. SMCL correctly recognizes that the perceived objects
are pallets instead of parts of the gate and hence its pose
estimate does not deviate. AMCL deviates by about 0.83m
at the gate area and continues with an increased error. This
confirms the necessity of storing gates in the map.

5) Mixed : AMCL frequently deviates during this ex-
periment up to a maximum error of about 1.47m. SMCL
performs with a better mean error of about 0.25m. In
some situations during this experiment SMCL deviates up
to a maximum error of about 0.76m. We expect that this
has happened during continuous loops in the reconfigured
reloading area. Due to the limited perception field, SMCL
was unable to observe sufficient stable points and and hence
relied on odometric measurements.

D. Discussion

Either of the algorithms achieve a baseline accuracy of
about 0.21m. This differs from those results that can
be obtained using laser range finders (LRFs) due to the
following reasons. Firstly, the measurement accuracy of
an LRF is significantly higher over the entire operating
range compared to RGB-D sensors, particularly in the case
of Kinect-like cameras as being used in our experiments.
Secondly, the operating range and field-of-view of the LRF
is substantially larger, e.g. (30m; 270deg) for a SICK S-
300 vs. (5m; 58deg) for a ASUS Xtion camera. This
difference becomes particularly apparent in areas of larger
free space where RGB-D cameras can hardly perceive any
obstacle whereas LRFs can typically observe a large area
over a long time. The limited sensing properties of RGB-
D sensors also cause an increased uncertainty and hence
limit the accuracy of the maps even when using customized
SLAM methods such as [7]. Nevertheless, the use of these
cameras enables a number of benefits, such as reduced costs
and a high information density for object recognition. The
latter provides a substantial requirement for the semantic
perception layer of SMCL.

AMCL performs well as long as sufficient static obstacles
are present and observable (e.g. large walls), otherwise it fails
or becomes inaccurate. The error of AMCL in the gate and
reloading area (up to 2.38m) is not acceptable for automated
systems. Drive requests might not be fulfilled since targets
are failed. The consequences of association errors at a
gate can be enormous since an automated vehicle can be
attracted outside the warehouse into an unmapped area which
might be inaccessible for itself and not expected by humans
residing in this area. The minor errors of AMCL close to
the racks (about 0.32m) might be acceptable if an additional
system can be utilized for actual reloading processes, e.g.
by measuring pallet poses as targets and apply reactive
approaching strategies. However, the increased uncertainty in
combination with the lack of semantic perception can cause



more significant errors or filter outages, if more dynamic
objects such as other AGVs or unexpected pallets are present.
Pose estimates of SMCL also deviate in the presence of
significant changes, but orders of magnitude less than AMCL
does. The uncertainty of SMCL increases but still covers
the true pose which enables SMCL to correct its pose and
minimize its uncertainty once sufficient correspondences are
found.

The higher robustness of SMCL can be achieved taking
into account a slight increase of computational times. The
estimation of the object part within the sensor model requires
about 5ms for each iteration which can be neglected. The
object recognition system requires about 273ms in the mean,
and 498ms in the maximum resulting in a runtime of about
4Hz using solely CPUs.

VI. CONCLUSION

Semantic maps provide a number of substantial benefits
for mobile robots. This paper presents an approach utilizing
the latter as prior for the map-based localization of an
AGV. The most commonly used algorithm AMCL provides
accurate results and enables global localization. However,
the underlying sensor model hampers its use in dynamic
environments being subject to numerous changes over time.
The goal here is to incorporate the semantic information of
the map inside the core of the localization. The association of
map and sensor data is augmented by additional knowledge
about known objects classes and their predicted properties
in terms of dynamic changes and contribution to the global
pose estimate. Our approach requires only limited additional
overhead for modeling changes of the environment within
the map representation since the latter are not constantly
incorporated into spatio-temporal models as it is the case for
the majority of related algorithms. Our paper demonstrates
that these expensive models are not necessarily required
if prior knowledge about commonly observed objects is
available. The semantic perception layer is not exclusively
designated for the localization system. A multitude of other
components benefit from this as well, e.g. the human-robot-
interaction, mapping of storage places or even for tailored
obstacle avoidance.

The accuracy and robustness of SMCL was demonstrated
to outperform the state-of-the-art in map-based localization.
We expect the outcome of our paper to be directly beneficial
for the emerging application of AGVs in logistic environ-
ments and motivate the utilization of semantic mapping and
localization for other robotic applications. The key advan-
tage, that is the limited number of commonly observed object
classes, is feasible for many other scenarios. Detecting cars,
buses and pedestrians will likely enable higher localization
accuracy for on-road driving. Likewise the navigation of
mobile robots in shopping malls, stations and airports can
benefit from the recognition and consideration of humans,
carts and suitcases.
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Figure 3: Experimental results obtained for the individual datasets static, rack, reloading, gate and mixed (one for each
row). The left column shows the position error, the right column the orientation error. The dashed lines show the mean
error on the individual datasets for either algorithms. The baseline accuracy of SMCL and AMCL is at about 0.21m. Due
to significant changes in the environments, such as the closing state of a gate, the relocations of pallets and parked vehicles,
the error of AMCL increases enormously (see gate) or AMCL diverges (see reloading). SMCL, in constrast, is able to
robustly estimate the vehicle’s pose even in the presence of high dynamic changes.



An Efficient Backtracking-based Approach to Turn-constrained Path
Planning for Aerial Mobile Robots

Hrishikesh Sharma1, Tom Sebastian1 and Balamuralidhar P.1

Abstract— Many important classes of civilian applications
of Unmanned Aerial Vehicles, such as the class of remote
monitoring of long linear infrastructures e.g. power grid, gas
pipeline etc. entail usage of fixed-wing vehicles. Such vehicles
are known to be constrained with restricted angular movement.
Similarly, mobile robots such as car robots or tractor-trailer
robots are also known to entail such constraint. The algorithms
known so far require a lot of preprocessing for turn constraint.
In this paper, we introduce a novel algorithm for turn angle-
constrained path planning. The proposed algorithm uses a
greedy backtracking strategy to satisfy the constraint, which
minimizes the amount of backtracking involved. By further
constructing an efficient depth-first brute-force algorithm for
path planning and comparing against its performance, we see an
improvement in convergence performance by a factor of at least
10x. Further, compared to recent LIAN suite of path-planning
algorithm, our algorithm exhibits much reduced discretization
offset/error with respect to shortest path length. We believe
that this algorithm will form an useful stepping stone towards
evolution of better path planning algorithm for specific mobile
robots such as UAVs.

I. INTRODUCTION

The usage of Unmanned Aerial Vehicles (UAVs) for
remote surveillance applications especially of civil nature is
gaining attention worldwide. Such mobile aerial robots are
also being increasingly used in coordination with Unmanned
Ground Vehicles (UGVs) as mobile robots as well [1]. Many
of these applications need usage of long-endurance vehicles,
especially of fixed-wing UAVs. An example bunch of such
applications includes remote health monitoring of long linear
infrastructures [2]. Such infrastructures, which support criti-
cal utilities, include power grid corridors, oil and gas pipeline
corridors, railway corridors etc. The area of surveillance
is typically vast, running into tens of kilometers. Hence
planning for UAV missions for such applications has received
separate attention e.g. in [3]. Such infrastructures mostly
run through complex remote outdoor terrains, typically non-
urban, such as forests, hilly regions, wetlands etc., for such
lengths. This makes remote monitoring of such systems a
very challenging task. Given the vastness, it is necessary that
the mission route being planned is as short as possible, to
conserve battery power.

One important constraint in controlling of fixed-wing
aircrafts is maximum turn angle constraint. Such constraint
is used to limit the turn rate within the UAV controller, so
as to avoid various types of dangerous aerodynamic stalls

1All the authors are with Embedded Systems and
Robotics Research Lab, Tata Consultancy Services
Ltd., India. hrishikesh.sharma@tcs.com,

tom.sebastian@tcs.com, balamurali.p@tcs.com

during its flight mission [4]. However, in case of shortest
path planning, limited turn rate navigation of an aircraft can
lead to more number of turns in a specific mission. This in
turn leads to slowing down of the vehicle, resulting in longer
mission time [5]. Hence it is important to design for efficient
turning along each mission’s path.

In the plethora of prior works on path/route planning,
A* has been the popular workhorse algorithm, in a discrete
navigation space[6]. However, especially for route planning
with turning constraints, A* is known to be inefficient [7].
This is because each of the neighbors, along with path can be
possibly augmented, leads to turn angle which is constrained
to be one of h±45�, ±90�, ±135�i. In another solution
[8], a graph transformation is performed first, followed by
a path search on the transformed graph. But such algorithm
is inefficient for simple reason: in a 2D grid for example,
there are typically at maximum 1 neighbor left post transform
for each node, since the turn limit is generally about 30�

[9], [10], [11]. On such a sparse graph, the path which is
deemed optimal is actually very suboptimal when compared
to the optimal path in the continuous version of the problem,
since discretization offset/error is very high. [11] solves this
problem using Bellman-Ford algorithm, which is known to
have a much higher complexity (O(|E| · |V|) than the ones
based on Dijkstra’s algorithm O(|E|+|V|log|V|) such as ours.
In yet another related work [12], angle-constrained motion
planning is carried out along with other kinematic constraints
arising out of high windy conditions. However, the due to
dynamic change in the lift, the turn limit itself is a variable.
Towards minimization of the alternative aspect of number
of turns, few solutions are provided in [5], [13]. However,
it is shown that such paths can be up to 22% longer than
ideal solution on an average, even in 2D case. Further, none
of the above works applies in a straightforward way to the
case when the flying region has communication coverage
holes, a problem that has been dealt separately by us [14].
A performance-wise comparison of few more of these works
is provided in section VI.

One of the common problems in the workhorse path
planning algorithm, A*, was the error due to discretization
of the grid. Such error has recently been reduced in a
modified A* algorithm, known as “Theta*” [15], or any-
angle path-planning algorithm. Many variants of this signif-
icant advancement have also come up within last decade.
A significant property of this heuristic algorithm is that it
leads to countably finite but much larger set of feasible
turning angles at various points of turn along a path. We
exploit this property to design a novel heuristic variant of



Theta*, which obeys a maximum turn angle constraint. The
novelty of our algorithm is that we have introduced a new
greedy backtracking strategy to satisfy the constraint, which
locally minimizes the amount of backtracking involved.
Using the same algorithm, we were able to design path
planning in regions with coverage holes as well, another
contribution. Theta* being a 2D path planning algorithm, our
algorithm is first described as 2D path planning algorithm. It
is important to note that such simplification is not restrictive:
our algorithm scales to 3D space as well (c.f. section VI-C).
Being a variant of Theta*, the discretization error is shown
to be limited by the same limits as that of Theta*: 8% in 2D
case and 13% in 3D case [16]. The additional advantage we
get that of fast convergence with no additional discretization
error. This is because in path planning over vast area, size
of grid/graph is quite big, and hence solution time is quite
important.

In the remaining paper, we first provide the model for
corresponding optimization problem. We then overview the
Theta⇤ algorithm, which is followed by a presentation of our
novel algorithm for angle-constrained path planning, in the
next section. The results of simulation and their analysis is
presented next, before we conclude the paper.

II. PROBLEM MODEL

The problem is modeled as a constrained optimization
problem [17]. In terms of decision variables, there is only
one set involved. This set is the 3D instantaneous location of
the UAV: hx, y, zi. If the altitude is held/assumed constant,
then the location is a 2-tuple, formed by latitude and
longitude. In terms of constraints, there are many common
constraints which a correctly planned path must conform
to [18], [19]. For example, in practice, being related to
“turning radius” constraint in case of motion planning,
turn angle constraint only works if it is combined with a
certain “minimum distance between two consecutive turns”
constraint [11]. However, for lack of presentation space,
in this paper, we have restricted ourselves to design for
the most critical constraint, the turn angle constraint. The
constraints being independent of one-another, they can be
applied to a greedy solution orthogonally, to prune the
search space. The (decoupled) design towards remaining
constraints has been presented in [14], including “minimum
distance” constraint. This paper does not deal with turn
radius constraint, because of the assumption of constant
speed explained later. The corresponding restricted and
independent problem model that was solved for, is as follows.
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In the above model, P

Ti , i 2 1, . . . , T are the coordinate
tuple of each turning point along the path in some coordinate
system, e.g. world coordinate system.

A. Turn Angle Constraint

This constraint forces the generated route to make turning
manoeuvre, less than or equal to a predetermined maximum
turning angle. Such constraint is meant for fixed-wing vehi-
cles, the focus of this paper. The actual kinematics behind
this constraint is explained in [11].

In practice, being related to “turning radius” constraint in
case of motion planning, turn angle constraint only works if it
is combined with a certain “minimum distance between two
consecutive turns” constraint [11]. Our algorithm straightfor-
wardly works with this constraint, as detailed elsewhere in
[14].

III. SOLUTION APPROACH

As part of a larger research goal, we have designed an
efficient path-planning algorithm which navigates through
multiple communication coverage holes [14]. Being as-
sociated as a component in that algorithm as well, the
turn-constrained path-planning algorithm presented herein
is specifically designed in a way that it can handle large
coverage holes. In such case, it is corroborated in [20] that
the best possible speed while simultaneously optimizing for
distance and communication costs is the maximum possible
speed of the UAV. Assumption of such constant (maximum)
speed decouples the motion and route planning parts of
path planning. Similar philosophy is followed in the popular
communication-agnostic 2-phase decoupled trajectory plan-
ning approach [6], [21], [22], where the factoring of dynamic
constraints is pushed to 2nd phase, while focussing on route
planning in 1st phase. Hence we have currently avoided
dealing with Dubin’s path design or motion primitive-based
design, towards (direct) motion planning [23].

Even when it comes to route planning, finding an optimal
solution is NP-hard, due to presence of obstacles [24]. Hence
two philosophical lines of solution exist: combinatorial and
sampling-based. Especially in motion planning, randomized
sampling based approaches are preferred [21], whenever the
solution space is high-dimensional. In the premises of our
problem, however, it can be seen that the solution space
is practically low-dimensional. This is because turn angle
constraint is a holonomic constraint. Further, we impose five
constraints in the overall problem [14]. Hence size of search
space becomes quite tractable, along with its low dimension-
ality. Hence it is more prudent to follow the combinatorial,
greedy approach where optimality is not asymptotic, unlike
randomized sampling-based algorithms e.g. RRT⇤, PRM⇤,
FMT⇤ etc., as described below.
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Fig. 1: Offset between Discrete and Continuous Shortest Paths, courtesy [15]

IV. BACKGROUND: THETA⇤ ALGORITHM

In geographical applications in which the navigation en-
vironment is continuous, a shortest path found using pop-
ular A* on any discretized graph entails a discretization
offset/error (c.f. Fig. 1). A recent and quite popular technique
which smoothens the path as it is being greedily evolved,
thus reducing this gap extensively, is Theta* [15]. Theta* is
a variant of A*, with the key difference being that Theta*
allows the parent of a vertex to be any vertex, unlike A*
where the parent must be a visible neighbor. To have such
extended, transitive parental relation, Theta* updates the g-
value and parent of an unexpanded visible neighbor s’ of
vertex s by considering an alternative extension. To allow
for any-angle paths, in each iteration, Theta* additionally
considers the grandfatherly extension from parent(s) to s’
in a straight line [cost = c(parent(s),s’)], resulting in a new
length of g(parent(s)) + c(parent(s),s’) if s’ has line-of-
sight (LOS) to parent(s). The idea behind considering this
alternative is that in case of Euclidean shortest path problems,
this alternative is never longer than previous default path, due
to the triangle inequality, if s’ has LOS to parent(s). If line
of sight is not present, then the extension in current iteration
happens in the normal A* way, along the grid.

V. OUR ALGORITHM

To reduce computational complexity [25], we solve the
discretized version of the optimization problem by imposing
a grid. The grid can be regular, or can be irregular as well.
In a discrete 3D Euclidean space with obstacles, it is known
that the underlying set of grid points is not convex [15]. In
fact, it is proven that for spaces of dimension 3 and above,
the problem is NP-hard [24]. Hence algorithms, typically
inspired by shortest path algorithms in a convex domain, e.g.
Dijkstra, have been researched for design for approximately
optimal solutions/paths. Theta* is one such algorithm that we
use this algorithm as base, and perform certain modifications
to satisfy the turning angle constraint.

The algorithm is summarized in Alg. 1. The expressions
surrounded by a text box are the additional changes over
the pseudo-code of Theta*[15]. It is easy to observe that our
improvements do not make the Theta* algorithm, which is

a lightweight greedy algorithm, overly complex. The stages
of this algorithm are explained in next few sections.

A. Angle Consistency Check at Augmentation Steps

In a greedy approach, turn is necessarily detected at each
path augmentation step, to ensure that the angle constraint
is continuously satisfied. To understand how turn is detected
at each step, we follow nomenclature shown in Fig. 2. We
also use the following theorem as we design our algorithm.

Theorem 1: In greedy Theta* shortest path algorithm, the
direction formed by hgrandparent, parenti and the direction
formed by hparent, currenti are not same. That is to say, the
nodes grandparent, parent, current are not collinear.

Proof: We first observe that since the evolving path
has already found a path segment between parent node and
current node along the line of sight between them, there
is no obstacle between them that crosses the line of sight.
Similarly, there is no obstacle between grandparent node
and parent node that crosses their line of sight. So if these
three nodes were collinear, then Theta* algorithm would have
found a direct line of sight between grandparent node and
current node itself, devoid of any obstacle between them.
In which case, parent of current node would have been the
grandparent node. Since that is not the case, we have a proof
by contradiction that the nodes grandparent, parent, current
are indeed not collinear, leading to a turn at parent node.

B. Angle Consistency with Grandparent

As is known, Theta* checks for a LOS condition between
the current node’s child/neighbor node, and its parent node.
If line of sight exists, then using triangle inequality, the
path augmented till the child node makes a “turn” at the
location of the parent node. The two directions/lines which
are involved and subtend a certain turn angle are a) line
between current node’s grandparent and the current node’s
parent, and b) line between current node’s parent and the
current node’s child/neighbor being considered. Hence the
first check has to make sure that before current node’s parent
and child are connected via a direct path, the above angle
is within the limit prescribed by the constraint. If the turn



Algorithm 1 Modified, Angle-Constrained Theta* Algorithm
UpdateVertex(s,s’)
if LineOfSight(parent(s), s’) then

. /* Path 2 */
if g(parent(s)) + c(parent(s), s’) < g(s’) then

if Angle(line(grandparent(s),parent(s)),
line(parent(s),s) < angle limit then

g(s’) := g(parent(s)) + c(parent(s), s’);
parent(s’) := parent(s);
if s’ 2 open then

open.Remove(s’);
end if
open.Insert(s’, g(s’) + h(s’));

else
goto : without LOS

end if
end if

else
without LOS: . /* Path 1 */

if g(s) + c(s, s’) < g(s’) then

if Angle(line(parent(s),s), line(s,s’))
< angle limit then

g(s’) := g(s) + c(s, s’);
parent(s’) := s;
if s in open then

open.Remove(s’);
end if
open.Insert(s’, g(s’) + h(s’));

else
Find another unexplored neighbor node of s

if Such node s” exists then
UpdateVertex( s, s” );

else
Block Node s’;
Backtrack partial path to the last parent

node of s, 1 unit away on grid
end if

end if
end if

end if

angle is 0�, then the constraint is trivially true.

valid turn at parent node possible =8
><

>:

true if \(line(gp(s),p(s)), line(p(s),s))
< angle limit

false otherwise

C. Angle Consistency with Parent

If the angle check fails, even if there is a LOS between
parent and child of the current node, then one must fall back
to the A* way for augmentation. In such case, one must
check whether the angle subtended between the line from
current node’s parent to the current node, and the line from
current node to the child being considered, is within the turn

Grandparent

Parent

Current

Neighbor Child

Fig. 2: Node Nomenclature for Shortest Path Algorithms

limit. Note that the line between current node’s parent and
current node, due to nature of Theta* algorithm, need not
be aligned at all with any grid dimension or grid diagonals.
Hence the possibility of success at this step is also on the
higher side, than the possibility considering A*. Once again,
if the turn angle is 0�, then the constraint is trivially true.

valid turn at current node possible =8
><

>:

true if \(line(p(s),s), line(s,neigh(s)))
< angle limit

false otherwise

D. Moving on to next Neighbor

If in both of the above cases, the neighbor node being
considered is not found suitable to augment the path along,
then we must look for alternatives. In that case, the child
node being checked should be dropped from consideration,
and another neighbor/child node of the current node is
tested for possible and compatible turn constrained path
augmentation (c.f. Fig 3).

current node

neighbor2

parent

grandparent

neighbor3neighbor4

neighbor1

Fig. 3: Consideration for Turn Constraint in Theta*

E. Backtracking on Exhaustion of all Neighbors

There are typical scenarios in square grid where plain
angle checking involving grandparent, parent and all other
neighbors of current node fails, especially close to obstacles.
In such case, only possible option is to backtrack along
the partial path augmented so far, and try to approach the
obstacle using some other neighbor of a prior node on
the backtracked path. This leads to a possibility whereby



the angle of approach towards a obstacle known/discovered
becomes lesser/acute.

For circumnavigation around an obstacle, [26] suggests a
heuristics of putting non-uniform weights to the cell, so that
any path approaching an obstacle gets repulsed to take a
detour around the obstacle. [10] suggests another way, which
boils down to having an adaptive value of cell size. Our
way is different and novel since it involves locally minimal
backtracking in order to circumnavigate via alternative route.
The direction of turn is immaterial to us, and hence we do not
follow any approach similar to [27]. Usage of backtracking
in the path augmentation is visible in algorithm proposed in
[28], but customized for a different algorithmic structure:
rapidly-exploring random trees, rather than the greedoid
(Theta*).

Source

Target

Obstacle

BacktrackStart

Detour

Fig. 4: Depiction of Unit-step Backtracking and detouring

In a greedy algorithm, like augmentation, philosophically,
one must also diminish the path in a locally minimal way.
Hence, to backtrack, it is not necessary that we backtrack all
the way to the parent node of the current node. In Theta*,
it is possible that the parent node is actually a node very
far away from the current node, not necessarily at a distance
of unit cell. It is imperative that the farther we backtrack
and try approach via a detour, the higher the approximation
error becomes. Hence via a modification to Theta*, we also
keep track of which previous node participated in the triangle
inequality for the current node. We iteratively go back to
that specific neighbor of the current node, and try take a
shorter detour when needed. Note that this variation itself is
a heuristic, just like Theta*. A depiction of such detouring
is shown in Fig. 4.

VI. SIMULATIONS AND RESULTS

For our algorithm, we have been able to prove certain
theoretical properties, which include correctness and com-
pleteness, optimality and complexity of the algorithm. It uses
the same framework as Theta*, and hence the proofs are
similar to that for Theta*. We omit the proofs, derived in
[14], here for lack of space.

Lemma 2: At any point during the execution of the our
modification to Theta*, following the parents from any vertex
in the open or closed lists to the start vertex retrieves a path
that satisfies all the problem constraints enlisted in section II,
from the start vertex to this vertex in reverse.

Theorem 3: When our algorithm terminates, the path ex-
traction retrieves a path satisfying all the problem constraints,
from the start vertex to the goal vertex if such a path exists.

Lemma 4: If there exists a (piecewise-continuous) path
between any two vertices satisfying all the constraints, then
there also exists a grid path between the same two vertices,
which was followed/traversed by our modified Theta* algo-
rithm, across iterations, to arrive at the compliant path.

Theorem 5: Our algorithm terminates. If a path satisfying
the constraints is known to exist, the algorithm reports
one such path upon termination. Else, on termination, the
algorithm reports that no such path exists.

Following [16], for any square grid-based path planning
algorithm, the worst-case discretization offset/error, against
a continuous Euclidean shortest path, is bound by 8% in 2D
case, and 13% in 3D case. Hence, while designing for an
efficient algorithm, we have chosen to improve upon Theta*
algorithm, whose average-case performance is known to be
much below the above worst-case bounds. We experimen-
tally show the efficiency of our algorithm over contemporary
ones, for the additional approximation error arising out of
circumnavigation of obstacles, later in this section. With
such assurance on practical efficiency of path length, we
have more importantly focussed on another performance: the
runtime, or convergence performance. This is important
since path planning algorithms over vast area, and hence
over a mega-sized grid, one must be able to do fast planning,
especially in the cases of disaster management where an
immediate surveillance mission is most preferred. Even when
the search space is low-dimensional as in our case, the sheer
volume of space entails fast planning efforts.

To the best of our knowledge, no research work exists that
combines greedy backtracking with greedy path augmenta-
tion (Theta*), for angle-constrained path planning. Hence
a direct comparison with runtime performance of existing
algorithms is at most crude. For a meaningful comparison,
we chose to compare against a small improvement over
turn-constrained planning algorithm of [7]. To incorporate
backtracking and shorten the node-disjoint property of al-
ternative paths enumerated in [7] that makes runtime very
high, we designed another naive (brute-force) algorithm as
follows. It is imperative that on discounting the improve-
ments over earlier works, designed into the brute-force algo-
rithm, the performance of our algorithm against prior works
will be even higher. Before we present that comparison, a
short semi-analytical comparison with repulsion-based angle-
constrained path planning [26] is discussed below.

A. Cost Comparison of Repulsion versus Backtracking

As mentioned before, [26] suggests a heuristics of putting
non-uniform weights to the cell, so that any path approaching
an obstacle starts gets repulsed to take a detour around the



obstacle. [10] implements this suggestion by providing a for-
mal way to specify this repulsion “field”. We have designed a
different heuristics, which uses locally minimal backtracking
to go along with Theta* greedy augmentation. For the former
algorithm, one major disadvantage is that the set of non-
uniform weights around each obstacle is dependent on the
topology of the region that the obstacle represents. For
example, for a concave obstacle, due to turn angle constraint,
one will need to model repulsion from a farther distance than
a convex obstacle of same size. Similarly, the size of obstacle
is another parameter that will impact the design of obstacle-
specific repulsion “field” around it. Our algorithm requires
no such heavy preprocessing. Further, our algorithm does
efficient, locally minimal backtracking by design. In contrast,
[26] only proposes putting a repulsion “field” around each
obstacle, and does not guarantee that it is of minimal size.
For a quick numerical comparison, we downloaded and used
the same dataset as used in [10], the OpenStreetMaps (OSM)
dataset. We chose to only compare the relative path length
and success rate as parameters, against the LIAN-5 algorithm
therein (the fastest among the LIAN family). The relative
path length is measured as a fraction against the direct line-
of-sight distance between the source and the goal node. We
chose 30 rectangular fragments in which length is few orders
more than the width (size 1950m x 315m). We discretized
the grid with a square cell of size 3m x 3m, as the unit
cell. Like [10], we also marked cells corresponding to the
areas occupied by buildings as un-traversable. We randomly
chose source and goal nodes in each fragment such that the
LOS distance is at least 1500m. The angle limit, ✓

Bmax

, was
set to 20�. As can be seen from table I, the discretization
error of 6% is within the limit of 8%, established earlier.
At the very least, this comparison is able to point towards
more closeness of our approach, to the optimal solution,
than a very recent approach. Also, we are able to find a path
in almost all cases, since our algorithm can backtrack, and
hence is able to span most of the solution space.

TABLE I: Cost Comparison of LIAN-5 and our Algorithm

✓
Bmax

= 20�

success rate relative path length

LIAN-5 87% 1.14
Our Algorithm 98% 1.06

B. Comparing Performance with Brute-force Path Planning

The above comparison was against a recent algorithm,
which does not incorporate any backtracking strategy. A
more meaningful comparison is as follows. At one extreme,
we have our algorithm that prunes the feasible set of so-
lutions in a local, greedy way, and converges fast to an ap-
proximate solution. At the other extreme, we can brute-force
enumerate various solutions within the feasible set, and then
check how many iterations it takes during the enumeration,
on an average across multiple test cases, before we locate
an efficient solution. Obviously, a lot depends on how the

enumeration is performed. If we perform the enumeration
in some efficient way, then comparing the performance of
our algorithm to such efficient brute-force solution-finding
algorithm leads to establishment of worst relative perfor-
mance of our algorithm. Such relative performance, in turn,
gives a pessimistic lower bound to our algorithm, and actual
performance is expected to be better than that figure of merit.
The design details of brute-force algorithm are presented in
[14].

To carry out the performance comparison, we developed a
simulation environment. Details of this environment are pre-
sented in [14]. The details of simulation-based comparison
are as follows.

1) Algorithm for Brute Force Path Planning: This algo-
rithm is a small improvement over planning algorithm of
[7]. We model our brute-force path planning algorithm on
the lines of intuitive limited backtracking described earlier.
We do not perform the most naive way of brute force path
planning, that is, evolving each path independently, end-
to-end, and then testing each of them for being compliant
to the conditions of our problem. We avoid doing that so
that we can have a more realistic comparison (average case
performance gain as against worst case performance gain).
We again use Theta* to evolve brute force path during each
iteration of brute force algorithm.

We first use basic Theta* to find a path from source node
to goal node, that does not cross any obstacle. Next, we trace
the solution path from source node to goal node, and at each
intermediate node, check the turning angle constraint. If at a
certain intermediate node, the constraint is violated, we start
the search for the next optimal solution in its vicinity. That is,
the sequence of nodes in current path from source till some
node in vicinity of the specific intermediate node are retained
in the same sequence, certain nodes immediately following
the intermediate node in the current path blocked out, and
alternative, remaining neighbors to the current node are re-
explored to find another optimal path in certain scenarios.

Since we use Theta* as the kernel of brute force algorithm,
we also need to take care of other ways via which the
path evolved in current iteration relapses and coincides with
the path evolved and discarded in the previous iteration. To
understand that, one must have a look at Fig. 5.

As the brute force path planning for the current iteration
evolves from e.g. node i1 in the Theta* way, it is possible
that ends up coinciding with the previous iterations’ path. If
that happens, that implies that in both paths, all segments,
including the segment i1�i2 are common and overlaid. Since
the neighbor of i1 was blocked before the current iteration
started, this perfect overlay is only possible when line-of-
sight based merging happens. That is, the path of current
iteration progresses via i1�j2 and j2�i2 segments, which in
turn get triangulated and shorted in lack of any obstacle along
segment i1� i2. Lack of obstacle is implied since otherwise,
that segment could not have been part of the path evolved in
previous iteration. To avoid such triangulation to happen, one
must not only block the immediate neighbor of i1 in previous
iteration, but also the immediate segment: i1� i2 as well. In



Fig. 5: Prohibited Brute Force Path Evolution: Case 1

such case, during any future iterations beyond the previous
iterations, such segments cannot be exactly overlaid on any
new path. With respect to Fig. 5, this means that the red-
colored segment should be blocked out as well, at the end
of previous iteration. The path is then forced to evolve and
complete as shown in blue color in the same illustration. It is
possible for such blocked red segment to be a proper subset
of a longer blue segment however, because in that case, the
enumeration of paths of both iterations, as successive turning
points, will not exactly coincide.

2) Comparison Results: The comparison of above two
algorithms was done by simulating both algorithms for a
fixed, same suite of test scenarios, and observing the set
of their execution times for the suite. The simulations were
carried out on the same Lenovo P300 workstation. Being
single-threaded, the simulations use only one (Intel core
i5) processor, and hence the (performance) denominator of
used architecture is same/common. The test scenarios were
same as that used in section VI-A, using OpenStreetMaps
dataset. We assume that the per-iteration time taken by both
algorithms is similar, since the distance between goal and
source node is same for both, and the backtracking strategy
is similar. In such a case, we observed via simulations that
at a coarse level of measurement, our algorithm takes just 1
iteration, while the brute force testing algorithm was found
to take almost 9-10 iterations even for simple test cases. For
testcases part of a different suite covered in section [14], and
having at least 2 coverage holes without any obstacles, the
brute-force algorithm was found to take nearly 50+ iterations.
Hence the factor of improvement in convergence performance
was seen to be in the order of tens.

Generalizing the above observations, it has been proven
that whenever the grid size increases, the no. of iterations will
increase significantly [14]. The intuition behind the proof is
as follows. A naive brute-force algorithm, in average case,
enumerates the solution space much more than an efficient
randomized sampling-based approach [21], and hence its
expected relative convergence is slower. The latter approach
works by generating random paths between the source and
the goal nodes, which are then tested for compliance of

constraint/s and discarded/retained based on output. Further,
there is no correlation between the paths generated in two
successive iterations of such algorithm. Hence the compu-
tational complexity of finding one random compliant path
is O(n2), where the grid size is n ⇥ n. The complexity of
brute-force search algorithm is hence at least O(n2). On the
other hand, our backtracking-based algorithm is a best-first
search algorithm, whose computational complexity is known
to be O(b+p), where b is the branching factor and p is the
depth of corresponding tree. In our case, the branching factor
is a constant (4 for regular grids), and assuming wavefront
propagation, depth is n. Assuming that for each obstacle, the
degree of backtracking is local and hence limited, the overall
complexity of our algorithm will be close to O(n+4).

If the size of grid is increased from n⇥n to m ·n⇥m ·n
(latter case of a real deployment grid), then it can be seen
by comparing the above two complexity figures that as m
increases, the ratio of these two complexity figures increases.
Given that the grid sizes in real deployments will be much
bigger than our simulation grid sizes, the real value of our
algorithm lies in real deployments.

C. Possible Scaling to 3D

As mentioned earlier, the steps involved in dealing with
turn constraint also scale well for 3D case. However, most
of the steps are found to be computationally heavy, e.g.
finding the minimum distance to the “surface” (instead of
perimeter) of a 3D hole. The complexity of this computation,
and many others, increases by a factor of n. A specific
extension to reduce the extra complexity is known as Lazy
Theta* algorithm [16]. This algorithm can again be used as
the base algorithm for our algorithm.

D. Possible Dynamic Replanning

Our algorithm can be recast to support dynamic replan-
ning, similar to the well-known 2-phase motion planning
algorithm for fixed wing aircrafts [22], to a certain extent.
It can so happen that some unknown obstacle is located
while the aircraft is in flight, using e.g. SONAR technology.
If the current position of the aircraft is such that the two
tangents to the obstacle surface do not subtend an angle
more than ✓

Bmax

, then a new path is always feasible without
requiring the fixed-wing UAV in flight to move back, an
infeasible manoeuvre. In such case, the current position
of the aircraft is deemed as the new source node, while
the target node remains the same. The list of obstacles is
regenerated, by including the new obstacle/s. As such, being
greedy algorithm, our algorithm is computationally light.
Assuming that the on-board computer has enough resources
to re-execute our algorithm, a new, refined path depicting the
remaining route of the UAV can be computed.

VII. CONCLUSION

In this paper, we have provided a novel algorithm for
turn-constrained shortest path planning for mobile robots,
that works even in presence of coverage holes. Such an
algorithm is especially of high utility and importance when



it comes to remote surveillance of long linear infrastructures
running through non-urban terrain, a popular application. The
algorithm is based on improving the greedy augmentation
of partial path in the Theta* way, by additional function of
backtracking to a locally minimal distance, one grid unit at
a time, so as to circumnavigate any arbitrary obstacle. Ex-
tensive simulation based validation and performance bench-
marking of the algorithm was also carried out. The worst-
case path cost deviation from best possible (continuous) path
is bounded to be less than 13% [16], while the average-
case performance is much superior. More importantly, for
real deployments, our algorithm improves the convergence
performance by order of tens. Work has already happened
to design and to demonstrate that this algorithm works
together with another algorithm for shortest path planning
in presence of coverage holes. In reality, fixed-wing UAVs
can only move along smooth paths, having a related turn-
radius constraint. Hence we intend to adapt our algorithm
with a fine-grained smoothening phase, towards motion plan-
ning, within the framework of 2-phase decoupled trajectory
planning approaches [21]. Such adaptation shall also help in
dealing with secondary factors such as dynamic disturbances
such as sudden gust of wind, and system noise, which have
currently been abstracted out. We are also working towards
integrating a Digital Surface Model as a real planning
environment, within the simulation environment, for real-life
demonstrations. Overall, we believe that this algorithm will
form an important stepping stone towards evolution of more
robust algorithms for communication-aware path planning,
which in turn are needed to enable many a new and important
requirements and civilian applications of UAV as a remote
surveillance platform.
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Effective Target Aware Visual Navigation for UAVs

Ciro Potena, Daniele Nardi and Alberto Pretto.

Abstract— In this paper we propose an effective vision-

based navigation method that allows a multirotor vehicle to

simultaneously reach a desired goal pose in the environment

while constantly facing a target object or landmark. Standard

techniques such as Position-Based Visual Servoing (PBVS)

and Image-Based Visual Servoing (IBVS) in some cases (e.g.,

while the multirotor is performing fast maneuvers) do not

allow to constantly maintain the line of sight with a target of

interest. Instead, we compute the optimal trajectory by solving

a non-linear optimization problem that minimizes the target re-

projection error while meeting the UAV’s dynamic constraints.

The desired trajectory is then tracked by means of a real-time

Non-linear Model Predictive Controller (NMPC): this implicitly

allows the multirotor to satisfy both the required constraints.

We successfully evaluate the proposed approach in many real

and simulated experiments, making an exhaustive comparison

with a standard approach.

I. INTRODUCTION

Vision-based control, or visual servoing (VS), of UAVs
(Unmanned Aerial Vehicles) is an active research topic with
many applications, including search & rescue, fire monitor-
ing, traffic monitoring and patrolling. More specifically, in
these tasks the multirotor is steered to its desired state by
using visual feedbacks obtained from one or more cameras.
This topic has gained even more interest in the last years,
making it possible to deal with complex vision-based tasks,
such as landing on moving platforms [1], flight through gaps
[2], object grasping [3] and target tracking [4].

What makes VS a challenging problem for multirotors
is the under-actuated dynamics of such vehicles, especially
when performing agile and fast maneuvers (i.e., with high
velocity and angular accelerations). During such kind of
maneuvers, standard visual-based controllers focus solely on
reaching the goal state without constantly taking into account
their camera configuration with respect to the perceived
environment. In other words, during the UAV flight these
systems may lose for some time the line of sight with a
target of interest, even if such target represents the final goal
of the flight. This behavior can prevent the applicability of
such controllers in activities when the re-localization of the
target of interest is not a trivial task, due to the self-motion
of the target (e.g., when tracking a specific person that moves
in the crowd), or due to sensor aliasing (e.g., when moving
toward a specific object with not unique appearance features).

This work has been supported by the European Commission under the
grant number H2020-ICT-644227-FLOURISH. Potena,Nardi and Pretto are
with the Department of Computer, Control, and Management Engineering
“Antonio Ruberti“, Sapienza University of Rome, Italy. Email: {potena,
nardi, pretto}@diag.uniroma1.it.

Fig. 1: An example of target aware visual navigation: the UAV is
following an optimal trajectory towards the target while constantly
framing the target with the camera.

In this paper, we propose an effective and robust VS
controller that allows an UAV to perform fast maneuvers
without losing the line of sight with the target of interest
during the entire duration of the flight.
VS techniques can be split into two parallel branches:
Position-Based Visual Servoing (PBVS) and Image-Based
Visual Servoing (IBVS). In PBVS, the 3D goal pose is
directly obtained from a complete 3D reconstruction of the
surrounding environment or from the 6D position of one or
more landmarks placed in it. In contrast, IBVS formulates the
problem in terms of image features locations: the goal pose
is defined by means of desired features locations in the final
image while the control law aims to minimize the features
re-projection error during the flight. Even if IBVS does
not require any full 3D estimation, it still needs the depth
of the target. It has been shown that both strategies have
their own weakness. In IBVS it is particularly challenging
to model the relation between the vehicle dynamics and
the feature projection error, especially for under-actuated
systems. Furthermore, an inaccurate estimation of the object
depth leads to instabilities. In PBVS, since the control law
is directly designed in the state-space domain, there is a
close dependence on the accuracy of the 3D environment
reconstruction or on the target pose estimation. In practice
this estimation may be very noisy, leading PBVS to be very
sensitive to initial conditions, camera calibration parameters
and image noise corruption.

Differently from the previous work, we propose a proce-
dure that decouples the planning and the control problems.
The planning task is addressed by employing a hybrid
approach. Firstly, as in PBVS, we get the goal pose as the
position and the relative orientation of the vehicle in the
environment that allows to have the desired view of the target
object.



Then, similarly to IBVS, we model the trajectory as a
non-linear constrained optimization problem with a cost
function that penalizes the target’s location error, in order
to constantly keep the target in the camera field of view.

Once a global optimal trajectory1 has been found, we
employ an NMPC framework as controller and local
planner. Making use of an efficient open-source solver, our
control framework is capable to solve an NMPC problem
in few milliseconds, allowing us to use at each time step
just the initial tuple of control inputs2 while simultaneously
re-solving the whole non-linear control problem.

We compare our method against a common PBVS ap-
proach in both simulated and real environments, getting in
all experiments cutting edge results. Additionally, we make
a preliminary assessment with respect to a state-of-the-art
Optimal Visual Servoing (OVS) technique, suggesting that
our approach can achieve comparable results.

A. Related Work

Several IBVS [4][5][6] and PBVS [7][8] approaches has
been applied to control aerial vehicles in the last decades.
In those standard solutions, the controller uses the visual
information as the main source for the target pose com-
putation, without taking into account where the target is
re-projected into the image plane along the trajectory. A
possible solution that usually mitigates such weakness is the
kinematic limitation of the multirotor in terms of roll and
pitch angles, but this penalizes the vehicle maneuverability.
To this end, Ozawa et al. [9] present an approach that takes
advantage of the rotational-dynamic of the vehicle, where
a virtual spring penalizes large rotation with respect to a
gravity aligned frame. Some recent approaches map the
target features’ dynamic into a ”virtual image-plane” used
to compensate the current roll and pitch angles, in order to
keep them close to zero [1][3][10]. Being the re-projection
error obtained from the rotation-compensated frame, it is
still possible that the target, due to significant rotations,
completely leaves the camera field of view.

In [11][12] the authors present two approaches based on
a spherical camera geometry, allowing to design the control
law as a function of the position while neglecting the angular
velocity. Being solely position-based, these kind of methods
suffer from the above discussed problems, since the system
is still vulnerable to large rotations.

Some recent approaches are based on hybrid techniques,
where image features and 3D data are fused together to
develop a more stable controller than IBVS or PBVS
alone. An example has been presented in [13], where the
outputs from IBVS and PBVS methods are fused to form
a stable Hybrid controller. Sheckells et al. [14] presented

1With an abuse of notation, as in other related work, we call here and in
the rest of the paper ”optimal trajectory” the desired trajectory the multirotor
tracks during the flight. Actually, due to the non-linear nature of the cost
function, the optimization does not always guarantee the convergence to the
optimal, global minimum.

2An NMPC provides a sequence of control inputs for a finite temporal
horizon.

an approach where the desired trajectory is obtained by
minimizing a cost function over the re-projection error. The
proposed optimization procedure leads to computational
time constraints that do not allow to constantly re-optimize
the whole path while following it, penalizing the vehicle to
obtain even more better tracking performance. Our work
builds on a part of the problem formulation given in [14],
but our solution presents significant differences: (i) the
whole problem is decoupled and split into two optimization
problems; (ii) The formulation of the target re-projection
error assumes a slightly different form, by enabling to scale
the different error components; (iii) the NMPC explicitly
takes into account two dynamic effects and the low-level
controller that runs on the UAV.
The coupling between perception and planning has also
been addressed in [2], where an UAV has to simultaneously
localize itself with respect to a gap and pass trough it. They
plan a ballistic trajectory capable to satisfy both dynamic
and perception constraints by maximizing the distance of
the vehicle with respect to the edges of the gap.

In all the above mentioned work, except for [14], there is
no guarantee that the target is constantly kept in the camera
field of view because they don’t directly take into account
the vehicle dynamics.

B. Contributions

Our method differs from previous works under two main
aspects: (i) Unlike standard VS approaches, we guarantee
to constantly maintain the target as close as possible to
the center of the camera field of view during the whole
maneuver; (ii) Making use of a global and a local planner,
we allow the multirotor to constantly stay on the optimal
path.

II. UAV DYNAMIC MODEL

In this section, we describe the vehicle dynamic model
that we exploit as a constraint in the optimal trajectory
computation.
We express a generic position vector as xZ

Y

denoting the
position of the reference frame Y expressed with respect to
the reference frame Z. Furthermore, we express a rotation
matrix from the reference system Y to the reference system
Z as RZ

Y

. For the trajectory planning and the control of the
multirotor vehicle, we make use of three main coordinate
reference systems: (i) the camera frame with C; (ii) the world
fixed inertial frame with I; (iii) the body fixed frame with
B, that is the frame attached to the Center of Gravity (CoG)
of the UAV. The UAV configuration at each time step is
formulated by the position pI

B

and the linear velocities vI
B

of the vehicle CoG, both expressed in the inertial frame, and
the vehicle orientation qI

B

. More specifically, the whole state
of the vehicle is then expressed as x = {pI

B

, qI
B

, vI
B

}. At
each time step, we also define the tuple of control inputs
as u = {�

cmd

, ✓
cmd

,  ̇
cmd

, T
cmd

}, where the single terms
stands for, respectively, the roll, pitch and yaw rate desired
commands and the commanded thrust.



We employ a widely used dynamic model for multirotors,
where the main forces that act on the vehicle are generated
from the propellers. More specifically, each propeller gener-
ates a thrust force F

T

proportional to the square of the motor
rotation speed. Moreover, we take into account also two other
important effects that became relevant in case of dynamic
maneuvers, namely blade flapping and induced drag. Both
of them introduce additional forces in the x-y rotor plane
[15]. We model them into a single lumped drag coefficient
K

D

, as shown in [16], [17], leading to the aerodynamic force
F
aero,i

:

F
aero,i

= F
T,i

K
drag

RI

B

T

vI
B

(1)

where i stands for the propeller index, K
drag

=
diag{K

D

,K
D

, 0}, F
T,i

is the z component of the i � th
thrust force and vI

B

is the vehicle’s linear velocity (in the next
equations, where there is no confusion, we will omit both
the superscripts and subscripts I and B). The final dynamic
model of the vehicle can be expressed as follows:

ṗ = v, (2.a)

v̇ =
1

m

⇣
R

npX

n=0

(F
T,i

� F
aero,i

) + F
ext

⌘
+ g, (2.b)
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 ̇ =  ̇
cmd

(2.e)

where m is the mass of the vehicle, F
ext

are the external
forces that act on the multirotor. In our system, we make use
of a low-level controller that maps the high-level attitude
control inputs in propellers’ velocity, as the one provided
with the Asctec NEO hexacopter used in the experiments.
To achieve better tracking performance, we model this inner
control loop as first order dynamic systems, where the model
parameters ⌧

i

and k
i

are obtained by a system identification
procedure [18].

III. OPTIMAL VISUAL SERVOING (OVS)
In this section we describe how we take into account

dynamics and perception constraints in planning a trajectory
and controlling the multirotor. The first step is the goal
pose computation, namely the position and orientation of
the vehicle that allows to get the desired view of the
target. We then split the Optimal Visual Servoing (OVS)
problem into two consecutive stages. First, we compute an
optimal global trajectory by solving a non-linear optimization
problem. In order to take into account the dynamic and
perception constraints, the output trajectory is minimized
over the multirotor dynamics and the target re-projection
error in the image plane. To track the desired trajectory we
then employ a Receding Horizon NMPC controller, where a
smaller non-linear optimization problem is solved every time

step and only the first control input is actually sent to the
multirotor.

A. Goal Pose Computation

Before computing the optimal trajectory, the multirotor
has to retrieve the goal pose it aims to reach. Such a pose
depends on the task (e.g., inspection or patrolling) and it
usually requires the vehicle to frame a target (e.g., landmark
or object) from a specific distance and with a specific point
of view. Retrieving a relative 3D transformation from the
camera is a well-known problem and has been widely studied
in the last decades. A widely used technique is based on the
solution of a Perspective-n-Point (PnP ) problem [19]: such
technique requires a prior knowledge about the target object
geometry and scale.

Since the choice of the goal pose computation algorithm
goes behind the purpose of this work, we assume for the
sake of simplicity to have a real-time ”black-box” detection
framework that outputs: (i) the (u, v) pixel coordinates of
the target T in the camera image plane; (ii) the 3D position
of the target in the camera frame pC

T

; (iii) the orientation
qT
C

of the target object with respect to the camera frame C
in terms of yaw angle. The goal pose in world I reference
system can be then obtained as follows:

p
goal

I

B

= pI
B

+ qI
B

(qB
C

(dC
T

� pC
T

) + pB
C

) (3.a)

q
goal

I

B

= qI
B

qB
C

qC
T

(3.b)

Where dC
T

is the desired position of the target expressed
in the camera frame, while pB

C

and qB
C

are the extrinsic
calibration parameters between the camera frame and the
body frame.

B. Optimal Trajectory Computation

Once we have the goal pose, we need to generate a
discrete trajectory composed by N tuples of the vehicle
state vector {x0, ..., xN

} and control inputs {u0, ..., uN

}
that minimize the functional cost J subject to the vehicle
dynamics equations f(x

k

, u
k

) described in Sec. II. The time
step of such dynamic equations is given by tf�t0

N

, where t
f

and t0 are respectively the final time and the initial time,
while N is the number of steps. Additionally, the custom
choice of the time variable allows us to define also the
nominal speed s

nom

(i.e. �p

tf
), namely the speed the vehicle

is expected to flight. Similarly to [14], we define the cost
function as:

J(x0:N , u0:N�1) = J
N

(x
N

) +
N�1X

k=0

J
k

(x
k

, u
k

) (4.a)

where J
N

is the final cost and J
k

is the cost along the
trajectory. At this point, we split J

k

into two main terms.
The first one represents the cost over the desired final state
and the control effort, and it can be expressed as follow:

J 0
K

(x
k

, u
k

) =
1

2
(x

k

� x
N

)TQ(x
k

� x
N

) +
1

2
uTRu (4.b)



where Q � 0 and R � 0 are the matrices that weight the
control objectives. In addition, in the second term of J

k

we
introduce a cost that aims to penalize the re-projection error
of the target into the camera field of view. The entire cost
in the discrete time step k can be then formulated as:

J
K

(x
k

, u
k

) = J 0
K

(x
k
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where H � 0 is the penalization term over the target
re-projection error and P is a general camera projection
function. Starting from the 3D position of the object in
the camera frame P

i

, the re-projection error is obtained by
the knowledge of the intrinsic calibration parameters of the
camera, denoted in Eq. 4.d as ⇡, the extrinsic parameters
between the camera reference system C sensor and the body
frame B, and the desired position of the target object in the
image plane p

i

. Differently from [14], we make use of a
weighting matrix H in place of a scalar weighting factor,
allowing us to scale the different components of the re-
projection error. Ideally, we want to have an H that penalizes
mostly the error along the smaller dimension of the input
image. We set H as follows:

H =

0

@h
x

0

0 h
y

1

A (4.e)

Let h
i=x,y

be the scale factor related to the smaller
dimension (d

i

< d
j

), we set it as follows:

h
i

= h
j

⇥ �, � =
d
j

d
i

(4.f)

This enables the UAV to cope with different camera sensor
setups. Since we introduce in the cost function J the re-
projection error term of the target with respect to the camera
image plane, the optimal solution will implicitly allows the
vehicle to constantly face the target, maintaining it as close
as possible to the center of the image plane.

C. Optimal Control Solver

Once the optimal trajectory has been obtained, the mul-
tirotor must closely follow it. To this end we employ an
NMPC that repeatedly solves the following optimal control
problem:

min
u,x
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� x
f
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subject to: x
k+1 = f(x

k

, u
k

) + f
ext

(d
k

)
d
k+1 = d

k

U
min

 u
k
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where Q � 0 is the weight factor over the state, R � 0 is
the weight factor over the control inputs and P is the weight
factor over the final state. The controller is implemented in
a receding horizon fashion, meaning that the aforementioned

optimization problem is solved every time step over the
fixed time interval [i, i+K]. Once the optimization problem
has been solved, the optimization procedure is repeated for
the time interval [i + 1, i + K + 1] starting from the state
reached in i+1 and by using the previous solution as initial
guess. By solving this optimization procedure in real-time,
the proposed framework simultaneously provides a feed-
forward trajectory toward the desired state and a discrete
set of control inputs which will be used by the low-level
on-board controller. This means that, in practice, at the end
of each optimization procedure only the first control input
tuple is actually sent to the multirotor controller, then the
optimization procedure is repeated.

IV. SIMULATION EXPERIMENTS

We tested the proposed framework firstly in a simu-
lated environment by using the RotorS simulator [20] and
a simplified multirotor model with a front-facing camera.
The mapping between the high-level control input and the
propellers velocities is done by a low-level PD controller
that aims to resemble the low-level controller that runs on
the real multirotor. From the higher controller level point of
view, we implemented a receding horizon NMPC [21], where
the optimization problem is solved by means of the efficient
ACADO solver [22]. To demonstrate the effectiveness of the
proposed method, we fix the number of segments N and then
flew the virtual vehicle to the desired goal pose by using
the approach described in section III and a standard PBVS
technique. The latter adopts a linear interpolation technique
between the starting and the goal poses obtaining a vector
of N intermediate poses. Such interpolated poses are then
sent to the same NMPC that computes the trajectory to track
them. Once the final time t

f

has been fixed, by tuning N it is
possible to act on the flight behavior: increasing the number
of segments will involve smoother trajectories and control
inputs, since the delta-pose between two adjacent desired
states segments is smaller. On the other hand, increasing N
also brings to higher computational cost when performing
the optimal trajectory computation. We used N = 55 as
trade-off between smoothness and computational velocity.

The goal pose is computed for each run employing an
April Marker [23] attached on a virtual building. Since we
aim to test our approach with different levels of aggressive
maneuvers, we act on the S

nom

parameter (i.e. changing the
final time t

f

). In all the experiments we set the initial state
to x = {8,�12, 14, 0, 0, 1.918, 0, 0, 0}. Since the target is
always kept in the same location inside the virtual environ-
ment, the computed goal state is x = {6+w

x

, 2+w
y

, 9.4+
w

z

, 0, 0, 1.57+w
yaw

, 0, 0, 0}, where w 2 R4 is a small white
noise random component due to the target detection errors.
The relative transformation between the initial and the final
pose forces the multirotor to retrieve an optimal trajectory
along the 4 principal motion directions of the vehicle.

A. Results

Quantitative image error trajectories for the OVS and
PBVS methods for various values of t

f

are reported in
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Fig. 2: Example of trajectories obtained using PBVS(a) and NMPC OVS (b) with s
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= 3.10m

s

: the latter constantly takes into account
the target pose during the flight.

TABLE I: Comparison of simulated image error trajectory statistics for each method across different nominal speeds3.

Avg. Pixel Error Max. pixel error
t
f

S
nom

NMPC OVS PBVS Sheckells et al.[14]3 NMPC OVS PBVS Sheckells et al.[14]3

10.2 2.01 32.5 89.2 ⇠63.8 55.05 145.36 ⇠127.6
7.5 2.73 45.03 109.4 ⇠85.3 76.91 199.21 ⇠195.1
6.6 3.10 55.2 125.2 ⇠90.7 98.76 223.67 ⇠207.9
5.1 4.02 62.5 146.9 not available 115.64 323.78 not available

TABLE II: Comparison in terms of control effort between a standard PBVS approach and the proposed one.

RMS Thrust (g) RMS Roll Ref. (deg) RMS Pitch Ref. (deg) RMS Yaw Rate (rad/s)
t
f

S
nom

NMPC OVS PBVS NMPC OVS PBVS NMPC OVS PBVS NMPC OVS PBVS

10.2 2.01 10.8 10.56 0.15 0.11 0.08 0.075 0.34 0.33
7.5 2.73 10.95 10.79 0.31 0.25 0.33 0.29 0.43 0.46
6.6 3.10 11.21 10.98 0.5 0.43 1.47 0.38 0.49 0.48
5.1 4.02 11.54 11.13 0.9 0.75 1.82 0.69 0.61 0.60

in Table I. The reported results are obtained averaging the
performance of PBVS and OVS given the same goal pose
and starting from the same initial state for multiple trials.
As a preliminary assessment, we also reported some results
from the experiments in Sheckells et al. [14], showing that
our method can provide results comparable with this state-of-
the-art approach. It is important to highlight that, given this
data, a direct comparison with [14] is not possible, since the
pixel error statistics are strictly correlated with the simulation
setup which has not been released by the authors.

Remarkably, the target error trajectory along both image
axes is almost always lower than both the other approaches.
In spite of this, from a qualitative point of view (see Fig.
3), the PBVS trajectory seems to behave better in term of
pixel errors at same points. The explanation for such behavior
comes from the different shape of the two trajectories. In
our case, the vehicle is steered to avoid the target to leave
the center of the camera field of view, preferring a constant
and possibly small error. In the PBVS case, the trajectory is
straightforward, involving bigger errors in the acceleration
and deceleration phases, worst average and maximum er-
rors, but sporadically smaller error compared with the OVS

approach.

Fig. 3: Comparison of simulated PBVS and NMPC OVS pixel
error trajectories for s

nom

= 3.10m

s

. Respectively error on the x-
axis of the image plane in the left image, while in the right one the
pixel error on the y-axis.

From the control inputs point of view, the reduced pixel
error comes with an energy effort trade-off: as reported in
Table II, the RMS thrust of each OVS trajectory is larger
with respect to the corresponding PBVS trajectory. Similar
conclusion can be drawn from the attitude points of view
since maintaining the target in the center of the camera

3We emphasize that the statistics from [14] have been obtained with
a different simulation setup, so they represent an indicative performance
measure.



Fig. 4: Comparison of simulated NMPC OVS pixel error trajecto-
ries for different values of s

nom

. Respectively error on the x-axis
of the image plane in the left image, while in the right one the pixel
error on the y-axis.

Fig. 5: The Asctec NEO hexacopter used for the real experiments.

involves larger angles and yaw rate commands. The choice of
the correct behavior depends on the task requirements and, by
acting on the optimization parameters Q

k

, R
k

and H
k

, it is
possible to obtain the desired trade-off between control effort
and image error. Two samples of the trajectories generated
by the approaches are depicted in Fig. 2. Often the bigger
pixel error terms in a VS scenario occur in the initial and
in the final phase, due to the attitude components required
to accelerate and decelerate the vehicle. As qualitatively
reported in Fig. 2, the OVS trajectory takes into account these
two error sources by a small ascending phase at the same
time as the forward pitch command. Similarly the trajectory
dips softly at the end of the flight so that the target remains
in the center of the image plane when the multirotor has to
pitch backward in order to decelerate. From the PBVS point
of view, the trajectory is more or less a straight line. The
vehicle starts suddenly to pitch and to decrease its altitude,
involving a bigger pixel error.

V. REAL EXPERIMENTS

We tested the proposed framework on an Asctec NEO
hexacopter Fig. 5 equipped with an Intel NUC i7, where
we implemented our algorithm in ROS (Robotic Operating
system), running on Ubuntu 14.04. The overall weight of
the vehicle is 2.8 Kg. For the state estimation we make
use of a forward-looking VI-Sensor [24] and the ROVIO
(Robust Visual Inertial Odometry) framework [25]. The
ROVIO output is then fused together with the vehicle Inertial
Measurement Unit (IMU) by using an Extended Kalman
Filter (EKF) as described in Lynen et al. [26]. The control
inputs obtained at each time step by our approach are then
sent to the low-level on-board controller by using the UART
connection.

We executed several experiments acting on the s
nom

parameter. In each run the multicopter starts from the same
initial state before starting to look for the fixed target. The
distance between the vehicle and the target is approxima-
tively 8 m, and the environment is an indoor closed building.
TABLE III: Comparison of image error for each method
across different nominal speeds.

Avg. Pixel Error
t
f

S
nom

NMPC OVS PBVS

6 1.79 62.89 77.2
5 2.11 88.03 112.4
4 2.73 104.17 146.7
3 3.21 123.8 179.2

A. Results

Qualitative results for trajectories with different values
of s

nom

are reported in Fig. 6, while table III reports the
average error statistics between OVS and PBVS. Apart from
the same error behavior that also appears in the simulation
experiments, it is possible to note how the Mean Squared
Error (MSE) pixel error for the OVS approach is lower than
the PBVS approach. The difference in terms of pixel MSE
is bigger in the initial and final phases where the PBVS, in
order to accelerate and slow down, is subject to the greatest
kinematic movements in terms of roll and pitch angles. Is
also useful to highlights how both OVS and PBVS use a
noisy target detection approach. In practice, the multirotor
is not able to obtain an accurate 3D position of the target
object in the environment. This accounts for a constant non-
zero pixel MSE, even when the vehicle reach the goal state.

Fig. 6: Comparison of real PBVS and NMPC OVS Mean Squared
Error (MSE) pixel trajectories for different values of s

nom

. Re-
spectively the MSE for s

nom

= 2.07 in the left image, while in
the right the MSE for s

nom

= 3.1.

VI. CONCLUSIONS

In this work we proposed a novel OVS approach for
multirotor vehicles, particularly suitable for agile maneuvers.
The method splits the VS into two different optimization
problems. In the first one an image-based cost function
is minimized in order to find the best trajectory for the
vehicle. The optimal trajectory is then tracked by means
of an NMPC controller that runs in real-time. It has been
shown in simulated and real-world experiments how the
proposed approach achieves better performance in terms of



target re-projection error when compared to a standard PBVS
approach. In both scenarios it is capable to keep the target
object as close as possible to the center of the camera field
of view, even when performing fast maneuvers.

As a future work, we will investigate the possibility to
iteratively recompute the optimal trajectory to follow, in
order to cope also with the case of a moving target and
eventually take into account obstacles in the surrounding
environment.
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Data Collection Planning with Dubins Airplane Model and Limited
Travel Budget

Petr Váňa, Jan Faigl, Jakub Sláma, Robert Pěnička

Abstract— In this paper, we address the data collection
planning problem for fixed-wing unmanned aircraft vehicle
(UAV) with a limited travel budget. We formulate the problem
as a variant of the Orienteering Problem (OP) in which the
Dubins airplane model is utilized to extend the problem into
the three-dimensional space and curvature-constrained vehicles.
The proposed Dubins Airplane Orienteering Problem (DA-OP)
stands to find the most rewarding data collection trajectory
visiting a subset of the given target locations while the trajectory
does not exceed the limited travel budget. Contrary to the
original OP formulation, the proposed DA-OP combines not
only the combinatorial part of determining a subset of the
targets to be visited together with determining the sequence to
visited them, but it also includes challenges related to continu-
ous optimization in finding the shortest trajectory for Dubins
airplane vehicle. The problem is addressed by sampling possible
approaching angles to the targets, and a solution is found
by the Randomized Variable Neighborhood Search (RVNS)
method. A feasibility of the proposed solution is demonstrated
by an empirical evaluation on modified benchmarks for the OP
instances to the scenarios with varying altitude of the targets.

I. INTRODUCTION

The problem addressed in this paper is motivated by data
collection missions in which an Unmanned Aerial Vehicle
(UAV) is requested to gather information from a set of
target locations while the vehicle travel budget is limited,
e.g., due to a limited battery capacity or fuel tank volume.
The locations are known in advance, and each location
is specified as a 3D point. Moreover, each location is
associated with a reward value representing the importance
of the measured data at the location, which can be for
example a camera snapshot in surveillance missions [1] or
measurements received by a remote transmission from sensor
fields [2]. Having the limited travel budget, the problem is
to select the most valuable locations that can be visited with
respect to the available travel budget. This type of problems
can be formulated as a variant of the Orienteering Prob-
lem [3] which is herein extended to consider the kinematic
constraints of Dubins airplane model [4] for a fixed-wing
aircraft. Therefore, we call the studied problem the Dubins
Airplane Orienteering Problem (DA-OP).

In the regular OP, a set of all possible target locations
with positive rewards is given together with the prescribed
initial and final locations of the vehicle. The OP stands
to maximize the sum of the collected rewards while the
total traveled distance is shorter or equal to the given travel

The authors are with the Faculty of Electrical Engineering, Czech
Technical University in Prague, Technická 2, 166 27 Prague, Czech Republic
{vanapet1|faiglj|slamajak|penicrob}@fel.cvut.cz

The presented work has been supported by the Czech Science Foundation
(GAČR) under research project No. 16-24206S.

Fig. 1. An instance of the Dubins Airplane Orienteering Problem (DA-OP)
together with its solution found by the proposed RVNS-based algorithm.
The target locations are represented as the blue disks, and the color of the
trajectory and the terrain corresponds to the specific altitude. The lowest
parts are in the red while the highest parts are in green.

budget T
max

. Since the budget may not allow visiting all the
given targets, the OP is similar to the Knapsack problem in
finding the most suitable subset of the targets, such that the
sum of the collected rewards is maximized. However, it is
necessary to evaluate the shortest path visiting the selected
target locations to ensure T

max

constraint and maximize the
collected rewards, e.g., by visiting additional locations as a
result of the saved travel cost by the shortest path. Therefore,
the OP is also connected to the Traveling Salesman Problem
(TSP) in which we find the shortest path for a particular
subset of the target locations. Notice, the OP becomes a
decision version of the TSP when the budget is equal to the
minimal required travel distance to visit all the locations.
Hence, the OP is at least NP-hard [5].

Unlike the regular OP, the studied DA-OP extends the
target location to 3D and further consider limitations of fixed-
wing UAVs. The introduced DA-OP can be considered as
an extension of the existing Dubins Orienteering Problem
(DOP) proposed in [6], which has been further generalized
to the Dubins Orienteering Problem with Neighborhoods
(DOPN) in [7], [8]. In the current paper, we formulate the
OP for the Dubins airplane model in 3D and propose to solve
the introduced DA-OP by a modified variant of the Variable
Neighborhood Search (VNS) algorithm [9]. An example of
the DA-OP solution is depicted in Fig. 1.

The rest of the paper is organized as follows. An overview
of the related work on the Dubins airplane model and
existing OP solvers is presented in the next section. The
introduced DA-OP is formally defined in Section III and
the proposed solver is described in Section IV. Results on
empirical evaluation of the proposed approach are reported
in Section V. Finally, Section VI concludes the paper.



II. RELATED WORK

The introduced Dubins Airplane Orienteering Problem
(DA-OP) is mostly related to the two research fields which
are directly utilized to address the DA-OP. The first field is
related to approaches for determining the shortest possible
paths for the Dubins airplane model in 3D, while the second
field is a class of methods for solving the OP. The most
related approaches of both these fields are further discussed
in the rest of this section.

A. Shortest paths for the Dubins Airplane Model
The problem of finding the shortest curvature-constrained

path in 2D was addressed by L. E. Dubins [10] in 1957. He
showed that the optimal path connecting two locations with
prescribed leaving and arrival headings of Dubins vehicle
is composed of up to three segments which are either
straight segments (S) or circle segments (C). It results in
two basic path types of the so-called Dubins maneuvers:
CSC and CCC, for which zero length segments are allowed.
All the path types can be determined by a closed-form
expression which represents a fast method for finding the
optimal solution of a simple trajectory planning between two
configurations of Dubins vehicle.

The shortest curvature-constrained path in 3D is studied
in [11] where the authors proved that every minimizer is ei-
ther a helicoidal arc or of the form CSC or CCC. This results
in the analogy to the 2D curvature-constrained maneuvers
since the Dubins maneuver is a special case. However, to
the best of our knowledge, there exists no analytic solution
of the shortest curvature-constrained path in the 3D.

A suboptimal approach for the 3D path generation is
proposed in [12] which enables to satisfy arbitrary initial and
final configurations of the vehicle while the constraint on the
pitch angle is met. The resulting path is a CSC maneuver,
and the Dubins maneuver in the plane is utilized as an initial
estimation of the requested maneuver. In [13], numerical and
geometric approaches for generating CSC paths in 3D are
proposed. The authors claim that the numerical approach
finds the optimal solution assuming the points are sufficiently
far apart but no formal proof is provided.

The constraint on the pitch angle determines the maximal
climb/dive angle and the authors of [4] introduce the Dubins
airplane model to address both constraints of real UAVs:
the bounded curvature and pitch angle. The proposed model
treats the vertical position changes independently to the
horizontal movement. The Dubins airplane model is further
modified in [14] to be more consistent with a fixed-wing
UAV kinematics. In [15], the authors propose to utilize 7-th
order Bézier curves to compose the path as an alternative
approach. However, in this paper we considered the Dubins
airplane model [4] as a suitable model for extension of the
curvature-constrained data collection planning in 3D.

B. Solving OP-based problems
The DA-OP is a direct extension of the recently introduced

DOP [6] where the vehicle altitude is fixed to a constant
value. Similarly to the DOP, the basic properties and possible

approaches to address the DA-OP can be defined by the
underlying combinatorial optimization problems: the Dubins
Traveling Salesman Problem (DTSP) [16] and the regular
Euclidean OP [3]. Therefore a brief overview of the existing
approaches is provided in this section.

The first type of methods to the DTSP are decoupled
approaches where the sequence of the visits to the targets
is determined prior the optimization of the headings, e.g.,
by solving the Euclidean TSP as in the Alternating algo-
rithm [16]. However, the most related approach to the DA-OP
is the sampling based method [17] that allows transforming
the DTSP to the Generalized Asymmetric TSP (GATSP) by
using a discrete set of possible headings for each target
location. Further, the GATSP can be transformed to the
Asymmetric TSP (ATSP) that can be solved by existing
solvers, e.g., Lin-Kernighan heuristic [18]. Finally, the DTSP
can also be addressed by soft-computing techniques such
as genetic [19] and memetic [20] algorithms and also by
recently proposed unsupervised learning [21], [22].

The proposed DA-OP is a variant of the OP with the
limited travel budget T

max

, and thus only a subset of
the target locations to be visited within T

max

has to be
determined together with the respective sequence of the visits
to the selected targets. Since there probably does not exist
an algorithm for solving the introduced DA-OP directly, the
related existing approaches are Euclidean OP solvers for
which a detailed survey can be found in [23]. The most
related OP approach is the Variable Neighborhood Search
(VNS) metaheuristic proposed by the authors of [9] that has
been modified in [24] by Sevkli et al. to tackle the OP.
Since the proposed solver of the DA-OP is leveraging on
this method, it is described in the next paragraph in a more
detailed way.

The basic idea of the VNS-based OP solver [24] is to
search the solution space with a predefined set of neigh-
borhood structures which are critical for the algorithm per-
formance. The algorithm starts with an initial solution and
explores the solution space by applying two procedures. The
first one is the shake procedure, which aims to diversify the
solution, and thus escapes from local minima. The second
procedure is called local search and it utilizes the given
neighborhood structures to optimize the current solution.

The original VNS algorithm exhaustively examines all
possible solution modifications defined by the neighborhood
structures. This can be too computationally demanding for
large instances, and therefore, a randomized version of the
VNS (RVNS) for the OP has been proposed in [24] to speed
up a solution of the OP. The RVNS variant has been applied
for solving the DOP in [6].

The introduced DA-OP is addressed by a variant of the
RVNS utilized in [6], and the proposed method is presented
in Section IV right after the formal introduction of the
problem presented in the next section.

III. PROBLEM STATEMENT

The introduced Dubins Airplane Orienteering Problem
(DA-OP) is an extension of the existing DOP [6] into



3D with respect to the constraints of the Dubins airplane
model [4], which is a suitable model for a fix-wing aircraft
with curvature and pitch angle constraints. The vehicle state
q is represented by the configuration (p, ✓, ), where p =

(x, y, z) stands for the vehicle position in 3D, p 2 R3, ✓ 2 S1
is the vehicle heading, and  2 S1 is the vertical angle of
the vehicle. The dynamics of the vehicle can be described
by: 2

664

ẋ
ẏ
ż
˙✓

3

775 = v

2

664

cos ✓ · cos  
sin ✓ · cos  

sin  
u
✓

· ⇢�1

3

775 , (1)

where v is a constant forward velocity of the vehicle, ⇢
stands for the minimum turning radius, and u

✓

is the control
input controlling the vehicle heading ✓. The control output
is considered to be limited by u

✓

2 [�1, 1].
In the Dubins airplane model, the pitch angle  can be

changed immediately to any value from the given interval
 2 [ 

min

, 
max

], which does not fully correspond to real
physical constraints but it is a suitable approximation for
most of the fixed-wing UAVs.

The DA-OP follows the OP, where Dubins airplane model
is utilized and the set of n target locations S is given as
S = {s1, s2, . . . , sn} for s

i

2 R3. The DA-OP stands to find
a feasible path which maximizes the sum of the collected
rewards while the limited travel budget T

max

is respected.
The initial vehicle location s1 and the final location s

n

are
given and their rewards are assumed to be zero r1 = r

n

= 0.
For other locations, individual rewards are given and they are
strictly positive, i.e., r

i

> 0 for all 1 < i < n.
The DA-OP consists of selecting a subset of k target

locations from S and determination of the sequence to
their visits which can be described as a sequence ⌃

k

=

(�1, . . . ,�k) where �
i

stands for the respective index of the
target location, i.e., 1  i  k, 1  �

i

 n and because
of given initial and final locations, �1 = 1 and �

k

= n.
In contrast to the Euclidean OP, the DA-OP contains also
a determination of the vehicle heading for each selected
location given by ⇥

k

= (✓
�1 , . . . , ✓�k). The vehicle is not

allowed to change its altitude while it visits a particular target
location, and therefore, the pitch angle of the vehicle at the
target location is prescribed to be zero. Hence, the vehicle
state q

�i at the target �
i

is defined by the target location s
�i

and the corresponding heading ✓
�i . The DA-OP can be then

defined as the following optimization problem:

maximize
k,⌃k,⇥k

kX

i=1

r
�i

subject to
k�1X

i=1

L(q
i

, q
i+1)  T

max

,

q
i

= (s
�i , ✓�i , 0),

�1 = 1,�
k

= n ,
�
i

6= �
j

, 8i, j : i 6= j ,

(2)

where L(q
i

, q
i+1) is the length of the maneuver of the Dubins

airplane model between q
i

and q
i+1 respecting (1).

IV. PROPOSED SOLUTION TO THE DUBINS AIRPLANE
ORIENTEERING PROBLEM (DA-OP)

The proposed algorithm for the DA-OP leverages on the
recently introduced DOP [6]. The main difference of the
proposed approach to the DOP [6] is in the altitude changes
that are caused by the limited pitch angle necessary to
connect target locations by a continuous path. This limitation
has to be considered because of possible different altitudes
of the waypoints corresponding to the different elevations of
the ground locations, which does not occur for the DOP on
a plane. Moreover, in DOP, a solution of the Euclidean OP
has similar length, especially for small minimal turning radii
of the vehicle. Since the Dubins airplane model has limited
pitch, the Euclidean distance cannot be simply utilized for a
heuristic approach.

The proposed algorithm consists of three main parts to
address challenges arising from the DA-OP. The first part
is related to the vehicle heading that is uniformly sampled,
and all three-dimensional maneuvers are pre-computed for
each pair of possible states of the vehicle. The second part
is an examination of possible collisions of the computed
maneuvers with the terrain, and unfeasible maneuvers are
discarded. Each 3D maneuver determined by the Dubins
airplane model is sampled, into a finite set of states, and
for each such a state the 3D model of the vehicle is checked
for a possible collision with the terrain modeled as a mesh,
e.g., using RAPID library [25]. Finally, having only the
feasible 3D maneuvers connecting the possible waypoints,
the solution of the DA-OP is found by the randomized variant
of the VNS algorithm similarly as for the DOP in [6]. The
first and third parts are further described in the following
subsections as the collision test is performed similarly as in
any motion planning algorithm such as PRM or RRT.

A. Heading Sampling and 3D Dubins Maneuvers
In the first step of the proposed algorithm, a particular

instance of the DA-OP is discretized by sampling the pos-
sible vehicle states at each waypoint covering the respective
target location. We utilize uniform sampling of m

i

samples
of the vehicle heading. The heading samples are given by a
set H

i

= {✓1
i

, . . . , ✓mi
i

} for the i-th waypoint.
Having the sampled state of the vehicle, a 3D maneuver

for the Dubins airplane model connecting each pair of the ve-
hicle state associated with the target locations is determined.
Dubins airplane maneuvers are more complex to compute
than Dubins maneuvers in the plane because of the possible
altitude changes. Based on [4], the maneuvers are divided
into three cases according to the altitude difference between
the initial and final states of the vehicle: low altitude, high
altitude, and medium altitude. The process of determining
3D maneuvers is detailed in [14], and therefore, we provide
only a short overview of the procedure here.

First, Dubins maneuver is calculated as a two-dimensional
projection of the final maneuver. Then, the next step depends
on the altitude change. In the low altitude case, Dubins
maneuver is long enough for achieving required altitude
gain, i.e., the maximal pitch angle is not exceeded. The



Fig. 2. A Dubins airplane maneuver in 3D with changing the vehicle
altitude

calculated 2D Dubins maneuver is modified by changing the
turn segments into helices segments, and the direction of
the straight segment is changed accordingly. An example of
such a low altitude maneuver is depicted in Fig. 2 where the
altitude changes are highlighted by a color change.

For the high altitude case, the altitude gain is too high and
cannot be achieved by altitude changes of the 2D trajectory.
Therefore, the trajectory is modified by adding a certain
number of spiral segments at the start or end of the maneuver
to provide sufficient travel distance for the altitude correction
according to the motion constraints of the Dubins airplane
model. The maneuver is prolonged at the lower end because
of minimizing potential terrain collisions.

The medium altitude case is a mix of the two previously
described cases. The length of the generated 2D maneuver
is not sufficient for the altitude change, but a necessary
prolongation is smaller than one spiral turn. Therefore, in
this case, the maneuver is generated by adding a third turning
segment to achieve the required length for the correct altitude
change respecting the Dubins airplane model.

Finally, vehicle maneuvers which intersect with the terrain
are removed. Therefore, the proposed algorithm guarantees
that the resulting solution is feasible and the vehicle does
not collide with the ground.

B. VNS-based algorithm for the DA-OP
Having the sampled states of the vehicle at the target

locations with the corresponding maneuvers for the Dubins
airplane model, the instance of the DA-OP can be considered
as a directed graph where each state stands for the graph
node and the edges connecting the nodes are the determined
maneuvers. The proposed solution of the DA-OP is based on
the VNS discrete optimization technique [24] that searches
for a maximal rewarding feasible tour within the graph
such that the tour cost does not exceed the limited travel
budget T

max

. The VNS is a meta-heuristic algorithm which
searches the solution space using neighborhood structures. Its
performance depends on the neighborhood structures utilized
for the sequence changes in the shake and localSearch
procedures of Algorithm 1.

The current solution of the proposed algorithm is repre-
sented by a sequence P of the all targets except the initial
and terminal locations which are prescribed, i.e., P is a
sequence of n � 2 targets P = (�0

1,�
0
2, . . . ,�

0
n�2). P is

Algorithm 1: Randomized VNS for the DA-OP

Data: Targets S with the associated rewards r
i

, the travel
budget T

max

, sampled vehicle states and the lengths
of the corresponding maneuvers

Result: Solution represented by ⌃

k

1 P , ⌃
k

:= foundInitialSolution()
2 while termination condition is not met do
3 P 0 := shake(P )
4 P 00 := localSearch(P 0)
5 ⌃

00
k

:= selectLocations(P 00, T
max

)
6 if L(⌃00

k

)  T
max

and R(⌃

00
k

) > R(⌃

k

) then
7 P := P 00

8 ⌃

k

:= ⌃

00
k

9 end
10 end

a permutation of labels of the targets S \ {s1, sn}, and thus
it holds that for any �0

i

2 P , �0
i

6= 1 and �0
i

6= n. This
allows the VNS algorithm to modify the whole sequence
P without maintaining the prescribed initial and terminal
locations. Thus, the VNS neighborhood structures work on
the all targets in P .

Due to the limited budget T
max

, only a subset of k
locations can be visited, and therefore, the first k�2 elements
of P are considered for a solution of the DA-OP that is
prolonged by the prescribed initial and terminal locations
�1 = 1 and �

k

= n, i.e., ⌃

k

is constructed from P as
⌃

k

= (�1,�
0
1,�

0
2, . . . ,�

0
k�2,�k). However, it is necessary

to determine the number of selected targets k to be visited
by the trajectory that does not exceed T

max

. Such a value
of k is iteratively determined in the selectLocations

procedure as the highest number for which the trajectory
satisfies T

max

. The trajectory for a particular k is found using
the pre-computed maneuvers as follows.
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Fig. 3. An example of the graph structure for finding the shortest data
collection tour for uniformly sampled headings at the target locations

Since multiple samples of the vehicle state are considered,
the sequence ⌃

k

itself does not fully specify the data collec-
tion trajectory. Therefore, each target location has associated
particular vehicle state for each sampled heading value, and
we can create a graph structure representing possible paths
connecting the waypoints of the particular targets in the
current sequence ⌃

k

, see Fig. 3. Then, this graph is used
to find the shortest tour by a feed-forward search which
time complexity can be bounded by O(km2

), where m is



the number of samples per each target and k is the current
number of the selected targets to be visited.

After that, the current sequence ⌃

00
k

is evaluated to be a
new best solution found so far at the Step 6 of Algorithm 1.
The length of the trajectory represented by ⌃

00
k

is L(⌃00
k

)

and the sum of the collected rewards along the sequence is
R =

P
k

i=1 r�i , which is denoted R(⌃

00
k

) for brevity.
The important part of the VNS-based search algo-

rithm is a generation of the first feasible solution in the
foundInitialSolution procedure by an iterative in-
sertion of the target locations to the sequence. Then, the
initial solution is improved by searching for possible in-
sertion/removal of other targets such that, a target with the
highest ratio f of the reward increase to the data collection
trajectory prolongation is selected and inserted to the best
position in the sequence:

f =

R(⌃

k+1)�R(⌃

k

)

L(⌃
k+1)� L(⌃

k

)

, (3)

where ⌃

k

stands for the solution sequence before the inser-
tion of the particular target.

The VNS-based algorithm utilized four different neighbor-
hood structures which locally changes P to maximize the
sum of the collected rewards. In each iteration, the actual
solution is randomly changed to explore the state space
in the procedure shake which chooses from the first two
neighborhood structures:

• Insert selects a random element in P and moves it to
a different randomly chosen position in P ,

• Exchange selects two random elements in P and ex-
changes them.

Unlike the previous procedure which aims to explore the
space and escape from the local minima, the localSearch
procedure tries to optimize the current solution and even-
tually reaches the global optima. In the original VNS, the
exhaustive search of all possible changes is used which
can be computationally demanding for instances with a
high number of targets. In contrast, the utilized randomized
variant of the VNS examines only n2 randomly selected local
changes, where n is the number of all targets. Two different
neighborhood structures are applied to locally optimize the
current solution:

• Path insert selects a random sub-sequence from P and
moves it to a different randomly chosen position in P ,

• Path exchange selects two random sub-sequences in P
and exchanges them.

The termination condition can be chosen arbitrarily ac-
cording to the application scenario. A high number of itera-
tions provides a better solution at the cost of computational
requirements. For example the algorithm can be terminated
after the specified number of iterations or sooner, e.g., after
a given maximum number of iteration without the solution
improvement.

V. RESULTS

The proposed VNS-based approach for the DA-OP has
been evaluated using standard benchmarks for the Euclidean

OP introduced by Chao et al. [26] that have been modified for
the 3D problems that require the Dubins airplane model. In
particular, we consider the benchmarks Set 64 with 64 target
locations where a positive reward value associated with each
target location is selected from the interval (0, 42] except
the initial and final location which has zero rewards as in
the ordinary OP. We define the altitude z

i

of each target as a
multiplication of the reward value and a specified constant �:

z
i

= � · r
i

, (4)

which means the most rewarding locations are at the highest
altitudes, and thus makes the problem suitable for evaluation
of the Dubins airplane model with altitude changes.

(a) 2D projection (b) 3D projection

Fig. 4. An example solution of Set 64 instance with � = 0.1 and T
max

=
80. The locations at the highest altitude are the most rewarding (shown in
green) and the locations at the lowest altitude with the zero reward are
shown in red.

Four different values of � 2 {0, 0.05, 0.1, 0.15} have been
utilized to show the relationship between the altitude change
and the path length. The vehicle turning radius is set to
⇢ = 0.7, the minimum pitch angle to  

min

= �10

�, and the
maximum pitch angle to  

max

= 20

�. The allowed ascension
ratio is greater than the descension to respect properties
of real vehicles. The number of heading samples is set to
16 which has been empirically found as a suitable trade-
off between the computational requirements and the quality
of found solutions. An example of the DA-OP instance is
depicted in Fig. 4 in which the asymmetric limits of the
pitch angle results in different path patterns near the start
and end of the final solution.

The proposed DA-OP solver has been implemented in C++
with the Dubins airplane model according to [14]. All the
presented results have been computed using a single core
of the AMD Phenom 1090T CPU running at 3.2 GHz. The
algorithm has been terminated after 10 000 iterations of the
main loop.

Average values of the collected rewards for the particular
T
max

and � are depicted in Fig. 5. The results indicate that
for small altitude changes (i.e., � = 0.05), the algorithm is
capable of finding low altitude maneuvers for all possible
maneuvers. With the increased altitude changes for � = 0.1,
the ascending pitch angle is still sufficient, but the limited
descenting angle causes small modifications of the original
Dubins maneuver found for the 2D projection. Further, for
� = 0.15, the altitude changes are so huge that additional
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spiral segments have to be inserted, which increases the
length of the maneuvers, and thus the travel budget T

max

is spent for visiting lower number of targets, and the sum of
the collected rewards is lower.
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Fig. 6. Average required computational times based on the given travel
budget for various � determined from 10 trials

The required computational time is shown in Fig. 6.
The proposed VNS-based algorithm runs about hundreds of
seconds for the examined instances with 64 targets. It can be
observed that the computational time increases with the max-
imal travel budget, which is natural as a high travel budget
allows to visit more locations, and thus more combinations,
insertions, and path exchanges can be performed.

VI. CONCLUSION

In this paper, we introduce a problem formulation for
data collection planning with Dubins airplane model suitable
for 3D scenarios with fixed-wing UAVs and limited travel
budget. The formulation is based on the DOP extended
for the Dubins airplane model, and we call the introduced
problem as the Dubins Airplane Orienteering Problem (DA-
OP). We propose to utilize the VNS-based algorithm to
solve the DA-OP in which possible vehicle headings are
sampled by uniform sampling strategy. The performance
of the algorithm has been evaluated in a series of DA-OP
instances, and regarding the presented results, the proposed
approach seems to be feasible.

Since the proposed approach is probably the first extension
of the orienteering problems in 3D data collection planning
with UAVs, we aim to investigate the performance of other
3D vehicle models within the presented solution framework
for the DA-OP.
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Motion planning for long reach manipulation in
aerial robotic systems with two arms

A. Caballero1, M. Bejar2, A. Rodriguez-Castaño1, A. Ollero1

Abstract—In this paper an aerial robotic system with two
arms for long reach manipulation (ARS-LRM) while flying is
presented. The system consists of a multirotor with a long
bar extension that incorporates a lightweight dual arm in
the tip. This configuration allows aerial manipulation tasks
increasing considerably the safety distance between rotors
and manipulated objects. The objective of this work is the
development of planning strategies to move the ARS-LRM
system for both navigation and manipulation tasks. With this
purpose, a simulation environment to evaluate the algorithms
under consideration is required. Consequently, the ARS-LRM
dynamics has been properly modeled with specific methodolo-
gies for multi-body systems. Then, a distributed control scheme
that makes use of nonlinear control strategies based on model
inversion has been derived to complete the testbed. The motion
planning problem is addressed considering jointly the aerial
platform and the dual arm in order to achieve wider and safer
operating conditions. The operation of the planner is given
by an RRT*-based algorithm that optimizes energy and time
performance in cluttered environments for both navigation and
manipulation tasks. This motion planning strategy has been
tested in a realistic industrial scenario given by a riveting task.
The satisfactory results of the simulations are presented as a
first validation of the proposed approach.

I. INTRODUCTION

Among the numerous applications in which unmanned
aerial vehicles (UAVs) can be used, aerial manipulation is
arousing much interest. Potential applications in this field
include instrument deployment, maintenance operation and
contact inspection in industrial sites in which the access is
very dangerous or costly. The motivation is to decrease risks
and operational costs in theses scenarios with the support
of aerial manipulation systems. Small size rotorcraft can
indeed access to hard-to-reach places more easily than human
operators, avoiding unnecessary risks for industrial workers
and allowing inspection and maintenance operations without
shut-downs of the facilities (the mandatory safety policy in
case of human operation) and the use of scaffolding, cranes
and other means.

These new promising applications of aerial robotic systems
for manipulation tasks bring also new challenges that are
still unresolved. On the one hand, it is necessary to develop
new manipulation tools such as adapted arms or grippers
that can be seamlessly integrated into the airframe to provide

1 A. Caballero (e-mail: mbejdom@upo.es), A. Rodriguez-Castaño (e-mail:
castano@us.es) and A. Ollero (e-mail: aollero@us.es) are with the University
of Seville, Seville (Spain).

2 M. Bejar (e-mail: mbejdom@upo.es) is with the University Pablo de
Olavide, Seville (Spain).

manipulation capabilities to UAVs. The existing algorithms
for operating independently the UAV and the manipulators
should be extended for achieving autonomous operation of
the integrated system. In this respect, one of the most
challenging issues is the development of new methods that
consider both the UAV and the manipulator when planning
the motion of the complete system. When moving between
different locations inside a dense industrial installation, this
planning will be essential for the generation of accurate
movements close to obstacles. In addition, it will also enable
rapid, agile manoeuvres (e.g., using the arm to let the aerial
manipulator turn quickly) aiming to approach to the goal
location avoiding waste of battery.

Many research works about aerial manipulation have been
recently published. [1] presents the design of several light-
weight, low-complexity grippers that allow quadrotors to
grasp and perch on branches or beams and pick up and
transport payloads. In a very different system scale, [2]
proposes a system for aerial manipulation, composed of a
helicopter and an industrial manipulator. The usage of an
industrial manipulator is motivated by practical applications
which were identified in different cooperation projects with
the industry.

However, among the different contributions focused on
aerial manipulation very few of them consider configurations
with more than one arm. In [3] a human-size and lightweight
dual arm manipulator is integrated in a multirotor platform
and tested in outdoor flights. On the other hand, [4] proposes
a dual arm aerial manipulator to turn a valve that requires a
tightly integrated control scheme between aircraft and both
manipulators. The arm-aircraft system for valve turning is
validated through flight tests. Concerning theoretical contri-
butions, [5] introduces a generic planar aerial manipulator
with any number of arms attached at the center of mass
of a UAV. The authors prove that this kind of systems are
differentially flat regardless the number of joints of each arm
and their kinematic and dynamic parameters. This theory is
validated by simulating object grasping and transportation
tasks.

On the other hand, although a large amount of works have
been focused on the development of control techniques for
the system integrating the aerial vehicle and the manipulator
devices, not many of them deal with the associated motion
planning problem. Furthermore, the existing contributions
like [6] usually assume a strong simplification by addressing
the planning problem in a decoupled way, i.e. adopting
independent planners for the UAV and the manipulators that



switch their operation according to the mission phase. This
means that during the navigation phase, the arm configuration
is assumed to be fixed and hence the UAV planner is in charge
of planning the motion. In contrast, the manipulation phase
is resolved by using the manipulators planners and assuming
that the aerial platform is not moving.

This work explores dual arm configurations that guarantee
long reach manipulation in those scenarios where the target
is far from the operation area of the UAV. In order to meet
these requirements a new aerial robotic system with two
arms for long reach manipulation (ARS-LRM) is proposed.
More precisely, the system consists of a multirotor with
a long bar extension that incorporates a lightweight dual
arm in the tip (see Fig. 1). Thus, the long bar extension
increases considerably the safety distance between rotors
and manipulated objects while the dual arm offers extended
manipulation capabilities with respect to the single arm
configurations existing in the literature.

Figure 1: Aerial robotic system with two arms for long reach manipulation
(ARS-LRM).

Concerning the motion planning problem, this paper in-
vestigates strategies for the ARS-LRM in cluttered envi-
ronments in both navigation and manipulation tasks. For
this purpose, the aerial platform and the dual arm device
are considered jointly within the planner operation, which
constitutes a remarkable difference to previous contributions
where the planning problem was addressed in a decoupled
way. This integrated strategy allows the consideration of a
more complete set of system states that in turn will make
it possible to achieve wider and safer operating conditions.
Regarding the operation basis of the planner, an RRT*-based
algorithm that optimizes energy and time performance has
been developed.

This paper presents a first proof of concept of the ARS-
LRM system described in previous paragraphs. The work
begins with Section II presenting the structure of the in-
tegrated platform, the corresponding multi-body dynamical
model and finally the distributed control approach derived
for the system. Then, in Section III the proposed planning
algorithm is explained in detail. In order to better illustrate
its benefits, Section IV defines a realistic industrial scenario
given by a riveting task. After presenting the complete system
as well as the motivating scenario, Section V includes several
simulations of the planning capabilities of the ARS-LRM
system to endorse the validity of the proposed algorithm.
Finally, Section VI is devoted to conclusions and future work.

II. MODELING AND CONTROL
A. System Description

As can be seen in Fig. 2, the proposed aerial robotic
system for long reach manipulation (ARS-LRM) consists of
a multirotor with a long bar extension that incorporates a
lightweight dual arm in the tip. This configuration allows
aerial manipulation tasks increasing considerably the safety
distance between rotors and manipulated objects. Further-
more, the dual arm offers extended manipulation capabilities
with respect to the single arm configurations existing in the
literature. In this first prototype of the system each separate
arm is composed of two links, corresponding the lower one
to the end effector, but further extensions of the manipulation
chain are considered in future work.
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Figure 2: Geometry and mass distribution of the ARS-LRM system.

A planar characterization of the system will serve for
establishing a first proof of concept for the ARS-LRM setup.
This simplified approach eases the modeling and control
developments while maintaining the operation basis of the
system. Following this assumption, the multirotor is charac-
terized by a mass mM , a principal moment of inertia IM22 and
dimensions 2d⇥ w. Regarding the long bar, its longitude is
given by lP and it is assumed to be aligned with the UAV
center of mass MO at a distance d. The cross-piece in the tip
is defined by a length of 2lC . The total mass of the long bar
and the cross-piece is mP and will be treated as a punctual
mass located where the long bar and the cross-piece intersects
for simplicity purposes. Finally, the 2 arms are characterized
respectively by the lengths of their links -l1 for upper links
and l2 for lower links- and their masses -m1 and m2-, where
again the masses will be treated as punctual masses located at
the distal end of each link in order to derive more manageable
expressions. The values of the aforementioned parameters are
shown in Table I.

Table I: ARS-LRM Parameters

Parameter Value Units
Mass and Inertia mM 6.5 kg

- IM22 0.0933 kg·m2

- mP 0.15 kg
- m1 0.06 kg
- m2 0.03 kg

Geometry d 0.1 m
- w 0.9 m
- lP 0.2 m
- lC 0.1 m
- l1 0.15 m
- l2 0.05 m



B. Modeling
According to [7], the dynamics of a multirotor under

20kg is mostly determined by its mechanical model. This
paper embraces the same assumption and consequently the
behaviour of the ARS-LRM platform will be described by
means of the mechanical model of the complete system. To
this end, specific methodologies for multi-body systems will
be applied below.

Several approaches can be found in the literature to de-
rive equations of motion for mechanical systems. However,
Kane’s method [8] has proved in [9] to hold some unique
advantages over other traditional approaches when addressing
multi-body robotic systems like the ARS-LRM under study
in this paper.
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Variables of
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Figure 3: ARS-LRM model. Configuration variables. In green, the variables
selected later for the planning space.

The configuration variables selected as system generalized
coordinates are the longitudinal q1 and vertical q3 positions
of the UAV center of mass MO in the inertial reference frame
N , the multirotor pitch angle q5 and the joint angles both for
left L and right R arms qL7 , qL8 , qR7 and qR8 (see Fig. 3).
Generalized speeds ui are defined as:

NvMO

= u1n1 + u3n3

N!M
= u5n2

M!R�U
= uR

7 n2

R�U!R�D
= uR

8 n2

M!L�U
= �uL

7 n2

L�U!L�D
= �uL

8 n2

(1)

which leads to the following kinematic differential equations:

q̇i = ui (i = 1, 3, 5)

q̇kj = uk
j (j = 7, 8 ; k = R,L) (2)
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Figure 4: ARS-LRM model. Forces and torques applied to the system.

Regarding forces and torques exerted on the ARS-LRM
system (see Fig. 4), the rotors generate a resultant lifting
force F3a3 applied at the multirotor center of mass MO as
well as a torque T2a2 applied to rigid body M . On the other
hand, control actions governing the manipulator are given by
the torques applied to the arm joints TR

7 a2, TR
8 a2 �TL

7 a2
and �TL

8 a2.
Application of Kane’s method through MotionGenesis

software [10] leads to the following dynamic differential
equations for translation and rotation, where A, B, C and D
are dense matrices depending on the configuration variables
q5, qR7 , qR8 , qL7 , qL8 and the system parameters defined in
Table I and g is the gravity acceleration.
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C. Control
After modeling the ARS-LRM system, a distributed con-

trol scheme has been derived to provide the system with
the capacity of executing navigation and manipulation ma-
noeuvres. The objective is the completion of the simulation
environment that will allow the investigation of new planning
strategies to properly command the ARS-LRM platform.
With this purpose, a basic control structure that makes use
of nonlinear control strategies based on model inversion shall
suffice to complete the testbed.

Regarding the multirotor, the control scheme is inspired
by [7] and consists in linearizing the system through model
inversion and applying PID control laws to the resultant
dynamics. The underlying principle of control will be the
adjustment of the multirotor lifting force vector, in order
to generate the translational accelerations required to reduce
position error. A general overview of the control scheme is
shown in Fig. 5, where D�1

13 , K�1
5 and D�1

5 blocks represent,
respectively, the inversions of the translational dynamics,
rotational kinematics and rotational dynamics.
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Figure 5: Scheme of the UAV controller.

The control strategy selected for each arm is again based
on linearization through model inversion and PD control,
which yields a nonlinear control law capable of commanding
the link positions of both arms. The schematic representation
of this approach is shown in Fig. 6 where D�1

78 represents
the block in charge of inverting arm dynamics and torques
TR
7 , TR

8 , TL
7 and TL

8 correspond to the output signals of the
controller.
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Figure 6: Scheme of each arm controller.

The parameters of the controller have been tuned by means
of the classic pole assignment method. The selected values
constitute a trade-off that guarantees a proper dynamics range
while the common mechanical limitations of this kind of
systems are not overreached.

III. MOTION PLANNER
Sampling based planners like the family of RRT algorithms

[11] have demonstrated high potential in finding fast solutions
for high-dimensional robots [12]. Furthermore, some of these
methods bring the possibility of generating motion plans that
optimize certain cost functions, as for the case of RRT*
variations [13]. This makes it possible to find an optimal
solution in terms of a specific metric. Taking all these
considerations into account, an RRT*-based algorithm that
optimizes energy and time performance has been selected
for the ARS-LRM system.

Another determining factor for planner performance is
the planning space considered when exploring the different
possibilities of motion. In this work the planner explores
jointly the configuration variables of the aerial platform
(with the exception of pitch angle q5) and the dual arm
(variables in green color in Fig. 3). This integrated strategy
allows the consideration of a more complete set of system
states. In this way, it is possible to achieve wider and safer
operating conditions since equivalent configurations in terms
of final effector positions can be differentiated according to
the positions of both the multirotor and the intermediate links.

The pseudocode of the common structure of an RRT*
algorithm is shown in the code fragment 1. In order to
apply this general structure to the ARS-LRM system, some
of the intermediate functionalities have been customized for
the problem under study. These particular developments will
be dealt with in detail hereafter.

Algorithm 1 RRT* algorithm
Input: map, param
Output: trajectory

1: Tree INITIALIZATION(map, param)

2: for i = 1 to itermax do
3: xrand  SAMPLE()

4: xnearest  NEAREST (Tree, xrand)

5: xnew  STEER(xnearest, xrand)

6: if ⇠ COLLISION(xnearest, xnew,map) then
7: xnear  NEAR(Tree, xnew)

8: Tree ADD(xnearest, xnear, xnew)

9: Tree REWIRE(xnear, xnew)

10: end if
11: end for
12: trajectory  TRAJECTORY (Tree)

A. Computation of the Nearest Node

The NEAREST (Tree, xrand) function finds the nearest
node xnearest to the random state xrand generated in the
sampling-based exploration of the planning space. Since
nodes include state information both for multirotor and
dual arm accordingly with the integrated operation basis of
the planner, there will be two different measurements for
calculating the nearest node: the difference in position for the
multirotor and the difference in angle for the arm joints. Thus,
there appears the need of defining a homogenizing metric.
The reference velocities uref (for the UAV) and wref (for the
joints) have been defined with this purpose of transforming
the heterogeneous measurements into a common metric given
by the time magnitude required for each system component
to move between the configurations associated with the
nodes under analysis. The equations corresponding to this
normalization approach are presented below:

tUAV =

q
(�q1)

2
+ (�q3)

2

uref

tARMS =

max

���
�qR7

�� ,
��
�qR8

�� ,
��
�qL7

�� ,
��
�qL8

���

wref

xnearest = min

x2Tree
(max ( tUAV |x , tARMS |x)) (4)

where �qi denotes the increment in variable qi when going
from the tree node x to the sampled node xrand, that is,
�qi = qrandi � qxi .

B. Collision Checking

The COLLISION(xnearest, xnew,map) function checks
if the branch that would link two nodes produces some
collision with the obstacles included in the map. To this end,
a representative set of intermediate configurations between
the nodes is generated using interpolation. Then, each inter-
mediate configuration is investigated to see if any part of the
system collides with the obstacles defined in the scenario.

This operation deserves special attention since it plays an
important role in the advanced functionality of the ARS-
LRM planner that allows differentiating equivalent config-
urations in terms of final effector positions according to the
positions of both the multirotor and the intermediate links.
The consideration of the different geometries of the system
components, together with joint exploration of the planning
space for both system components, are crucial features in
this respect. Concerning the former, simplified models that
alleviate the computational burden of collision checking but
maintaining at the same time their capability to express the
heterogeneity existing in the geometry of the different parts,
are the desirable option. To this end, the multirotor has
been considered rectangularly shaped while the dual arm and
the long bar extension are modeled by rectilinear bars with
negligible section. Regarding the obstacles, all of them have
been considered round.

Another aspect that requires further consideration is the
algorithm selected for detecting the collisions. In the case of



the multirotor, the approach is straightforward since it only
requires checking whether the position of the center of mass
is within the limits of the rectangular region that produces
collisions with the obstacle (see Fig. 7).

Collision
Region

MMO

Figure 7: Scheme of the collision checking for the multirotor.

In contrast, the collision management for the extension
bar and the dual arm consists of translating the collision
condition to the angular space as shown in Fig. 8. In this
way, the obstacle is characterized in terms of the minimum
and maximum link angle that may produce a collision. Then,
taking into account also the distance to the obstacle, it is
possible to check the collision with a considerably reduction
in the computational load with respect to standard procedures.

q
7,min
R

7,max
qR

Figure 8: Scheme of the collision checking for the right upper link.

C. Computation of the Set of Near Nodes
The NEAR(Tree, xnew) function finds the set of tree

nodes xnear that satisfy simultaneously the following con-
ditions with respect to their distances to the new candidate
node xnew: the difference in multirotor position is less than
threshold �UAV and the differences in link orientations are all
less than threshold �ARMS . This definition can be expressed
mathematically as follows:

⇢UAV =

q
(�q1)

2
+ (�q3)

2

⇢ARMS = max

���
�qR7

�� ,
��
�qR8

�� ,
��
�qL7

�� ,
��
�qL8

���

xnear = x 2 Tree /

⇢
⇢UAV |x  �UAV

⇢ARMS |x  �ARMS
(5)

where �qi denotes the increment in variable qi when going
from the tree node x to the new candidate node xnew, that
is, �qi = qnewi � qxi .

D. Cost Functions
In order to apply the RRT* optimization

sequence within the ADD(xnearest, xnear, xnew) and
REWIRE(xnear, xnew) functions, two different cost
indices have been defined: the operation time of the
complete system (CFT ), and the linear and angular
displacements produced in the multirotor and the arm joints
respectively (CFE). These cost indices can be formulated
as follows:

CFT = max (tUAV , tARMS)

CFE = p1·⇢UAV + p2·�ARMS (6)

where tUAV and tARMS were defined in equations (4); ⇢UAV

was defined in equations (5); �ARMS =

��
�qR7

��
+

��
�qR8

��
+��

�qL7
��
+

��
�qL8

�� with �qi denoting the increment in variable
qi between the nodes in which the cost function is being
evaluated (�qi = qtoi � qfromi ); and p1,2 are two weighting
parameters that allow the prioritization of movements with
minimum displacements in the multirotor or the dual arm.

IV. APPLICATION SCENARIO: RIVETING TASK
In order to demonstrate the validity of the motion planning

strategy presented in previous section, the algorithm will be
tested in a realistic industrial scenario given by a riveting task.
The schematic description of the scenario is shown in Fig.
9, where coloured circles correspond to pipes existing in the
industrial facility and surrounding circumferences denote the
safety regions whose violation would be treated as a collision.
As can be seen, the ARS-LRM system will be commanded
to place two rivets with its right arm (target points marked in
red) while the left arm provides visual feedback by pointing
a visual camera integrated as end effector (see Fig. 1). In
this first proof of concept, the riveting operations will assume
ideal conditions, i.e. absence of interaction forces, since force
control has not been implemented yet in the ARS-LRM
system to facilitate the analysis of the planner results.
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Figure 9: Application scenario given by a riveting task.

The achievement of the riveting objectives defined previ-
ously requires the execution of certain intermediate opera-
tions that include both navigation and manipulation manoeu-
vres:

1) Navigation phase: this phase corresponds to the sys-
tem displacement required to reach an observation
position over the riveting area. After this, a short
transition phase not requiring planner execution will
enforce a ready-to-go configuration for the first rivet-
ing manoeuvre that will be accomplished during the
manipulation phase.

2) Manipulation phase: this phase covers the different
manoeuvres involved in the manipulation task under
consideration, the riveting operation.

a) Rivet placement: approaching to the target point
in the perpendicular direction to the target point
plane by the riveting effector integrated in the
right arm.



b) Release: opposite manoeuvre to the rivet place-
ment in which the riveting effector leaves the
target point, again following the perpendicular
direction to the target point plane.

c) Switching: manoeuvre of the complete ARS-
LRM system to switch between the ready-to-go
configurations for riveting points 1 and 2.

V. SIMULATION RESULTS

In this section the RRT*-based algorithm derived for the
ARS-LRM system has been used to calculate a motion plan
that commands the riveting task presented in the previous
section. The index selected for optimization has been the cost
function CFE defined in Section III-D. Furthermore, not only
the planned trajectory will be a matter of study but also the
trajectory executed by the controlled ARS-LRM model when
receiving the former as control reference.

Due to the high dimension of the planning space consid-
ered by the ARS-LRM planner (see Fig. 3), a continuous
treatment of the variable ranges considered in the sampling
operation would lead to significantly elevated values of the
execution times required for achieving convergent solutions.
The former suggests the adoption of discretization patterns
that guarantee bounded execution times for the planner. Table
II shows the discretization patterns adopted for the navigation
and manipulation phases in the riveting scenario.

Table II: Discretization of the planning-space

Phase Navigation Manipulation
Variable Discretization Pattern

q1 [ 45 , 50 , ... , 275 ] cm [ 225 , 230 , ... , 255 ] cm
q3 [ 30 , 35 , ... , 170 ] cm [ 80 , 85 , ... , 120 ] cm
qR7 [ 0 , 45 , 90 ]o [ 30 , 40 , ... , 140 , 150 ]o

qR8 Fixed value of 170o [�45 , 0 , 45 ]o

qL7 [ 0 , 45 , 90 ]o Fixed value of 60o

qL8 Fixed value of 170o Fixed value of 110o

Considering all the above information, the motion planner
of the ARS-LRM system has been executed for the riveting
scenario. As advanced before, the resultant plan (represented
with green lines in the figures) has been also provided to
the controlled ARS-LRM system in order to analyze the
close-loop behavior of the system (represented with blue
lines in the figures) when following the planned trajectory.
This simulation work has been carried out in a Matlab-
Simulink framework that represents the graphical evolution
of the system variables and the corresponding virtual reality
animation [14].

The results corresponding to the navigation phase are
presented in Fig. 10 and Fig. 11. In Fig. 10 the trajectory
followed by the ARS-LRM system is illustrated by the
dotted line representing the movement of the UAV center
of mass MO. In Fig. 11 the evolution of the planning-
space variables, both for the planned trajectory (green line)
and the close-loop executed trajectory (blue line), has been
shown. As can be observed, the planned trajectory succeeded
in commanding efficiently the controlled ARS-LRM system

through the navigation phase without producing collisions
with the obstacles existing in the scenario.

Regarding the manipulation phase, Fig. 12 and Fig. 13
illustrate the achieved results. As in the navigation phase,
Fig. 12 shows a schematic representation of the manoeuvres
associated with the manipulation phase. Similarly, in Fig. 13
the evolution of the planning-space variables, both for the
planned trajectory (green line) and the close-loop executed
trajectory (blue line), has been represented for this phase.
Once again the planned trajectory succeeded in commanding
efficiently the controlled ARS-LRM system through the dif-
ferent manipulation manoeuvres involved in the riveting task.
It is worth highlighting that Fig. 12 (switching) illustrates
how the jointly consideration of the planning space for
the multirotor and the dual arm allows the optimization
of the switching manoeuvre between the riveting points.
More precisely, the motion planner takes advantage of the
multirotor vertical displacement to carry out the switching
manoeuvre of the riveting effector in a more efficient way.
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Figure 10: Navigation phase. The ARS-LRM system navigates through the
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VI. CONCLUSIONS
This paper has presented motion planning strategies for

an aerial robotic system with two arms for long reach ma-
nipulation (ARS-LRM). In order to evaluate the algorithms
under consideration, a simulation environment that charac-
terizes the system behaviours that are relevant for planner
operation was required. Consistently with this requirement,
the ARS-LRM platform has been described in detail together
with its potential benefits: a considerable increment in the
safety distance between rotors and manipulated objects, and
the extended manipulation capabilities offered by the dual
arm. Taking this description as reference, the dynamics of
the system has been modeled with specific methodologies
for multi-body systems. Furthermore, a distributed control
scheme that makes use of nonlinear control strategies based
on model inversion has been derived to complete the testbed.

With respect to the planning approach, several features jus-
tify the relevance of this contribution. The aerial platform and
the dual arm device have been considered jointly within the
planner operation. In this way, it is possible to achieve wider
and safer operating conditions since equivalent configurations
in terms of final effector positions can be differentiated

according to the positions of both the multirotor and the
intermediate links. On the other hand, the planner operation
is driven by an RRT*-based algorithm that optimizes energy
and time performance in cluttered environments for both
navigation and manipulation tasks.

In order to demonstrate the validity of the motion plan-
ning strategy presented, the algorithm has been tested in a
realistic industrial scenario given by a riveting task. As was
discussed in the simulation section, the planned trajectory
succeeded in commanding efficiently the controlled ARS-
LRM system through navigation and manipulation phases
without producing collisions with the obstacles existing in
the scenario. These satisfactory results are presented as a
first validation of the proposed approach.
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Multi-robot human scene observation based on

hybrid metric-topological mapping
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Abstract— This paper presents an hybrid metric-topological

mapping for multi-robot observation of a human scene. The

scene is defined as a set of body joints. Mobile robots have to

cooperate to find a position around the scene that maximizes

the number of observed joints. It is assumed that the robots can

communicate but have no map of the environment. The map

is updated cooperatively by exchanging only high-level data,

thereby reducing the communication payload. The mapping

is also realized in an incremental way to explore promising

areas of the environment while keeping state-space complexity

reasonable. We proposed an on-line distributed heuristic search

combined to this hybrid mapping. We showed the efficiency of

the approach on a fleet of three real robots, in particular its

ability to quickly explore and find the team position maximizing

the joint observation quality.

I. INTRODUCTION
Many robotic applications require to observe or recognize

activities of one or more humans. A network of static
cameras cannot deal with complex perturbations as dynamic
occlusions or lighting changes. Recent works on active

distributed perception are interested in using mobile cam-
eras potentially embedded on mobile robots. These robots
cooperate and merge information to move to adequate places
to cover blind spots or react to changing conditions. In [1],
active perception is performed between one mobile robot
and a set of fixed cameras to assist and guide people in
urban settings. But they do not consider the issue of coor-
dinating multiple mobile robots to improve the perceptual
information. In [2], distributed visual recognition of hand
gestures is realized with a group of mobile robots. Hand
images are classified by each robot from its point of view. A
distributed consensus protocol allows the swarm to reach as
a whole a final decision about the issued gesture. However,
the navigation and coordination of the robots are very simple
and are not used to improve the recognition.

In this article, we are interested in human activity recog-

nition with a fleet of mobile robots. The objective is to
exploit the mobility of the robots so that they adapt their
position to find the spatial configuration that maximizes
the joint recognition of a human activity (cf. Fig. 1). The
joint recognition is done by integrating information collected
by the fleet. The main challenge is to provide cooperation
between robots when each individual point of view does not
allow a satisfactory recognition, e.g. because of the presence

1CITI Lab. Inria Chroma team, INSA Lyon 6 avenue des Arts, 69680
Villeurbanne cedex, France firstname.lastname@inria.fr

2Univ Lyon, Université Lyon 1, LIRIS, CNRS, UMR5205 Villeurbanne,
F-69622, France

3INSA Lyon, Université de Lyon, 20 Avenue Albert Einstein, 69100,
Villeurbanne, France

of occlusions. Robots must communicate and coordinate to
obtain the most complementary observations.

We propose an on-line distributed solution to the pro-
blem of positioning a team of mobile robots for an observa-
tion task of a human scene. We assume that the environment
is unknown and has obstacles and occlusions that can prevent
some displacements and observations of the scene (cf. Fig.
1). Robots only know the relative location of the scene so
they have to explore and build a map of the environment.
This map must gather various data concerning obstacles and
human scene perception so as to be used by the distributed
control strategy. To this end, a cooperative hybrid metric-

topological mapping using the information of multiple
mobile sensors is presented in this article.

In the following, section II proposes a formalization of
the problem and the criterion we want to maximize. Then
section III introduces an hybrid metric-topological mapping.
In section IV, the on-line distributed control strategy is
detailed. Finally, we present experimental results with a
multi-robot team in section V.

II. PROBLEM SETTINGS

We are interested in multi-robot observation of a human

scene, defined as the activity of a person in a bounded area.
In a first stage, we limit our objective to detect the human
body pose, that can be characterized by a set of skeleton
joints. The objective is to optimize the configuration of the
robot team around the scene so that the number of skeleton
joints monitored by the team is maximized. In this article, we
consider that skeleton joints are relatively static during one
activity. Thus the task of human skeleton observation consists

Fig. 1. Joint observation of a scene (human activity) with a fleet of m = 3
robots. The navigation model is based on circles with a spatial discretization
in cells, where C = 2 circles and D = 8 sectors in this example.



in obtaining a complete view of the targets (skeleton joints)
at each new activity.

Several approaches have been proposed concerning the
deployment of multiple robots to achieve the observation of
moving targets. Most of these approaches are classified and
discussed in a recent review [3], based on four major control
techniques. Among these, the CMOMMT1 framework [4]
aims to dynamically position robots to maximize the number
of targets under observation and the duration of observation
of each target.

In the following, we use the CMOMMT formulation to
formalize our problem of multi-robot observation of a human
scene and the criterion we want to maximize.

Definition 1. The CMOMMT model [4] is defined as a tuple
< S,V,K > where:

• S a two-dimensional, bounded spatial region;
• V a team of m mobile robots, where ⌫

i,i=1,...,m is a
robot with observation sensors that are potentially noisy
and of limited range;

• K(t) a set of n targets, where 
j,j=1,...,n(t) is a target,

that is located within region S at time t.

A robot ⌫
i

is observing a target when the target is within
⌫
i

’s sensing range. In our case, a target is a skeleton joint.
It is observed when a robot is able to track the joint with its
sensor.

Definition 2. The observation matrix O(t) [4] is defined as
O(t) = [o

ij

(t)]
m⇥n

such that:

o
ij

(t) =

⇢
1 if robot ⌫

i

is observing target 
j

(t) at time t
0 otherwise.

Definition 3. The observation o
i

(t) of a robot ⌫
i

at time t
is defined as a binary vector of size n such that:

o
i

(t) = [o
i1(t), ..., oin(t)]. (1)

To evaluate the observations made by each robot and by
the team, we define the individual and joint observation
qualities.

Definition 4. The individual observation quality q
i

(t) made
by a robot ⌫

i

at time t is defined as:

q
i

(t) =
1

n

nX

j=1

o
ij

(t). (2)

The quality q
i

(t) is the average number of skeleton joints
accurately tracked by the robot ⌫

i

at t.

Definition 5. The joint observation quality Q(t) made by
the team V at time t is defined as:

Q(t) =
1

n

nX

j=1

g
j

(O(t),V). (3)

where g
j

(O(t),V) =

⇢
1 if 9i 2 V such that o

ij

(t) = 1
0 otherwise.

1Cooperative Multi-robot Observation of Multiple Moving Targets

To quantify the individual contribution of each robot to
the joint observation, we introduce the notion of marginal

contribution. This refers to the marginal contribution of a
player to a coalition in the Shapley value [5].

Definition 6. The marginal contribution w
i

of a robot ⌫
i

in
the joint observation of the team, at time t, is defined as:

w
i

(t) =
1

n

nX

j=1

o
ij

(t) ^ (o
ij

(t)� g
j

(O(t),V \ i)) (4)

with � the exclusive disjonction.

The marginal contribution corresponds to the part of the
observation that robot ⌫

i

is the only one to see.

The objective is to maximize the joint observation quality
Q, i.e. the number of targets that are being observed by the
team. Notice that maximizing the joint observation quality
is not decomposable into maximizing the individual observa-
tion quality, which could lead to redundant information. For
instance, consider the following example with m = 3 robots
and n = 7 targets. Observations, qualities and marginal
contributions of each robots at time t are:

o1(t) = [0, 0, 0, 1, 1, 0, 0], q1(t) = 0.29, w1(t) = 0.29

o2(t) = [1, 1, 0, 0, 0, 1, 1], q2(t) = 0.57, w2(t) = 0

o3(t) = [1, 1, 1, 0, 0, 1, 1], q3(t) = 0.71, w3(t) = 0.14

Even if Robot 2 has a high individual observation quality,
its contribution is low because it observes the same targets
as another robot. However, Robot 1 has a low individual
quality, but it is the only one to observe some targets, so its
contribution is the highest. This illustrates that the objective
of maximizing Q requires to find the most complementary
information.

III. HYBRID METRIC-TOPOLOGICAL MAPPING

In this work we assume the environment is unknown. The
robots only know the relative location of the scene. So they
have to explore the environment around the scene to find
the positions from which Q is maximized. The exploration
goal is to collect data about obstacles that can interfere
with robots’ navigation ; and about the observation qualities
from each point of view. The quality varies depending on
various unknown and dynamic parameters: the current pose
of the human body, the lighting changes, the occlusions2 and
obstacles that can partially or fully hide the scene.

We propose in this work that each robot carries out a
hybrid metric-topological mapping to gather all these data.
This mapping is based on two different local maps (cf. Fig.
2) and on a concentric navigation model.

A. Concentric navigation model

We propose to consider a limited navigation space around
the scene. It is composed of C concentric circles, at spaced
radius, and centered on the scene. Robots can move by

2Occlusions are not in the navigation space, i.e. they are in the space
between the scene and the most inner circle of the navigation model.



Fig. 2. Scheme of the different local maps constructed by one robot ⌫i and of the data exchanged by the robots.

following these circles in two directions (forward/backward)
as illustrated in Fig. 1. This navigation model allows to
resolve several navigation constraints. First by fixing the
camera orientation perpendicular to the movement direction
of the robot, the scene is constantly in the robot’s field
of view. Secondly, moving along a circle trajectory is well
adapted to the navigation of two-wheeled non-holonomic
robots. Finally, it simplifies the coordination of the robots
and reduces the risks of collisions. Indeed, no collision
can arise between robots navigating on different circles,
and collisions on a circle are easy to predict. Concerning
obstacles avoidance, robots have only to detect obstacles that
are on circle trajectories.

B. Local metric map

Occupancy grid maps, introduced by Elfes [6], represent
the environment with a set of cells (usually squares or
hexagons), each with an occupancy probability that deter-
mines the probability that the cell will be occupied by an
obstacle.

In this paper, each robot builds a local occupancy grid map
by using a SLAM3 algorithm (cf. §V). The local metric map
is used for robot navigation around the scene and obstacle
avoidance. The position of a robot in its local map is defined
as following.

Definition 7. The position of a robot ⌫
i

at time t is defined
by (d

i

(t),�
i

(t)) where d
i

is the distance of the robot ⌫
i

to
the scene, and �

i

is the angle between a reference line and
the line connecting the scene to the robot (cf. Fig. 1).

We assume that each robot knows the position of the scene
and of the reference line in its local map, creating a global
reference frame for all the robots. Note this assumption
could be partially released by using multi-robot SLAM
techniques [7]. For instance in [8], we apply the merging
of local occupancy grid maps [9] to compute a joint, global
representation of the environment. Then, robots only need

to know the position of the scene in their local maps.

C. Incremental cell mapping

Robots have to explore and gather data about the ob-
servation quality from each position around the scene. To

3Simultaneous Localization And Mapping.

handle the complexity of the state space to explore, we use
a discrete representation of the robots’ positions.

We define a set of D sectors that divide the circular space
centered on the scene into slices with identical central angle
of 2⇡

D

. Then we can determine a set of D ⇥ C contiguous
cells where the robots are moving (cf. Fig. 1).

Definition 8. At any position (d
i

(t),�
i

(t)) of a robot ⌫
i

at
time t is associated a unique cell c

i

(t) = h[d
a

, d
b

]; [�
a

,�
b

]i
such that d

i

(t) 2 [d
a

, d
b

[ and �
i

(t) 2 [�
a

,�
b

[. As well,
at any cell c = h[d

a

, d
b

]; [�
a

,�
b

]i is associated a unique
position (d

a

, �a+�b
2 ).

To gather data about the observation from each point of
view, we define mean observation and quality for a cell.

Definition 9. The mean observation �
c

(t) =
[�

c1(t), ...,�cn

(t)] from a cell c at time t is defined
as a vector of size n such that:

�
cj

(t) =
1

|�(t)|

X

⌧2�(t)

o
N(⌧,c),j(⌧) (5)

where �(t) = {�
x

|�
x

 t}
x=1,...,X is the set of time steps

where the cell c was visited by a robot. At time �
x

, the cell
c was visited by the robot N(�

x

, c) 2 V .

Definition 10. The quality of a cell ⇢
c

(t), associated to the
cell c at time t, is defined as:

⇢
c

(t) =
1

n

nX

j=1

�
cj

(t). (6)

The quality of a cell is the mean observation quality
made by all the robots from the position associated to that
cell.

The state space to explore is then directly affected by the
number of circles and sectors. This set is bounded4 by (C⇥

D)m if robots are heterogeneous. If robots are identical5,
the size of the state space goes down to

�
C⇥D

m

�
. Given the

obstacles, it does not reduce to
�
D

m

�
as it is not sufficient

for the robots to explore the cells situated the closest to the
scene as they are not guaranteed to be reachable.

4It can be reduced if some cells are inaccessible because of obstacles and
if only one robot per cell is allowed.

5Two robots can be arbitrarily swapped without changing the joint
observation of the scene.



Fig. 3. Example of (a) a representation with three initial cells (b)
corresponding to the initial tree structure where each of the three initial cells
is a root of a quadtree. (c) One cell was split. (d) The node corresponding
to the split cell has four children nodes in the quadtree. The blue circle at
the center represents the scene.

To handle the space complexity and the time to explore the
environment, we propose an incremental division of cells.
The idea is to have at the beginning a coarse representation
of the environment with few initial cells. Thus each initial
cell covers a large area of the space around the scene, as
illustrated on fig. 3(a) where three initial cells are defined.
A cell can be split into sub-cells, and recursively, sub-cells
can be split (cf. fig. 3). As each cell is associated with a
robot position, this will increase the number of accessible
positions. The objective is to refine the discretization only

in interesting areas of the environment. The robots will
split cells only where an accurate exploration could improve
the joint observation quality. Conversely, some cells must
not be split too finely, e.g. because they are behind obstacles.
The observation from any positions in such a cell is occluded.
Thus the number of cells to explore is reduced while refining
the joint observation quality over time as the robots split
interesting cells.

D. Local cooperative hybrid quadtree map

To manage this incremental mapping of the environment,
we propose an hybrid metric-topological map based on a
quadtree. A quadtree is a kind of tree in which each non-
leaf node has four children [10]. In our structure, each initial
cell is a root of a quadtree. Each node of the quadtree is
associated to a cell and a position in the local metric map;
and each cell of the navigation model is a leaf node of the
quadtree. When a cell is split, its corresponding node gets
four children nodes (cf. fig. 3).

The local hybrid map of each robot is enriched with
various data (cf. Fig. 2):

• data coming from local sensors (e.g. rangefinder, depth
camera);

• information from the local metric map of the robot;
• high level data sent by the other robots of the team.

These data are used to maintain for each leaf-node of the
quadtree at each time t the following information:

• an obstacle occupancy probability coming from the
local metric occupancy grid map;

• the mean observation �
c

(t) and quality ⇢
c

(t) of the cell
c corresponding to the node.

This information is updated following probabilistic quadtree
principle [11]. When a cell is split, all the data of the children
nodes are initialized with the data of their parent node. When

Algorithm 1: Choice of robot ⌫
i

’s action at time step t

1 8k 2 V w
k

(t)=ComputeContributions
2 If w

i

(t) is the best then Do not move
3 Else With probability ✏ Do an exploration action
4 With probability 1� ✏ Do an exploitation action

a cell is visited, the corresponding leaf-node in its local
quadtree map is updated.

The mean observation of a cell requires to know the
observations made by the other robots. Thus the local hybrid
map of a robot is constructed in a cooperative manner

with high-level data sent by other robots. Communication
architecture is detailed in the next section, as well as the
distributed decision algorithm that uses the local hybrid map.

IV. MULTI-ROBOT DECISION

In [4], a distributed heuristic approach is proposed to
solve the CMOMMT problem using weighted local force
vector control. However this approach assumes uncluttered
environments with either no or simple obstacles. Moreover
it mainly focuses on maintaining a tracking mode on the
moving targets under observation, and the search mode
is restricted to the regions that may contain more targets
[3]. So this approach is not adapted to our context where
the objective is to quickly explore and find the position
maximizing the number of targets observed by the team.

In a previous work [12], we have proposed and compared
different heuristics to guide the exploration of the state space
in an incremental quadtree map. This approach was based
on two heuristics to decide the action of each robot, as
detailed in Algorithm 1. First, only the robots with the lowest
marginal contributions were moving at each time steps.
Second, the action to be done by these robots was chosen
between exploration and exploitation action according to
meta-heuristics as Simulated Annealing [13]. Exploration

consists in moving to the less visited adjacent cell to gain
new information and to prevent the team from remaining in a
local optimum; while exploitation consists in moving to the
best adjacent cell or to split the current cell if it is the best
one. The best adjacent cell is the cell that maximizes the joint
quality given the current observations of the other robots.
Mean observations of cells are used to infer the observations
from the adjacent cells. Thus the cells that are potentially
interesting for the observation are divided and explored more
accurately. If a move is not possible6, the current cell is split.

We demonstrated in [12] the efficiency of this approach,
in particular its ability to quickly produce efficient or
optimal solutions (compared to the number of possible joint
positions), its anytime property, and its robustness to noisy
observations. However, this was only tested in a simplified
simulator where communication and robots’ navigation
were perfect and immediate, and without using metric
information. The control strategy was centralized with a

6A move is not possible if the target cell is an obstacle or is already
occupied by another robot.



Algorithm 2: Decision at time step t for one robot ⌫
i

1 Wait Action
j

(t) 8j < i
2 8j < i UpdateQuatree(Action

j

(t))
3 Action

i

(t) = Choose my action (heuristics)
4 UpdateQuatree(Action

i

(t))
5 Communicate Action

i

(t) to all j 6= i
6 Do Action

i

(t)
7 Recover the observation o

i

(t) in the reached cell c
i

(t)
8 UpdateQuatree(CellState

i

(t))
9 Communicate CellState

i

(t) to all j 6= i
10 Wait Action

j

(t) 8j > i
11 8j > i UpdateQuatree(Action

j

(t))
12 Wait CellState

j

(t) 8j 6= i
13 8j 6= i UpdateQuatree(CellState

j

(t))

unique topological quadtree map shared by all the robots.

In this article, we introduce an on-line distributed archi-

tecture of this approach relying on asynchronous commu-
nication and topological quadtree maps cooperatively con-
structed by each robot. To maintain the consistency of local
hybrid maps of each robot and of the heuristic search, the
distributed implementation used a predefined order between
the robots of the team. In addition, two types of messages
are exchanged (cf. Fig2). At each time step t, messages sent
by a robot ⌫

i

to all the other robots ⌫
j,j 6=i

are:
• its current cell and the associated observation:
CellState

i

(t) =< i, t, o
i

(t), c
i

(t) >
• its action : Action

i

(t) =< act, i, t, c
i

(t) > where
act 2 {NONE,GOTO, SPLIT} and c

i

(t) is the goal
cell.

Algorithm 2 details one decision step for one robot. To
avoid that two robots choose the same goal cell, each robot
waits to receive the Action message of its preceding
robots (line 1). Then it decides its action according to a
meta-heuristic (line 3, cf. Algo. 1). Once it has chosen its
action, a robot sends an Action message to the others
(line 5) and waits until the end of this action to recover
the observation from its reached cell (line 7). Then, the leaf-
node corresponding to the reached cell is updated (line 8)
and the robot sends a CellState message (line 9). Finally,
each robot waits the Action message of its following robots
(line 10) and the CellState message of all other robots
to update its local hybrid map.

This ensures the consistency between the local hybrid
maps and the distributed decision. In addition, it also reduces

the communication payload as messages are exchanged
between robots only at the decision level (cf. Fig. 2). Mes-
sages contain high-level and already processed data rather
than heavy data coming directly from the sensors.

V. EXPERIMENTAL RESULTS

In this section, we present results obtained with a team of
real robots observing the activity of a person in a cluttered
environment.

Fig. 4. On the left, one experiment with three robots around a human
scene (reading phone) and a cluttered environment. On the right, Kinect
views of one robot enriched with the skeleton data. Joints are represented
with circles where filled ones are observed targets (confidence value of 1).

A. Experimental settings

We used 3 Turtlebot2 robots equipped with a RGB-D
camera (Kinect1) for the skeleton tracking, a low-cost 360�
and 4 meters laser rangefinder (RP-Lidar) for local metric
mapping and navigation, a netbook with Ubuntu and ROS
connected to the mobile base and to the rangefinder for the
decision and navigation part, and an Intel NUC mini-PC with
Windows connected to the Kinect for the human observation
part. ROS gmapping-package is used as a common particle
filter SLAM algorithm. The decision algorithm presented in
§IV was implemented as a ROS node. It requests skeleton
data to a server running on the NUC. Data exchanged
between robots use TCP/IP socket between netbooks.

Skeleton data are obtained using Microsoft Kinect SDK7

that can track a set of n = 20 skeleton joints as targets.
Data for each joint are the positions and orientations in the
referenced frame of the camera, and a confidence value. The
confidence value is 1 when the tracking of the joint seems to
work, 0 if the tracking fails, and 0.5 if skeleton heuristics are
able to adjust data for some lost or occluded joints. However,
these are often far from the reality and can have negative
side-effects for human activity recognition systems. So we
do not use skeleton heuristics. Thus the observation value o

ij

of a skeleton joint 
j

for a robot ⌫
i

is the binary confidence
value of the joint.

We perform a set of experiments in various cluttered
environments and different human scenes, as illustrated in
Fig. 4. Environments were designed so that it was impossible
for one robot to find a cell from which it can see the
full joint skeleton. We used Simulated Annealing [13] as
a meta-heuristic with an exploration probability of ✏. ✏ is
initialized to 0.6 and reduced at each decision step according
to ✏ = ✏(1�0.1). At each decision step, the two robots with
the lowest marginal contributions are moving. A comparison
in simulation of the performance of different heuristics and
number of moving robots at each step can be found in [12].

For these experiments, the quadtree map was started with
3 initial zones (cf. Fig. 5a) and all the 3 robots on the
same circle. Robots moved only along one circle. Even if
a cell was split into 4 children nodes, each robot considered
only the two adjacent cells on the same circle. A video

7https://msdn.microsoft.com/en-us/library/jj131025.aspx



(a) (b) (c) (d)

Fig. 5. Quadtree map cooperatively computed by m = 3 robots at different
time steps of one experiment. Robots are represented by colored squares.
Qualities of cells are represented by different shades of green: the greener
the cell is, the better the quality is.

Fig. 6. Joint observation quality at each time step for 3 different
experiments, with m = 3 robots using Simulated Annealing.

presenting different experiments can be found at http:

//liris.cnrs.fr/lmatigno/videoCROME4.html.

B. Results

Fig. 5 presents the quadtree map constructed by one robot
at different decision steps during one experience. Fig. 5d is
the quadtree map obtained when the maximal joint quality
is found for the first time by the team. About half of the
visited cells have a very low quality (white color) which
shows the cluttered aspect of the environment with fully or
partially occluded views of the scene. No visited cells has
the best quality (dark green) so the robots have to coordinate
to obtain the most complementary observations. This figure
also illustrates how the robots are refining the discretization
only in interesting areas around the scene.

Fig. 6 plots the current joint observation quality at each
time step for different experiments. It shows that the optimal
observation (Q = 1) was quickly found (8 time steps in the
worst-case). The algorithm is also able to maintain a stable
view of the scene as the joint quality still ranges between
0.8 and 1 after 6 steps.

VI. CONCLUSION

In this article, we presented an original mapping of the
environment to deal with multi-robot observation of a human
scene. Each robot carries out an hybrid metric-topological
mapping to gather information about obstacles, occlusions
and observation qualities of the scene. The map is updated
cooperatively by exchanging only high-level data, thereby
reducing the communication payload. The mapping is also
realized in an incremental way to explore promising areas
of the environment while keeping state-space complexity
reasonable. We proposed an on-line distributed heuristic

search combined to this hybrid mapping. Experiments with a
fleet of robots showed the ability of the approach to quickly
explore and find the team position maximizing the joint
observation quality, of a person who is standing in a cluttered
environment.

These results reveal many perspectives. First, we would
like to test this approach when the person is doing a
sequence of activities. In this case, the team will have to
adapt its position at each new activity to obtain a complete
view of the targets. To realize this fast adaptation, keeping
some map information about obstacles and occluded cells
could be helpful. We also intend to test other distributed
optimization methods that could be used with our hybrid
mapping, as distributed stochastic optimization approaches
[14]. The main interests of these approaches are their speed
of convergence, adaptability and scalability, which is highly
appropriate to our context of real robots and dynamic human
scenes. Finally, our approach could be extended to soft
confidence values for body joints. This would require to
redefine observation and marginal contribution in a proba-
bilistic framework, and allow our approach to be tested with
multi-camera human activity recognition systems that output
probability distribution over classes of activity.
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TIGRE: Topological Graph based Robotic Exploration

L. Fermin-Leon, J. Neira and J. A. Castellanos

Abstract— In this work we address the problem of au-
tonomous robotic exploration and map building supported by
high level information provided by online topological segmen-
tation that incrementally generates an undirected connected
graph of the environment. We formulate the exploration prob-
lem as the traversal of all the edges of the online graph, being
the optimal solution an Eulerian path, if it exist. We propose
an integrated approach, the TIGRE algorithm, that combines
Graph-SLAM procedures with online Constrained Depth-First
Search based graph traversal algorithms to efficiently explore
the navigation area. Simulation results show that the online
TIGRE algorithm provides similar error estimates for the robot
poses and distance travelled than well-known off-line algorithms
that use the full graph of the environment. Also, it outperforms
other online and off-line algorithms in terms of estimated error.

I. INTRODUCTION

Autonomous robotic exploration for map building is the
problem of finding the commands to be applied to the robot
in order to efficiently (ideally, optimally) build a map of the
environment. The map’s posterior use determines its design
and construction requirements, e.g. in maps aimed at the
reconstruction of small areas, the goal would be attaining
the highest precision in the reconstruction, or in maps aimed
at subsequent path planning tasks the goal would be that
every traversable path in the real world be represented in the
resulting map.

The optimal set of commands describe a path that should
optimize two conflicting criteria: (i) minimize robot and
map uncertainty, and (ii) minimize distance traveled. In the
context of feature-based SLAM, the map is represented as the
position of a set of landmarks, and uncertainty is represented
by the covariance of the landmark location estimates, which
is known to decrease as successive observations or loop-
closures are made [5], with the penalty of an increase in
the distance traveled by the vehicle.

Typical approaches to autonomous exploration usually
consist in determining some “interesting point” and then
moving towards it. This point can be determined according
to different criteria being the most popular the Frontier-based
approach by Yamauchi [20], a greedy approach in which the
robot always moves towards the closest unexplored region.
An alternative group of works rely on decision-theoretic
approaches to define the exploration policy [4], [3].

*This work has been supported by the MINECO-FEDER project
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Fig. 1. Example of a topological segmentation [7] of an office-like
environment [2] in approximate convex regions. The approach is robust
to the presence of small obstacles, like furniture, and its low processing
time allows to be used in exploration tasks.

In this work we focus on the exploration task supported
by high level information provided by a online topological
segmentation of the navigation environment (figure 1). Thus,
we model the environment as an undirected connected graph
and we consider the real robot exploration problem of
the graph of the environment, initially unknown, that has
to be incrementally constructed and traversed by adequate
decision-making strategies. We formulate the exploration
problem as the traversal of all the edges of the online graph,
being the optimal solution an Eulerian path, if it exist.

We propose the TIGRE algorithm, an online Topological
Graph-based Robotic Exploration strategy, that, starting from
an initially unknown environment: (i) it integrates a graph-
SLAM front-end and back-end to reconstruct the navigation
environment from the observations provided by a 2D laser
scanner and odometry readings; (ii) it provides accurate loop-
closures, up to reasonable performance bounds, to recognize
previously visited areas; (iii) it constructs an undirected con-
nected graph of the environment by means of an incremental
contour-based topological segmentation algorithm; and (iv)
it determines the graph exploration policy by using a con-
strained depth-first search based graph traversal algorithm.

The rest of the paper is structured as follows. Section II
reviews the related work to our approach. Section III justifies
the goal of casting the exploration problem as the traversal
of all the edges of the graph. Section IV recalls the classical
Tarry’s algorithm, a depth-first search based graph traversal
algorithm adopted from maze-searching problems. Section V
reports the TIGRE algorithm and finally, section VI reports
the simulation results where the performance of the TIGRE
algorithm is compared to other full-graph and online-graph
approaches.



II. RELATED WORK

The problem of autonomous vehicle exploration of an
unknown environment modeled as a graph can be traced
back to the early works of Dudek et al. [6], where portable
markers were used to recognize previously visited nodes
of the graph, a method later improved by Rekleitis et al.
[17]. Practical graph-based exploration approaches have been
reported in the literature more recently. In [19] they use a
hybrid (topological - metric) representation of the environ-
ment based on corners and openings for indoor environments.
Exploration consists simply in traversing the hallway and
then backtracking to every single room. An interesting work
on practical implementation is reported in [18], where a
robotic platform is used to explore abandoned mines and they
are able to detect automatically the nodes and match them
with previously visited nodes to construct the topological
map. Also, in [1] they report an approach where both
exploration and map building can be done with topological
information without requiring additional representations is
proposed, however, they rely on external place recognition
capabilities.

In the graph theory community the exploration of un-
known graphs has even a larger history, dating back to the
times of Euler [9] who stated the well-known Königsberg
bridges problem. Assuming that the full-graph of the en-
vironment is known a priori, a two-fold interpretation of
the exploration problem as graph traversal is possible. First,
a Travelling Salesman Problem (TSP) perspective could be
adopted, where the exploration problem consists in searching
for the shortest path, starting at the initial node, that travels
through all the nodes of the graph, a well-known NP-
complete problem. Recently, an efficient exploration strategy
[15] has been proposed that considers the off-line solution
of the TSP problem for a rough a priori known graph of the
navigation area.

Second, a Chinese Postman Problem (CPP) perspective
could be adopted, where the exploration problem consists in
searching for the shortest path, starting at the initial node,
that travels through all the edges of the graph, a polynomial
complexity problem. In this latter case, if an Eulerian path
exist, the lowest bound on the complexity of the algorithm
is achieved, at the number of edges of the graph. From the
point of view of the theory of experimental optimal designs
[16] it follows that the Eulerian path could be referred to as
optimal because it maximizes the information of any path in
the graph with the same number of traversals and, therefore,
it maximizes any of the optimality criteria defined from its
information matrix.

In a real robot exploration problem the graph of the
environment is initially unknown and, therefore, an online
incremental graph construction and graph traversal strategies
are required.

Classical work on topological segmentation of indoor
environment have been recently surveyed [2], where differ-
ent approaches are compared, namely, Voronoi Diagrams,
Morphological Segmentation, Distance Transform Segmen-

tation and Feature based segmentation. In all of these ap-
proaches the map of the navigation area is represented by
an occupancy grid, i.e. a 2D array of pixels. A different
approach, proposed in the computer vision community [12],
is refered to as contour-based segmentation where the map is
represented as a set of closed contours. The decomposition
consists in segmenting these contours into sub-contours done
according to a convexity criterium. Among the advantages
of the latter approach is that complexity does not depend on
the image size but in the characteristics of the contour. More
importantly, it provides an insight of the characteristics on
the shape. Recently, an incremental version of the dual-space
decomposition [7] has been reported to provide an online
topological description of the environment of a mobile robot.

Casting the exploration problem as the traversal of all
the edges of the online graph requires the availability of
incremental algorithms aim at approximating the solution
of the CPP, being the optimal solution an Eulerian path,
if it exist. Early work on motion planning [14] pointed
out the relationships between maze-searching algorithms and
robot motion planning with incomplete information driving
the attention of the community towards classical algorithms
(e.g. Trèmaux, Tarry and Fraenkel algorithms) that could
be suitably adapted to motion planning problems as the
exploration task considered in this work. In particular, Tarry’s
algorithm [9], an efficient algorithm to explore mazes, could
be easily adopted within an exploration task because, from
the knowledge of a partially known graph, it guarantees that
every edge of the still unknown graph will be traversed
exactly twice, once in every direction, with the exception
of the edges incident to the start and target nodes, which
will be traversed once each.

III. OPTIMALITY OF THE EULERIAN PATH

Following [6] we represent the navigation environment of
our autonomous vehicle by means of an undirected connected
graph G = (V,E), where V is the set of numbered nodes and
E is the set numbered edges, with |V | and |E| the number of
nodes and edges respectively. Thus, starting from an initially
unknown graph, an exploration algorithm will sequentially
traverse the edges of the graph until a stopping criterium is
satisfied.

From the perspective of the theory of optimal design of
experiments [16], different optimality criteria (e.g. A-Opt,
D-Opt, E-opt) could be computed as different instances of
the family of information functions of the information matrix
Y 2 R|V |⇥|V | (i.e. the inverse of the covariance matrix) of
the graph G. Mathematically any optimality criteria could be
expressed as k·k : Y ! R.

Let Y and Z be two information matrices, then the
concavity property, kY + Zk � kYk + kZk, of the in-
formation function guaranties that traversing a new edge
during the exploration of the graph monotonically increases
the available information, and thus, as intuition suggests,
an increasing number of traversals results in more informed
maps on the navigation area. Once every edge of the graph



is traversed the potential information gain due to the re-
traversal of an edge will only add redundant information with
minor contributions to the information matrix of the graph
as the number of re-traversals increases.

From graph theory [9] it follows that the shortest path,
if it exists, that traverses every edge of the graph G once,
is called an Eulerian path and it could be referred to as
optimal because it maximizes the information of any path in
the graph with |E| edges and, therefore, it maximizes any of
the optimality criteria defined from its information matrix.

Therefore, our TIGRE algorithm aims at traversing all the
edges of the graph G at least once, as a potential Eulerian
path would achieve, minimizing the number of re-traversals
of previously known edges with a worst-case of traversing
twice each edge of the graph due to its depth-first search
nature.

IV. TARRY’S MAZE-SEARCHING ALGORITHM

Early work on motion planning [14] pointed out the
relationships between maze-searching algorithms and robot
motion planning with incomplete information driving the
attention of the community towards classical algorithms
(e.g. Trèmaux, Tarry and Fraenkel algorithms) that could
be suitably adapted to motion planning problems as the
exploration task considered in this work.

In particular, Tarry’s algorithm [9], an efficient algorithm
to explore mazes, could be easily adopted within an explo-
ration task because, from the knowledge of a partially known
graph, it guarantees that every edge of the still unknown
graph will be traversed exactly twice, once in every direction,
with the exception of the edges incident to the start and target
nodes, which will be traversed once each.

The assumptions of the Tarry’s algorithm are:
1) Node Recognition, it can be recognized when a node

has been previously visited.
2) Edges Traversed Recognition, upon arrival to a node,

the edges that have been previously traversed outwards
the node are known.

3) Entrance Edge Recognition, the entrance edge, i.e. the
edge we traversed the first time we arrived to the node,
is known for every visited node.

Under these assumptions, the algorithm can be easily de-
scribed as: Arriving at any node continue via any edge which
has not yet been traversed outward, but choose the entrance
edge only as a last resort.

It is worth noting that, adding an extra condition as Every
time you arrive to a previously visited node by a new path,
return by the path you came, then the Trèmaux method is
obtained, which is the basis of the Depth First Search (DFS)
algorithm for graph traversal.

V. TOPOLOGICAL GRAPH-BASED ROBOTIC
EXPLORATION

In this section we describe the TIGRE algorithm, a topo-
logical graph-based robotic exploration algorithm rooted on
the previously mentioned Tarry’s maze-searching algorithm

and that allows a robot to autonomously explore its naviga-
tion environment modeled as an undirected connected graph.
Starting from an empty graph the algorithm evolves until a
stopping criterium is satisfied.

At each time step an incremental contour-based topo-
logical segmentation algorithm [7] extracts the graph-based
representation from the output of a graph-SLAM algorithm
[11]. Every region in the topological segmented map is
represented by one node in the graph and one additional node
is used for the unexplored area. The graph’s edges represent
every pair of regions connected by a physically traversable
path, including regions driving towards unexplored area.
Physical traversability of all the edges of the topological
graph increases the reliability of the obtained model for
subsequent robotic tasks.

A. Tarry’s Assumptions in Graph-SLAM

The graph SLAM algorithm for the map reconstruction
satisfies, within performance bounds, the assumptions of the
Tarry’s algorithm described in the previous section:

1) Node Recognition, recognizing a previously visited
node relates to the loop-closing capabilities of the algo-
rithm. In our work we enforce loop-closing behaviour
by navigating the vehicle in the vicinity of previously
stored robot’s poses within the navigation region.

2) Edges Traversed Recognition, the edges between nodes
of the topological graph are defined by the traversed
edges, and its direction vector, of the graph-SLAM
algorithm

3) Entrance Edge Recognition, because the time history
of the edge traversals is stored, the entrance edge is just
the first, in chronological order, edge traversed into the
region.

B. On-line Exploration Terminating Conditions

Fraenkel’s constraints [14] reduce the exploration path
length introducing a counter associated with the number of
nodes with unexplored edges, guarantying that every edge
will be traversed at least once but never more than twice,
once in every direction. In our case we keep track of the
number of the remaining edges to be traversed, and once
every edge is traversed the exploration is over. Consequently,
our exploration path length lies within an analogous interval,
i.e. between the minimum number traversals, achieved by the
off-line CPP algorithm when the full graph is known, and
twice the number of edges of the graph.

Additionally, we modify the Tarry’s algorithm by a break-
tie criteria when multiple edges could be chosen to be
traversed at a given time step of the evolution of the
algorithm. In the original Tarry’s algorithm whenever a new
node is reached and there are several edges that can be
traversed, one edge is chosen randomly. We modify this
criteria by choosing, in those situations, an edge leading to
a previously visited node instead of an edge leading to the
unexplored area, thus enforcing the loop-closing behaviour
and increasing the precision of the underlying graph-SLAM
solution.



C. The TIGRE Algorithm

Algorithm 1 describes the pseudo-code of the proposed
topological graph-based exploration algorithm1. Initially, the
algorithm builds on top of the ROS navigation stack for the
functions simulator and navigate.

Then, the Graph_SLAM function is based on the imple-
mentation reported in [13] of g2o [11] as a back-end for
the optimization, by using the odometry readings and the
2D laser scan to update the pose graph and the grid-map.
The function Topological_Segmentation segments
the input grid-map, associating a label to each segmented
region by using the implementation reported in [7] of the
contour-based segmentation algorithm [12].

Next, the function Build_Topological_Graph

builds an annotated topological graph. The information of
the nodes includes their order in the sequence. Using this
information the function Extract_Incident_Edges

finds the valid edges connected to the current region
(edges not traversed outwards) and classify them into
either Frontier Edges (leading to unexplored areas) or
Link Edges (leading to previously visited areas).

Finally, from those subsets of the incident edges the next
goal location for the vehicle is selected. The algorithm favors
the selection of goals leading to previously visited areas to
enforce the loop-closing behaviour in the case of ambiguity.

VI. EXPERIMENTAL RESULTS

In this section we report simulation results, in the
Player/Stage simulation environment [8], to illustrate the
behaviour of the topological graph-based robotic explo-
ration algorithm proposed in previous sections when an au-
tonomous vehicle is navigating within the 20m ⇥ 20m Cave
environment [10]. A C++ implementation of the TIGRE
algorithm has been programmed on top of both simulation
and navigation functions of the ROS package.

Figure 2 shows the online reconstruction of the navigation
environment both from the geometrical perspective of the
grid-map provided by the graph-SLAM algorithm, and the
online topological graph used for the robot exploration
task derived for the incremental contour-based topological
segmentation. The computation of segmented regions, and
their representative nodes are sufficiently topologically stable
for the execution of the TIGRE algorithm. In some cases, a
region is over-segmented and 2-connected regions appear but
the performance of the topological exploration algorithm is
unaffected because when only one edge drives out of a node,
no decision is required.

Different performance metrics, as the average of 10 repli-
cations of the experiment, are reported to compare the
behaviour of the graph-SLAM algorithm when the topolog-
ical graph-based model of the navigation is provided by:
(i) an off-line full graph-based solution to the Travelling
Salesman Problem (TSP); (ii) an off-line full graph-based
solution to Chinese Postman Problem (CPP); (iii) an on-line

1The source-code of the algorithm is available at https://github.
com/lfermin77/TIGRE

Algorithm 1: TIGRE Algorithm
Input : Map, Topological Map, Pose Graph
Output : Topo Graph = (V, E)
Variables: Link Edges = {}

Frontier Edges = {}
Exploration Completed = FALSE
Commands = 0
while Exploration Completed = FALSE do

[Scan, Odometry] = simulator(Commands)
[Pose Graph, Map] = Graph SLAM(Scan,
Odometry)
Regions Set = Topological Segmentation(Map)

Topo Graph = Build Topological Graph(Map,
Regions Set, Pose Graph)

[Frontier Edges, Link Edges] =
Extract Incident Edges(Topo Graph)

if Link Edges = {} & Frontier Edges = {} then
Exploration Completed = TRUE

else
Remove Entrance Edge(Link Edges)
if Link Edges = {} & Frontier Edges = {} then

Goal = Entrance Edge(Topo Graph)
else

if Link Edges 6= {} then
Goal = Extract Goal(Link Edges)

else
Goal = Extract Goal(Frontier Edges)

Commands = navigate(Goal)

greedy Frontier-based algorithm; and (iv) our on-line TIGRE
algorithm.

Figure 3 plots the final grid-maps obtained by each al-
gorithm with the overlaid exploration trajectory. Also the
final topological segmentations and the topological graphs
are shown. Additionally, figure 4 plots the evolution of
the rate robot pose error over distance for the complete
exploration path length. From the computation of the mean
error of the poses of the vehicle along its trajectory (recall
that ground-truth is available in the simulation tool) we
conclude that the best performance corresponds to the CPP-
algorithm, the worst performance corresponds to the TSP-
algorithm and that the TIGRE algorithm outperforms both
the TSP and Frontier-based algorithms. The results agree
with the intuition that both TSP and Frontier-based search
for the shortest exploration path faster at the expense of
reducing the number of loop-closing during the graph-SLAM
execution. Both CPP and TIGRE, visiting all the edges of the
graph, result in larger path lengths but in improved estimation
errors.

Finally, figure 5 describes the evolution of the area cov-
erage (percentage of the explored cells of the grid-map)
versus the path length. Clearly the TSP algorithm results,



(a) (b) (c)

(d) (e) (f)
Fig. 2. Snapshots of the exploration task: (a) and (d) represent early stages of exploration task and its decomposition with the current topological graph
(green); in (b) the robot chooses to traverse the edge presented in (e) first, rather than exploring the nearby frontier. The exploration is considered completed
in (c) and (f).

Full Graph Incremental

(a) TSP (b) CPP (c) Frontier-based (d) TIGRE
✏̄ ' 0.72± 0.46m ✏̄ ' 0.21± 0.07m ✏̄ ' 0.61± 0.37m ✏̄ ' 0.24± 0.03m

Fig. 3. Comparison of the performance of different off-line, that use the full-graph, and on-line, that incrementally build the graph, algorithms. The
average estimated error ✏̄ of the robot poses is shown together with its standard deviation computed from the ten replications of the experiment.

by definition, in the shortest exploration path length due
to its inherent feature of driving the vehicle always to
unexplored terrain visiting all the nodes of the graph but
only a subset of the edges. Similarly, the Frontier-based, with
its greedy approach towards unexplored terrain reports short

exploration path length in this case-study. In both cases, the
number of edge re-traversals (and therefore loop closures) is
very low, thus a similar performance, in terms of estimation
error is obtained for both of them. On the contrary, the
behavior of the TIGRE and the CPP bear similarities because



Fig. 4. Evolution of the estimated error of the robot pose divided by the
distance traveled versus the distance traveled. Relevant behaviour appears
as the traveled distance increases.

Fig. 5. Map area coverage versus the distance traveled by the robot.

they force the traversal of every edge of the graph, at least
once, as mentioned in the previous sections, and therefore
the distance travelled by the vehicle is larger, with frequent
re-traversals of the edges of the graph (see the plateaus in
the figure), and therefore achieving a better estimation error.

VII. CONCLUSIONS

This paper focused on the problem of autonomous robotic
exploration and map building supported by high level in-
formation provided by online topological segmentation that
incrementally generates an undirected connected graph of the
environment. The exploration problem is formulated as the
traversal of all the edges of the online graph.

The online TIGRE algorithm is proposed that integrates
Graph-SLAM features, contour-based topological segmen-
tation, incremental graph construction and online decision-
making by an adaptation of a constrained depth-first search
based graph traversal algorithm. Simulation results suggested
a close behaviour of the online TIGRE algorithm with off-
line algorithms that require the knowledge of the full graph
of the environment (CPP), and that it outperfoms, in terms

of error estimation of the robot poses other online (Frontier-
based) and off-line (TSP) algorithms.

Further work is aimed at thoroughly evaluating the TIGRE
algorithm is more complex scenarios and its comparison
against other exploration methods reported in the literature.
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Collision Avoidance for Safe Structure Inspection with Multirotor UAV
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Abstract— The multirotor UAVs are being integrated into a
wide range of application scenarios due to maneuverability
in 3D, versatility and reasonable payload of sensors. One of
the application scenarios is the inspection of structures where
the human intervention is difficult or unsafe and the UAV can
provide an improvement of the collected data. At the same time
introduce challenges due to low altitude missions and also the
fact of being manually operated without line of sight. In order to
overcome these issues, this paper presents a LiDAR-based real-
time collision avoidance algorithm, denoted by Escape Elliptical
Search Point with the ability to be integrated into autonomous
and manned modes of operation. The algorithm was validated
in a simulation environment developed in Gazebo and also in
a mixed environment composed by a real robot in an outdoor
scenario and simulated obstacle and LiDAR.

I. INTRODUCTION
In recent years, there has been an increasing research

effort with multirotor Unmanned Aerial Vehicle (UAV) in
a wider range of scenarios, such as search rescue missions,
surveillance and inspection tasks. One of the reasons is the
fact that this type of vehicles provides the required ma-
neuverability to navigate through complex three-dimensional
scenarios with a reasonable payload of sensors. Considering
the application scenarios of inspection, the multirotor UAV
provides the ability to collect data from different positions,
angles and distances, and at the same time reduce the cost
and the human risk. Most of this operations are performed
through an operator or more recently in fully autonomous
missions. In both cases, and due to low altitude operation
and the existence of structures like buildings, power lines or
even natural obstacles like trees, the risk of crashing, damage
structures and injury surrounding people has been increased.

Therefore, this paper proposes to address the research area
of real-time obstacle avoidance for manned and autonomous
multirotor UAVs. Based on the work developed by [1]
for rotorcraft UAVs and the evaluation performed of the
advantages of LiDAR solutions [2] for obstacle avoidance,
we propose to extend the method with a reactive obstacle
avoidance algorithm based on LiDAR and applied to mul-
tirotor, denoted by Escape Elliptical Search Point - LiDAR-
based Collision Avoidance (E2SP-LCA).

The E2SP-LCA algorithm bounds the map and searches
for any point that lies inside a safety volume (obstacle). Due
to the dynamics of the vehicle, the safety volume will be
proportional to the vehicle speed, taking also into account
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the direction of the velocity and the position of the waypoint.
When an obstacle is found, the algorithm evaluates a set of
candidate points to avoid the collision (escape points). As
the UAV is normally blind above and below its position, the
algorithm proposes to avoid the obstacle performing a path
as horizontal as possible. If no valid escape point is found, it
will intentionally deviate from the original trajectory to try
to overpass the obstacle.

The paper is outlined as follows: Section II presents
the related work starting with the obstacle detection and
map representation followed by real-time obstacle avoidance
techniques. In Section III is detailed the E2SP-LCA, followed
by its implementation and the obtained results, in Section
IV. In Section V are exposed some algorithm remarks and
considerations, followed by Section VI that presents the
conclusions and the proposed future work to improve this
project.

II. RELATED WORK

This section presents the research works related to map
representation and obstacle detection, as well as real-time
obstacle avoidance algorithms.

A. Obstacle Detection and Map Representation

In the field of multirotor UAVs, the detection of an
obstacle is mainly performed through monocular cameras[3],
LiDAR[2][4], stereo cameras[2] or their combination[2],
depending on the application scenario. Their advantages and
drawbacks have been evaluated in [2].

Being active sensors, LiDARs are typically insensitive to
the light of the environment, having more accuracy and better
performance for far obstacles. The low processing power
required makes them more efficient for real-time applica-
tions. However, the collected data is produced sequentially,
the maximum range is limited and requires more electrical
power. Approaches like [4] and [5] are some of the examples
that use LiDAR-based detection systems.

On the other side, the stereo cameras provide a snapshot
of the environment at one instant (global shutter cameras),
producing a dense 3D range information, with color cor-
respondence and capable of detecting objects from long
distances (depending on the baseline between the cameras).
However, this system highly depends on the visual envi-
ronment conditions and requires a significant processing
power. Besides that, its range accuracy decreases with range
squared. In [6] is used a stereo vision system for obstacle
detection.



In addition to the systems referred above, there are other
solutions like [7] and [3] that uses a monocular technique to
avoid collision with structures.

In the most basic way, the obstacles can be represented on
a map by a simple point cloud with the measures given by a
LiDAR or the features extracted from images. However, this
is computationally costly and can compromise the real-time
requirement. For reducing this cost, the data can be clustered,
resulting in a sparse representation. Another disadvantage of
this method is that is not possible to distinguish between free
and unmapped spaces.

Using a point cloud as input, the memory space required
for storing the map information can be reduced using tech-
niques like the representation by means of octrees, Octomaps
or Voxel Grids [8].

Other ways of representing occupancy maps are analyzed
and summarized in [9].

B. Real-time Obstacle Avoidance Algorithms

In [4] is presented a solution with a helicopter to perform
infrastructure inspection with collision avoidance, using a
fixed 2D LiDAR and two flight modes. The pirouette descent
mode creates a spinning LiDAR with a cylindrical field
of view by rotating the helicopter around its yaw axis
while descending vertically. The waggle cruise flight mode
performs a horizontal sweep while flying forward, allowing
to scan a corridor-shaped space. It provides two solutions
to avoid obstacles and reach the goal, however, it does not
have a global map, which implies some constraints for the
avoidance maneuver to be completed successfully, as not
having obstacles above the vehicle. Besides that, as it only
uses a fixed 2D LiDAR, the quality of the generated map is
strongly dependent on the quality of its position estimation.

Another obstacle avoidance maneuver is presented in [1]
that considers the vehicle as a sphere and constructs a safety
volume around it. Whenever an obstacle enters the safety
volume, it constructs an ellipse around the obstacle and
searches for a point that allows a free path from the current
position to the escape point and that also ensures a collision-
free path through a defined distance from the escape point,
on the direction to the waypoint. If no clear path is found,
it extends the ellipse radius (a certain number of times) and
performs another search. If no free path is found with the
maximum ellipse radius, the UAV will hover until a pilot
takes control of it.

The escape point has the advantage of allowing an uninter-
rupted flight for avoiding the obstacle, otherwise, the vehicle
would need to stop (hover) and recalculate the trajectory
considering arbitrary avoidance points.

Although it is applied to aircraft, Sabatini et al. [10]
have implemented an obstacle avoidance ellipsoid-shaped
safety zone around obstacles. The planning algorithm for the
obstacle avoidance takes into account the aircraft dynamics,
velocity, acceleration and distance to the obstacle. In a case
of high velocities and/or accelerations, the time to find an
alternative path and the distance to the obstacle are the major

inputs of the cost function, as they are the main parameters to
be considered in critical situations (an aircraft cannot hover).

III. E2SP-LCA - ESCAPE ELLIPTICAL SEARCH POINT -
LIDAR-BASED COLLISION AVOIDANCE

The E2SP-LCA can be resumed as an algorithm that
follows the classical architecture of mobile robots navigation.
Whenever it gets an update of the occupancy map, performs
a search for potential obstacles between the UAV position
and the waypoint, that can cause a damage on the vehicle or
blocking it from reaching the desired position (algorithm 1),
and tries to avoid them.

Figure 1 illustrates the algorithm behavior. On every map
update, it starts to search for obstacles inside a safety zone
that is created around the UAV, and propagated through a
certain direction, by means of spheres of variable radius s

rad

and centers distance d

center

.
The direction of the safety zone is given by the weighted

sum (parameters n and m) of the vector from the vehicle po-
sition to the waypoint (~u) and the UAV velocity ( ~

W P
velocity

).
For calculating the center’s separation is used the equation
1, presented in [1], where V is the voxel size, however,
the radius of the spheres is a defined parameter that is
proportional to the vehicle’s velocity norm. This approach
ensures that some vehicle dynamics (at every moment) is
taken into account in the search for potential obstacles, as
the velocity affects the safety volume size and propagation
direction.
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b
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end for
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)

end if
return W U



Fig. 1. E2SP-LCA algorithm representation.

Fig. 2. Ellipse aperture. Valid zone in blue. Ellipse defined by a horizontal
radius r

hor

and a vertical radius r
ver

.
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If any occupied cell is inside the spheres, the path is
considered obstructed and is called the function to search
for an alternative path (sch esc). If more than one obstacle
is found, for searching an escape will be only considered
the closest obstacle W O

c

, as it is the one with the greatest
probability of causing an UAV crash.

For search for an alternative path, it is placed an ellipse
centered on the closest obstacle, with a horizontal direction
~e

hor

normal to the vector ~w, defined by the vehicle position
and the closest obstacle, and a vertical direction ~e

ver

parallel
to the vertical axes of the world frame (ˆk = (0, 0, 1)).

With an ellipse defined by equation 2, ✓ can be limited to
a �✓ value. For example, if �✓ = ⇡/2, ✓ 2 [�⇡;�3⇡/4] [
[�⇡/4;⇡/4][ [3⇡/4;⇡[, will result a valid search marked in
blue on figure 2.

x = r

hor

· cos(✓)
y = r

ver

· sin(✓)
(2)

Defining the valid angular aperture of the ellipse will
constrain the avoidance path, not allowing the avoidance
from above or below the obstacle. This angular aperture can
be configured taking into account the application and the
sensor in use. For example, if it is used a LiDAR sensor with
a low vertical aperture, it is interesting to keep the vehicle
as horizontal as possible.

For optimizing the avoidance path, the distance to travel
should be as small as possible, so the direction of search
(right to left or left to right) of a valid escape point will
depend on the values of the distance from the left and right
horizontal limit edges of the ellipse to the waypoint (dist

l

and dist

r

, respectively). Those limit edges are obtained by
setting ✓ to 0 (zero) or ⇡ on the ellipse equation 6 with the
parameters represented on figure 2.

After been chosen the first escape point to be considered,
the algorithm will search candidates on the edge of the
ellipse (limited by an angular aperture �✓), by incrementing
(or decrementing) an angular step ✓

step

. For each candidate
escape point, the following conditions are evaluated:

• Clear path from current position to the candidate escape
point;

• Clear path between the escape point and the waypoint
along a predefined distance (L);

If both conditions are verified, the candidate escape point
is considered valid, otherwise, the ellipse size is increased
by �r hor and the procedure is repeated for the new ellipse.

A clear path is determined by verifying if there is any
point/obstacle p

t

that lies inside a cylinder between two
points p1 and p2 with radius s

rad

. For that, two vectors are
generated, ~

d12 = p2� p1 and ~

d1t = p

t

� p1. Calculating the



Fig. 3. Obstacle avoidance high level architecture.
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by applying the dot product D. Therefore, considering
equation 3, d

cyl

can be rewrite as:
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Having equation 5, if d

2
cyl

> s

2
rad

, the path is clear,
otherwise, there is an obstacle on the evaluated path and
the candidate escape point is not valid.

Once a valid candidate escape point is found (using
equation 6 with ✓ constrained), it is passed for the navigation
through (W U).

W U =

W O
c

+ r

hor

· ˆe

hor

· cos ✓
+ r

ver

· ˆe

ver

· sin ✓
(6)

If no valid escape point is found, after a predefined number
of increases of the ellipse radius, the vehicle is commanded
to move side-to-side through parameterized distance. If in
that movement a clear path is found, the normal operation
is returned, if not, the vehicle return to the point where
the obstacle was detected, generates a warning message and
waits for a manual control.

IV. IMPLEMENTATION AND RESULTS

In order to evaluate the E2SP-LCA algorithm, we di-
vided the validation into two phases: the first one was
performed with the support of the simulation environment
Gazebo[11][12] and the second one in a mixed environment
composed by a real multirotor UAV in an outdoor scenario
and a simulated obstacle and LiDAR sensor. Both approaches
were implemented to validate the robustness of the E2SP-
LCA algorithm into different scenarios and in the particular
case of the second test, also to ensure that the first tests of the
algorithm were performed without risking a UAV with higher
payload and more costly sensors like the LiDAR Velodyne
VLP-16.

The algorithm was implemented in the framework ROS
(Robotic Operating System)[13] in order to ensure a more
straightforward integration between the simulation environ-
ment and the real multirotor UAV. The high level archi-
tecture is despited in figure 3 and is composed by three
layers: Sensors, responsible for the sensor data acquisition,
providing the LiDAR output in body frame reference BL
and an estimated vehicle pose, velocity and acceleration in
global frame W P through an Extended Kalman Filter (EKF)
data fusion block of GPS and INS; Perception/Mapping,
responsible for building a list of obstacles with the support
of the Octomap toolbox that will generate unbounded voxels
W O with a predefine resolution of 0.4 meters. To improve
the CPU performance and ensure real-time requirements we
introduce a new feature to the Octomap to create a bounded
voxels W O

b

that will be passed through a topic to the
avoidance planning layer; Avoidance Planning, implements
the E2SP-LCA algorithm detail in section III based on the
bounded voxels W O

b

and provides an output action denoted
by W U with a collision avoidance path planning escape point
expressed in equation 6.

A. Simulation

The simulation environment chosen to benchmark E2SP-
LCA algorithm was Gazebo. Other simulators were con-
sidered, like MORSE[14] but the Gazebo was the one
that provides a feasible integration with the autopilot PX4
project[15] through the Software In The Loop (SITL) and
a simulated multirotor UAV model with a LiDAR payload
sensor[16].



Fig. 4. Avoidance path into a complex scenario, with the purple line as
ideal path, the yellow line as the UAV trajectory, red dot as the left extreme
of the ellipse and the yellow dot as the chosen escape point

Fig. 5. Avoidance of a large obstacle, with the purple line as ideal path,
the yellow line as the UAV trajectory, green dot as the right extreme of the
ellipse and the yellow dot as the chosen escape point

The simulation environment is depicted in figure 4, is
composed by several walls and a path defined by a purple
line in the right figure. The obstacle avoidance trajectory is
represented by the yellow line and is possible to observe that
the UAV was able to overcome the obstacles and reach in a
safe manner the desired position.

Figure 5 presents a situation where the UAV was not able
to detect an escape point based on the predefined angular
constrain (�✓ = ⇡/2) in order to avoid the UAV pass the
obstacle from above (figure 2). This figure also represents a
situation where the vehicle is capable of finding an escape
after performing a movement parallel to the wall.

In order to evaluate the contribution of the bounded voxels
W O

b

method against the unbounded voxel map, it was
created a simulated environment, depicted in figure 6. The
UAV navigate through it and the processing time for the
obstacle search algorithm took an average of 7 ms with
a standard deviation of 4.43 ms. For a fixed volume of
20 meters around the UAV position, the processing time
decrease to an average of 1 ms with a standard deviation
of 0.36 ms. Once the map representation is completed, the

Fig. 6. Map for testing bounding method

unbounded method will stabilize in processing time while
the bounded method keeps a low and constant time of
processing during the UAV navigation. This allows us to
conclude that this approach is more feasible in unstructured
scenarios where the vehicles must navigate and keep the real-
time constraints independent of the scenario.

With respect to the avoidance escape point, the required
time processing in the simulation environment was 1.41 ms
with a standard deviation of 0.97 ms for a scenario detailed
in figure 4 composed by ⇠ 760 voxels (bounded voxels).
The simulations were performed with a CPU i7-740QM @
1.73GHz, 8 GB of DDR3 RAM, NVIDIA GeForce GTX
460M, running the Ubuntu 14.04 LTS.

B. Field tests with a real UAV and a simulated sensor and
obstacle

Based on the results obtained in the simulation environ-
ment, the second phase was the validation with a real UAV in
an outdoor scenario (ISEP Campus) mixed with a simulated
obstacle and payload LiDAR. The LiDAR used during field
tests and the obstacle were the one that has been used for
the simulation tests detail in section IV-A.

The implemented architecture is detailed in figure 7. The
UAV is running internally the obstacle avoidance describe in
figure 3 and receives remotely the simulated data from the
LiDAR.

Fig. 7. Implemented architecture for real UAV in an outdoor scenario
(ISEP Campus) mixed with a simulated obstacle and payload LiDAR.

The UAV is a customized hexacopter, depicted in figure
8, equipped with an open-source autopilot, Pixhawk board
running PX4 Firmware and an embedded onboard computer,
Odroid XU3, running Ubuntu 14.04 with Robot Operating
System (ROS) Indigo.



Fig. 8. Real UAV in an outdoor scenario (ISEP Campus) with virtual wall.

The outdoor field test was composed by a simulated ob-
stacle (3x3x1 meters) and the real UAV perform a trajectory
towards a position that requires an avoidance maneuver. The
trajectory and the avoidance path is depicted in figure 8, with
the yellow line being the UAV avoidance trajectory W U.

For the field test scenario, the embedded CPU average
time processing for the obstacle search algorithm was 0.397
ms with a standard deviation of 0.1041 ms (⇠ 83 bounded
voxels), with the avoidance escape point requiring 8.63 ms
with a standard deviation of 0.136 ms

V. REMARKS

The E2SP-LCA is a collision avoidance algorithm that is
capable of performing a safe inspection with low compu-
tational cost. This is obtained by considering as potential
obstacles only the ones that lie inside a bounded volume,
around the UAV position. The safety volume (volume inside
which any occupied cell will be treated as an obstacle) has a
dynamic behavior, once it is clearly dependent on the UAV’s
velocity, both in size (that depends on the velocity module)
and direction of propagation, that depends both on the vector
that connects the UAV current position and the desired one,
and on the direction of its velocity vector). This dependence
on the velocity vector can be tuned using the parameters n

and m (algorithm 1), which makes E2SP-LCA an algorithm
that takes into account some vehicle dynamics and suitable
for any multirotor UAV.

Another parameter that can be tuned is the aperture of the
search ellipse, as well as the valid zone, meaning that it can
be configured to work on a wide set of cases. For example,
considering the figure 2, if a vehicle is able to detect what
is above him and is operating on an environment where the
obstacles are wide and have low height, the algorithm can
be adapted to accept the top part of the ellipse as a valid
zone and give a greater value to r

ver

than to r

hor

(this will
set a preference to overpass the obstacles from above).

Adding to this, this approach tries to find a solution
whenever a valid escape point is not found, moving parallel
to the obstacle and trying to find a clear path from a different
position (figure 5). However, the algorithm will perform this
maneuver only a limited number of times, not ensuring that

the desired point will be reached. If no valid path is found,
the algorithm will ask to the pilot to take control of the
vehicle, hovering on the position where it first detected the
obstacle.

As all the obstacles are referenced to a global frame, the
E2SP-LCA relies on a good navigation and estimation of the
vehicle’s position. Another drawback of this approach is that
the algorithm can enter on an infinite loop mode. This case
might happen on an environment with many obstacles, if it
keeps finding an obstacle while avoiding another (previously
detected), entering on a mode of constant avoidance that
might lead to a deviation from the desired point.

VI. CONCLUSIONS AND FUTURE WORK

The paper presents a LiDAR-based real-time collision
avoidance method for multirotor UAVs with the ability to
ensure an autonomous structure inspection mission without
a predefined out of bounds areas. The collision avoidance
method was validated in a simulation environment developed
in Gazebo and also in a mixed environment composed by a
real UAV performing a mission in an outdoor scenario and
a simulated obstacle and LiDAR. This approach provides
a safe method to validate the vehicle behavior without the
possibility of damage the sensors like LiDAR and also
the ability to test in a small-scale UAV (low payload). In
both scenarios, campus ISEP, and simulation environment,
the vehicle was able to detect the obstacle and generate a
collision avoidance safe path. For future work, we intend to
validate the algorithm with an UAV with payload capability
for a LiDAR Velodyne VLP-16 and perform the validation
with natural obstacles like trees and also in the presence
of structure obstacles, for instance, power lines, bridges and
electricity poles. Another line of work will be the integration
of the vision-based power line detection method denoted
by PLineD[17] with the E2SP - Escape Elliptical Search
Point. The expected output of this future research work
is the ability to combine the LiDAR information with the
monocular vision system required by the PLineD algorithm
and ensure an, even more, robustness UAV autonomous
inspection procedure.
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Gas Source Localization Strategies for Teleoperated Mobile Robots.

An Experimental Analysis

Andres Gongora, Javier Monroy, and Javier Gonzalez-Jimenez

Abstract— Gas source localization (GSL) is one of the most

important and direct applications of a gas sensitive mobile

robot, and consists in searching for one or multiple volatile

emission sources with a mobile robot that has improved sensing

capabilities (i.e. olfaction, wind flow, etc.). This work adresses

GSL by employing a teleoperated mobile robot, and focuses on

which search strategy is the most suitable for this teleoperated

approach. Four different search strategies, namely chemotaxis,

anemotaxis, gas-mapping, and visual-aided search, are analyzed

and evaluated according to a set of proposed indicators (e.g. ac-

curacy, efficiency, success rate, etc.) to determine the most suit-

able one for a human-teleoperated mobile robot. Experimental

validation is carried out employing a large dataset composed

of over 150 trials where volunteer operators had to locate a

gas-leak in a virtual environment under various and realistic

environmental conditions (i.e. different wind flow patterns and

gas source locations). We report different findings, from which

we highlight that, against intuition, visual-aided search is not

always the best strategy, but depends on the environmental

conditions and the operator’s ability to understand how gas

distributes.

I. INTRODUCTION

Robot teleoperation (also called telerobotics) is the remote
operation of a robot to perceive and interact with the world at
a distance [1]. A particular case is that of teleoperating a mo-
bile robot, for instance, to work in hazardous environments
(e.g. remote bomb disarming [2]), or to inspect difficult to
reach sites (e.g collapsed buildings [3]) among others. In this
context, another interesting application is the localization of
volatile chemical sources, commonly addressed in literature
as gas source localization (GSL). Specifically, the use of a
teleoperated gas-sensitive mobile robot to remotely locate
one or multiple gas emission sources.

Traditionally, GSL has been tackled with autonomous mo-
bile robots in an attempt to automate the search process. Dif-
ferent approaches, ranging from bio-inspired techniques [4]
to engineering solutions [5] have been proposed. Yet, due
to the still limited capabilities of autonomous robots and
the complex mechanism that rule gas dispersion [6], most
works in this field have only been validated under laboratory
conditions (i.e. unidirectional and laminar wind fields [7],
absence of obstacles in the environment [8], etc.) far from the
complexity of real-world settings. Hereof, a teleoperation ap-
proach introducing the human intuition and reasoning seems
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a natural solution to alleviate said drawbacks, something
that to the best of the authors’ knowledge, has not been
tried for GSL to date. An important issue to address in
this case is the ”definition” of the teleoperation interface.
More concretely, what information needs to be provided
to the operator for a successful and efficient resolution.
Most certainly, it will involve gas identity and concentration
measurements of the gas that is being tracked, which could
be provided by carrying an electronic nose [9] (e-nose) on
the robot. But the sense of smell alone might not always
suffice, meaning that other sensory inputs, like the wind flow
or visual clues, may also be needed to maximize the search
performance. In this work we analyze the influence of these
sensory inputs for olfactory telerobotics, specifically, those
that match the following GSL approaches:

• Chemotaxis: it relies solely on chemical measurements
from an e-nose to find the emission source, typically
by travelling along the gradient of sensed gas towards
where the concentration is highest [7], [10]. It has the
advantage of being the simplest approach, but performs
poorly for low concentration gas profiles or in turbulent
environments [11].

• Anemotaxis: in addition to an e-nose, the robot is
equipped with an anemometer to track the airborne gas
plume [12]. Algorithms implementing this strategy com-
monly receive the name of ”plume tracking methods”,
and involve following the sensed gas up-wind to its
origin [13], [14].

• Gas Mapping: it relies on spatio-temporal memory of
the aforementioned variables to create a map of how
the gases distribute in the environment [15], [16] from
which to infer the location of the source [17]. This
approach performs well in extremely unstructured and
disordered airflow fields, where plumes of well-defined
shapes are not likely to be formed. In such cases,
mapping the gases of the entire inspection area might
be the most reliable way to find the source, although
certainly not the most efficient.

• Visual-aided search: this approach encompasses any
GSL strategy that exploits prior knowledge about the
appearance of the gas source to improve the search
process [18]–[20]. This entails two important aspects,
the proper recognition of objects in the scene, and the
semantic inference to correlate the shape of an object
with its smell and vice versa. Both of which should pose
no challenge to a human operator.



(a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario 4

Fig. 1: The four scenarios of the simulated experiments showing the wind’s main flow (arrows), the location of the active
gas-leak (circles), other gas-leak candidates shown during visual-aided search (green cylinders), the distribution of the emitted
gas after 60 seconds (red point-cloud), and the robot’s starting position (black triangle).

The aim of this work is then to seek which of the
above strategies is the most suitable for teleoperated GSL
tasks. In pursuit of a fair comparison, we propose evaluating
their average effectiveness and accuracy, how they affect
the operator’s search behaviour, and in terms of expended
energy, their efficiency. The analysis is conducted on an
extensive dataset composed over 150 experiments, gathered
during a previous campaign [21], where users had to locate
a gas source in a simulated environment with a teleoperated
mobile robot. More specifically, and in accordance with the
aforementioned GSL strategies, the experiments are classi-
fied in four different configurations: (i) pure chemotaxis, (ii)
anemotaxis, (iii) gas mapping with chemical and wind flow
data, and (iv) the latter plus visual clues (i.e. all sensors
combined).

Next, Section II provides a description of the experimental
setup and the collected dataset, and Section III proposes
different magnitudes to compare the studied GSL strategies.
Then, Section IV presents the results and discussion about
our study, and finally, Section V offers the most relevant
conclusions and suggests future research.

II. ACQUISITION OF THE EXPERIMENTAL DATA

In this study we use a dataset for teleoperated GSL
composed of more than 150 experiments presented in a
previous work [21], which is briefly described next to make
this paper self contained.

The experiments were performed on a simulator where
volunteer participants had to locate as accurately as possible
a gas source with a virtual telepresence robot. The simulator
was set up with GADEN [22], a gas dispersion simulation
framework capable of generating complex 3D environments
for mobile robotic olfaction. Four realistic and dynamic gas
release scenarios were considered by varying the wind flow
conditions and the emission location within an office-like
indoor environment (see Fig. 1). Users operated the mobile
robot via a web-based interface [23], [24], and declared
the gas source by terminating the experiment at the desired
location.

Simulation trials were chosen instead of real-world exper-
iments because it allowed us to repeat an experiment several
times under identical test conditions (wind flow, gas release,
source location, etc.), something hardly achievable in real-
world scenarios [25]. Nevertheless, we must stress out that
the data gathered during the experiments, and exploited along
this study, was not that of the simulator, but those parameters
and variables related to user activity, including the search
path, navigation commands and the execution time.

Finally, related to the different sensors and algorithms
involved in the four GSL strategies to be analyzed, we
simulated a photo ionization gas detector (PID), a 2D ultra-
sonic anemometer for wind flow sensing, implemented the
GMRF gas distribution mapping algorithm [15], and visually
displayed gas source candidates as green cylinders.

III. EVALUATION METHODOLOGY

Direct comparison between the different GSL strategies
is not a trivial task because of the differences in the test
scenarios and in the environmental conditions contained
in the dataset. That is, one of the tested strategies could
be advantageous when dealing with a certain type of gas
distribution, yet fail for the others. Moreover, the evaluation
criteria selected for such comparison has also a strong influ-
ence in the results. Notice that basic magnitudes commonly
found in literature, like the robot’s final distance to the
source [26], or the time spent searching [12], might not be
indicative of true performance differences when comparing
GSL strategies under different environmental conditions.

In this work we analyze each combination of scenario
and GSL strategy separately, and propose three indices to
compare them:

A. Success Ratio (S)
We evaluate the success of a GSL trial by measuring

the distance (d) between the user estimated source location
(the final position of the robot), and its actual location.
A threshold distance D

th

of 50 cm is set (also used by
other works [26], [27]) to label an experiment as successful
(d  D

th

) or not (d > D

th

).



Fig. 2: Comparison between Accuracy Index (blue-solid line)
and the success/failure binary label (red-dashed line) for
increasing distances to the emission source (d). For both
indices Dth = 0.5m and Dmax = 3m.

Based on this measure, we calculate the success ratio (S)
for each strategy as the ratio between successful attempts
and the total number of trials [28].

B. Accuracy Index (A)
Although the success ratio gives us an insight into the

average effectiveness of each strategy, it is too strict to assess
its accuracy properly. For example, it does not distinguish be-
tween an experiment with a final error close to the specified
D

th

, to another with a very large error (in any case both
are marked as failures). For that reason we also compute a
continuous accuracy index based on the final distance to the
source as:

A =

(
1 if d  D

th

e

D

th

�d

D

max

�D

th otherwise,
(1)

where D

max

is a constant that controls the decrease rate
by establishing a distance upon which the localization is
considered to have failed. For our particular scenarios we
chose D

max

= 3m, as greater distances mean that the user
most probably declared the source location at the wrong
room.

Note that A is a better indicator of search accuracy
than d alone because it penalizes exponentially unsuccessful
experiments instead of discarding them (see Fig. 2), and
because can be adjusted to compensate for the environment
dimensions.

C. Efficiency Index (⌘)
Besides accuracy, efficiency is the second most important

aspect to consider when developing a GSL system for mobile
robots. Because the energy a robot consumes depends on
the duration of the experiment and the traveled distance, we
must also evaluate how much the operators’ path differ from
optimal, understanding as optimal path the shortest possible
one that goes from the starting position directly to the gas-
leak (accounting for obstacles), at the robot’s maximum
(safe) speed.

To measure efficiency, we use Eq. (2) as proposed by
Hayes et al. [28]:

⌘ =
E

min

E

=
↵T

min

+ �P

min

↵t+ �p

(2)

which can be interpreted as the relation between the min-
imum required energy to locate the source (e.g. shortest
possible path P

min

and time T

min

) with the energy E em-
ployed during the trial, where ↵ and � denote the energy cost
per unit of employed time (t) and travelled path length (p),
respectively. Hence, the efficiency index ⌘ is a dimensionless
quantity defined so that ⌘ 2 [0, 1], with 1 being the optimal
path solution.

Note that although ↵ and � can take any positive real
value, we follow Hayes et al.’s suggestion and set them
such that the minimum distance and time energy costs are
equal, that is, ↵T

min

= �P

min

. Also, because T

min

is
determined by the maximum safe operating speed V

max

at which the robot can travel the path P

min

in a specific
environment, we know that T

min

= P

min

/V

max

. Introducing
both considerations into Eq. (2) we get:

⌘ =
2P

min

V

max

· t+ p

(3)

D. Average Occupation Map

Finally, and despite not being a quantifiable magnitude
as such, we generate heat maps displaying the proportion
of time the users spent, in average, at each location of the
environment. These maps facilitate judging the influence of
each strategy on the user’s search behaviour to determine,
for example, whether anemotaxis allowed to discard the
exploration of rooms that exhausted clean air.

IV. ANALYSIS AND DISCUSSION

In this section we present the results of comparing each
of the four GSL strategies according to the aforementioned
indices.

A. Search Success

Table I summarizes the success ratios for all combinations
of search strategy and scenario, as well as the total successes
separately. Keep in mind that an experiment counts only as
successful if the operator got within 50 cm of the emission
source (refer to Section III-A).

Visual-aided search has generally the best success ratio of
them all. However, S drops to 50% for Scenario 4, which,
as we will later discuss in Section IV-D, might be because
visual clues can be confusing if the environment contains

TABLE I: Percentual success ratios (S) of the tested GSL
strategies, individual and overal results for each scenario.

Chemotaxis

Anemotaxis

Gas Mapping

Visual Search

Summary

Scenario 1 22.2 12.5 11.1 87.5 32.4
Scenario 2 22.2 37.5 22.2 90.9 45.9
Scenario 3 11.1 0.0 0.0 100.0 28.9
Scenario 4 27.3 60.0 38.5 50.0 42.9

All Scenarios 21.1 28.6 19.5 83.8 37.8



Fig. 3: Accuracy Index for each scenario and GSL strategy
(Dth = 0.5m and Dmax = 3m). This index represents how
close the operator got to the emission source.

very complex gas distributions. In this case, anemotaxis or
gas-mapping appear more advantageous despite their usually
low effectiveness.

As for chemotaxis, it does not seem to be specially
successful for any of the considered scenarios. Still, it is
a robust option with consistent results, even in Scenario 3
where anemotaxis and gas-mapping failed completely.

B. Search Accuracy
As mentioned in Section III-B, a more descriptive and

fair comparison involves the use of the Accuracy Index
(A). As can be observed in Fig. 3, accuracy retains some
similarities with the success ratio (e.g. general effectiveness
for each scenario), but now also reveals information about
those experiments that failed locating the emission source.

Visual aided search remains in general the most accurate
strategy, while anemotaxis and gas-mapping stay approx-
imately on par to each other with similar medians and
extremum in most cases.

Also, notice that in terms of accuracy chemotaxis seems to
overtake anemotaxis and gas-mapping (except in Scenario 4,
where anemotaxis performs best), suggesting that it might be
a good choice for teleoperated GSL that requires reliability
and simplicity over absolute precision.

C. Search Efficiency
The search efficiency ⌘ is an index that should reveal if a

low success ratio (S) really means being unable to properly
locate the gas source, or on the other hand, indicates that a
particular search strategy trades accuracy for energy saving
(i.e. coarser localization estimations but in shorter times).

Fig. 4 illustrates in a boxplot the values of this index for
each scenario and GSL strategy. It can be seen that for a
given scenario all strategies behave similarly (close medians
and quartiles), which is a quite noteworthy result: there is no
apparent correlation between accuracy and efficiency. This
is better noticeable in Fig. 5, where a scatter plot shows a
comparison between this index (efficiency) and the accuracy
index seen in the previous subsection. In any case, this
absence of correlation contradicts our initial intuition, which
was that strategies that lead the operator to invest more
search effort (i.e more time and therefore less efficiency)
would have gotten much closer to the emission source (i.e
higher accuracy). As can be seen, none of the compared
search strategies shows this tendency, implying that the

Fig. 4: Efficiency index for each scenario and GSL strategy.
Efficiency measures the relation between the shortest possi-
ble path and the user’s path.

maximum accuracy of a given search strategy is limited by
the environmental conditions.

D. Search Behaviour
Regarding how GSL strategies influence how the operators

moved the robot while searching, we analyze next the most
visited locations for the tested strategies and scenarios.

Fig. 6 depicts this information by plotting a heat map of
where the operators spent their search time. For convenience,
it also shows the gas distribution after the experiments’ initial
60 seconds (first column), and the user declared gas source
locations (i.e. the robot’s end positions). As can be observed
in all scenarios, the users tended to move along the center of
the rooms and doorways for most part of the experiment, and
expanded their search in proximity of the emission source or
places with high gas concentrations. Still, there appear to be
characteristic differences for each configuration:

• Chemotaxis appears to be the most exploratory of all
strategies, probably because the users had to locate an
initial trail of the gas distribution, and once they had
found it, they also needed to determine its gradient.

• Anemotaxis reduces exploration by discarding rooms
with clean air currents, and by instantly revealing the
gross travel direction of gas plumes. However, the
wind information appeared to confuse the users once
in proximity of the emission source (particularly for
Scenario 1), as vortices and turbulences were constantly
stirring gas patches around, with exception of Sce-
nario 4. Here the closeness of the emissions to an ideal
gas plume around the source favoured anemotaxis in
terms of accuracy (Fig. 3) and efficiency (Fig. 4).

• Gas mapping shows no notable differences with anemo-
taxis, despite that the employed predictive gas-mapping
tool should have aided establishing a coarse location of
the emission source.

• Visual-aided search clearly diverges from the other
strategies in that it does not start with a search for a hint
of the gas plume, but a direct approach towards the visi-
ble gas source candidates. As somehow expected, visual
clues predominate remarkably over all other information
sources, encouraging most operators to visit many false
candidates and only stopping their search once they
measured a high gas concentration in the proximity of
one of them. As illustrated in Table I, this behaviour is
not always optimum (e.g. Scenario 4), as it leads to the



Scenario 1 Scenario 2 Scenario 3 Scenario 4

Fig. 5: Scatter plot comparing each experiment’s accuracy index (A) against if performance index (⌘), grouped by test
scenario and color coded to indicate the employed GSL strategy. For both axes, higher values are better (i.e. closer to the
top right corner), indicating that the search was more efficient and accurate.
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Fig. 6: Heat maps showing where the users (i.e. the robots) searched during the experiments, plotted as percent of the amount
of time spent at any location for each strategy and scenario, and smoothed with a 0.5m radius for visualization purposes.
The robot’s starting position is depicted as a triangle, the gas sources are shown as white crosses (active gas-leaks) and
white circles (possible candidates shown during visual search), and the user declared gas source locations (i.e. the robot’s
end position) as pink circles. The environment’s inner walls are shown in gray, and the furniture (not passable by the robot)
in brown. For convenience, the left column also shows the gas distribution after the experiments’ initial 60 seconds. Please
note that the gas distributions in the experiment were dynamic, and therefore differed over time from those shown here.



declaration of false emission candidates with high gas
concentrations, just because the wind conditions where
such that gas accumulated around them.

Conclusively, a GSL teleoperator would certainly benefit
from training to take all information sources into account
without being overwhelmed, and get the most out of wind
and gas-map information even when presented with visual
clues.

V. CONCLUSIONS AND FUTURE WORK

In this work we have compared chemotaxis, anemotaxis,
gas-mapping, and visual-aided GSL strategies for teler-
obotics by analyzing a previously gathered dataset that con-
tains more than 150 test-runs under different environmental
conditions and gas distributions. We have evaluated their
average effectiveness, accuracy, efficiency and overall impact
on the operators with several performance indices, specifi-
cally proposed to deal with data coming from experiments
with different test conditions, and resolved the following:

• Visual-aided search, which we implemented as a com-
bination of the other approaches plus the representation
of visual clues, is the most effective GSL strategy. How-
ever, it offers no advantages in terms of search efficiency
and can confuse the operator if various candidates have
measurable gas around them.

• Chemotaxis is the best choice for applications that ben-
efit from reliability and simplicity rather than precision.

• Anemotaxis and gas-mapping stand-out similarly at
the beginning of the GSL process, but require trained
operators to be effective once in close proximity to the
emission source.

• There is no apparent correlation between accuracy and
efficiency. How close the operators can get to the
emission source only depends on the environmental
conditions and the employed strategy.

For future research we plan to perform similar experiments
in a real environment, despite a more limited control over the
distribution of the emitted gas, in order to verify the results
we have obtained so far.
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Constrained-covisibility marginalization
for efficient on-board stereo SLAM

Matı́as A. Nitsche1 and Gastón I. Castro1 and Taihú Pire2 and Thomas Fischer1 and Pablo De Cristóforis1

Abstract— When targeting embedded applications such as
on-board visual localization for small Unmanned Air Vehicles
(UAV), available hardware generally becomes a limiting factor.
For this reason, the usual strategy is to rely on pure motion in-
tegration and/or restricting the size of the map, i.e. performing
visual odometry. Moreover, if monocular vision is employed,
due to the additional computational cost of stereo vision, this
requires dealing with the problem of unknown scale.

In this work we discuss how the cost of the tracking task can
be reduced without limiting the size of the global map. To do so,
the notion of covisibility is strongly used which allows choosing
a fixed and optimal set of points to be tracked. Moreover, this
work delves into the concept of parallel tracking and mapping
and presents some finer parallelization opportunities.

Finally, we show how these strategies improve the com-
putational times of a stereo visual SLAM framework called
S-PTAM running on-board an embedded computer, close to
camera frame-rates and with negligible precision loss.

I. INTRODUCTION

With the growing interest in UAVs, there has been an
increasing need for localization methods capable of operating
on-board and in real-time. Designing systems that provide
accurate pose estimation in challenging environment while
running on platforms with limited computational resources
is thus a key problem in mobile robotics. For this reason,
in GPS-denied scenarios such as indoors or outdoors in
areas with poor reception, vision-based approaches have been
widely used.

However, efficient vision-based localization solutions gen-
erally still require considerable computational power. This
is particularly difficult when targeting low-payload robots,
where only small and low-resource processing hardware can
be employed. It is thus worth considering new strategies
for reducing computational requirements of vision-based
localization methods and allow meeting real-time constraints.

From a methodological point of view, vision-based lo-
calization methods can be classified as visual odometry
(VO) or Simultaneous Localization and Mapping (SLAM)
approaches. VO techniques focus on ego-motion integration
to get a camera pose estimate, while SLAM approaches
build a global map against which the robot can localize.
One of the main drawbacks of VO approaches is that
accumulated pose drift is never corrected due to the absence
of global map information. In contrast SLAM approaches
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2Taihú Pire is with the CIFASIS, French Argentine International Cen-
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are able to localize against the map without requiring motion
integration.

For the case of SLAM (Simultaneous Localization and
Mapping), one widely adopted strategy was one proposed
with PTAM [1] (Parallel Tracking and Mapping), where
both tracking and mapping tasks are decoupled as separate
computing threads. Many recent feature-based visual SLAM
approaches embraced this approach and added also a loop-
closing thread [2], [3].

Both tracking and mapping tasks have costly operations
(such as point-matching and Bundle-Adjustment) which are
largely dependent on the number of map-points. Since the
map can grow up to thousands of map-points and keyframes,
these tasks would not be able to run in real-time if all map
is considered at each step. While one simple approach could
be to restrict the size of the map and discard old information,
this increases pose drift and eliminates the possibility of
loop-closure.

Therefore, an efficient method to determine which part of
the map is relevant is required. For tracking, the subset of
points expected to be observed by the current camera-frame
is needed. While for mapping, a subset of related keyframes
and their corresponding observations need to be selected to
perform local optimization. This selection becomes critical
since not only it determines the efficiency of tracking and
mapping tasks but also their accuracy and robustness.

The notion of covisibility [4] can be used to determine the
relevant keyframes and map points (i.e. mutually observable)
to a given camera pose and the currently tracked map. A pair
of keyframes are said to be co-visible when they observe at
least one visible map point in common. However, it is not
yet clear how to best select these keyframes and map points
using covisibility.

In this regard, the main contribution of this paper is to
present a map marginalization strategy based on covisibility
information that can be employed to solve more efficiently
some of the most computationally demanding tasks in a
SLAM system. We analyze how precision is affected and
how this can help running full SLAM on low-resource
hardware platforms. Furthermore, this work presents several
approaches to minimize contention points and improve par-
allelism.

II. RELATED WORK

In terms of on-board vision-based localization, a number
of recent works employing either visual-odometry or SLAM-
based approaches are presented.



Sanfourche et al. [5] proposes a stereo visual odometry
suitable for UAVs. The method tracks features from suc-
cessive camera frames while establishing 2D-3D associa-
tions with respect to a keyframe-based map. There is no
optimization performed over the map, however pose drift
grows slower compared to frame-to-frame visual odometry.
They achieve 20Hz operation, however, while they claim
their approach is suitable for embedded systems, experiments
are performed using a relatively powerful Intel Core 2 Duo
computer.

Weiss et al. [6] propose an on-board localization method
equipped with a single camera that uses a inertial-optical
flow approach for speed and IMU bias estimation. As speed
integration is prone to position drift, an optimized version
of PTAM is used to produce a 6DoF pose estimation. Com-
bining visual and inertial measurements has proven effective
for solving localization on UAVs.

Burri et al. [7] build upon visual-inertial odometry (VIO)
obtaining dense environment reconstruction suitable for mis-
sion planning and exploration. Estimation drift derived from
the VIO method is corrected by performing relocalization
between local submaps. They obtain 20Hz operation time
using a tailor made ARM-FPGA system [8].

Leutenegger et al. [9] proposes a novel visual-inertial
SLAM system coined OKVIS. They formulate the problem
as one joint optimization where an IMU measurement error
term is considered along with the usual reprojection error
within the minimization cost function. However, OKVIS is
not conceived to work in low-resource hardware platforms
and experiments are performed on a powerful laptop com-
puter.

One of the main works on fully on-board stereo vision for
UAV navigation was presented by Schauwecker et al. [10],
where a visual odometry system based on PTAM is used
to estimate the UAV pose. This work was extended in [11],
where two stereo cameras were used: one facing forward,
used to run a reduced SLAM system, and another facing
downward, used for ground plane detection and tracking.
Estimations obtained by each sensor are fused using EKF.
The authors show that using two stereo cameras significantly
increases pose estimation accuracy and robustness.

In terms of reducing the computational cost of SLAM
approaches, some works focus on the problem of dealing
with a large global map.

In [12] Lynen et al. present a framework for tracking
the camera pose relative to a global map. They assert their
method can be used for real time localization of mobile
platforms with limited resources without the use of an ex-
ternal server. They achieved this by employing a covisibility
strategy [13] to efficiently localize against the map.

Strasdat et al. [14] introduces an optimization framework
that distinguishes two different keyframe windows. An inner
window is composed by those keyframes that will be actively
optimized while an outer window of close keyframes will act
as fixed constrains. Optimization windows are defined based
on the degree of covisibility between keyframes.The authors
claim constant time operation when the maximum number

of keyframes on each window is restricted.
Mur-Artal and Juan D. Tardós present a SLAM system

called ORB-SLAM2 [3] that maintains a covisibility graph
and a corresponding minimum spanning tree. These graphs
are used to retrieve local windows of keyframes, so that
tracking and mapping tasks operate locally while allowing to
work on large environments and enabling for pose-graph op-
timization performed when closing a loop. This covisibility
graph used in ORB-SLAM2 is similar to the one introduced
by Strasdat et al. in [14].

III. METHOD

In the context of optimization-based SLAM, the tracking
task is in charge of determining frame-to-frame camera pose.
The tracking minimizes re-projection errors determined by
map point to image-feature matches. Since this optimization
requires an initial solution, it is usual to predict camera
motion from previous poses and/or using additional propri-
oceptive sensors (e.g. IMU, wheel encoders, etc.). With this
predicted pose, map-to-frame matches need to be established.
To do so, map points are projected to the camera frame and
then, by nearest-neighbor search in image-descriptor space,
matches are obtained. These matches become observations
under the optimization framework, representing a set of
constraints. Finally, pose-optimization is performed, typically
using Gauss-Newton or Levenberg-Mardquardt approaches.

From the previous steps performed by the tracking task,
the most computationally demanding are typically: feature
detection and descriptor extraction, point-to-feature match-
ing, local map building and pose minimization. In particular,
computational time of all these but feature extraction step
strongly depend on the number of map points considered.

Moreover, for matching, in principle all map points need
to be projected to the camera frame, which scales linearly
with the size of the map. Also, this process is wasteful since
many points could be actually invisible due to occlusions.
Thus, a better approach is to use covisibility information
in order to find map points seen by keyframes which share
observations to the current camera frame. In other words, it
is possible to build a local map of points which are highly
likely to be currently visible.

When dealing with resource-constrained computing plat-
forms, including all co-visible points to the local map may
incur in excessive computational cost for tracking. Addition-
ally, the size of this map can grow unbounded in certain
conditions, which represents an undesirable situation in terms
of real-time operation. For this reason, in these cases it is
desirable to limit this local map.

A difficulty here appears since covisibility information
needs to be built empirically during tracking from successful
matches: whenever a point is matched to an image-feature
in a given camera frame, this point is defined as visible
from said frame. Covisibility can thus be represented as a
graph between keyframes where each edge has a weight
corresponding to the co-visibility degree, i.e. the number of
shared observations.



Covisibility information built in this manner (via detected
matches) cannot be guaranteed to match actual covisibility as
would be obtained by exhaustive pair-wise frustum-culling
between all keyframes. Thus, using covisibility information
to build the local map may not necessarily retrieve the full
set of points that could be observed by the current frame. For
this reason, some works [3] propose to use not only directly
co-visible keyframes but also a second level of keyframes co-
visible to the first. This increases the possibility of including
points which should be marked as directly co-visible but
where this information has not yet been discovered. However,
this comes at the expense of a larger local map and thus
higher tracking cost.

In the following section, a simpler and more effective
strategy for covisibility based local map building is pre-
sented, which allows to reach a bounded computational cost
of the tracking task. Furthermore, it let balance efficiency vs.
tracking precision.

A. Proposed Local Map Building Strategy

The proposed strategy for local map building is outlined
in algorithm 1.

This strategy defines how to obtain the set of points M

L

and keyframes K

L

defining the local map, based on the
previous set of successfully tracked points M

T

(i.e. matched
to image-features). Moreover, a reference keyframe K

r

is
designated during this process. This keyframe is considered
to be the closest to the current camera frame in terms of
observed points and is later used to determine when a new
keyframe should be added.

With this local map, the points contained are then pro-
jected to the current image and used for point-to-feature
matching. The set of successfully matched points will define
the set M

T

used for the next iteration. In other words, M
T

will always be a subset of M
L

.
In general terms, the local map building strategy find

points visible by a set of keyframes K

cov

, co-visible to the
reference frame K

r

. This reference, in turn, is defined as the
keyframe observing the highest number of points in M

T

.
In particular, only the first N keyframes with highest

covisibility degree with K

r

are considered. Moreover, only
up to M points observed by these keyframes are added to
M

L

. Finally, low covisibility keyframes can be ignored using
a minimum threshold C

min

. As a result, the size of the
local map is bounded. Moreover, the cost of building this
local map scales linearly w.r.t. the number of keyframes co-
visible to K

r

. This is due to the fact that this term dominates
the number of observing keyframes of a given point in
M

T

. Moreover, both M

T

and K

cov

are bounded by M (in
previous iteration) and N , respectively.

It should be noted that M
L

is first initialized using M

T

,
since using the aforementioned limits does not guarantee that
all points in M

T

will be in the result. This is particularly
important when tracking is bad and M

T

is small, which
would result in a too small M

L

.
As a result of applying this local-map building strategy,

M

L

is bounded by M . Thus, the cost of subsequent matching

and minimization operations are also bounded by M .

Algorithm 1: Local-Map building strategy
Input: M

T

tracked map
Output: M

L

local map, K
L

local keyframes, K
r

reference keyframe
/

*

initialize with previous tracked map

*

/

M

L

 M

T

/

*

find K

r

which observes most points in M

T

*

/

foreach p in M

T

do
foreach K

i

: observingKeyframes(p) do
count(K

i

)  count(K
i

) + 1

K

r

 argmax

K

i

count(K

i

)

/

*

get N most covisible keyframes to K

r

*

/

K

cov

 sort n(covisible(K
r

), N )
/

*

add up to M pts observed by KFs in K

cov

to M

L

*

/

foreach K

i

in K

cov

do
if count(K

i

) < C

min

then
continue

M

L

 M

L

[ observedPoints(K
i

)
K

L

 K

L

[ {K
i

}
if #M

L

> M then
break

IV. EFFICIENT ON-BOARD STEREO SLAM
In order to verify the strategy proposed in this work, we

build upon the stereo visual SLAM system S-PTAM [2],
which has proven to be stable, accurate and suitable for
large scale operation. In next sections, we describe some
design and implementation considerations to better exploit
parallelism in a optimization-based SLAM system. With
these improvements S-PTAM is capable of running on-board
on low-resource hardware platforms.

A. Efficient Map Access

1) Access Requirements: As tracking and mapping tasks
communicates through the map, contention points need to
be minimized for the purpose of maximizing paralleliza-
tion. The map is composed of two elements: map points
and keyframes, which are related by two different graphs:
a visibility bipartite graph between points and keyframes
(where edges describe a measurement) and a covisibility
graph between keyframes (where edges determine degree of
covisibility).

Tracking requires frequent read access to keyframes and
map points for local map definition (Section III) and
feature-to-point matching. Occasionally, a frame is declared
keyframe and its unmatched features are triangulated and
added to the map as new points. Only in this case the
tracking thread requires write access to maintain consistency
of visibility and covisibility graphs.

On the other hand, the mapping task optimizes the map
when a new keyframe is created. It requires both read
and write access to keyframes and map points. It is also
responsible for finding new matches between points and
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Fig. 1: Mean execution times for different values of the local map size (M ), for both processing platforms, over all MH
sequences of EUROC dataset.

image features, updating the relations graphs with the new
measurements.

Finally, a loop-closing task tries to detect loops upon
new keyframe creation and, when detected, performs global
pose-graph optimization. This involves write-access to all
keyframes and map points. In principle this would involve
halting mapping and tracking operations, however this is
undesirable.

2) Synchronization strategy: In order to satisfy previ-
ous requirements while maximizing parallelism, instead of
locking the whole map, map points and keyframes can be
individually locked in order to access information such as
point position and keyframe poses as well as other relational
information such as keyframe covisibility.

In this scenario, when requiring write-access to multiple
keyframes and map points simultaneously, such as when
closing a loop, one approach could be to lock all of these
simultaneously. However, a better choice is to arbitrate access
to the map by defining required working regions beforehand.
In other words, the mapping task can inform the region where
it is currently working on and the loop-closing task can then
avoid this region until it is freed.

B. Feature extraction and matching

Similarly to ORB-SLAM, features can be extracted on
each image using a fixed-size grid. Over each cell, FAST [15]
features are detected. If not enough are found in one cell, a
lower feature response threshold is used. This process allows
to obtain features throughout the whole image. However,
this step results in a large number of features and filtering
is required. To do so, we recursively divide the image area
using a quad-tree, assigning features to each cell accordingly.
When a given number of cells is reached, the feature with the
strongest response of each cell is returned. In this way, it is
possible to limit how many features are used for tracking and
have an homogeneous distribution of feature in the image.

Also, to better exploit hardware parallelism, feature extrac-
tion (detection and description) and point-to-feature match-
ing can be done concurrently amongst both images of the
stereo pair.

V. EXPERIMENTS

In this section we present the results obtained by the use
of the local map building strategy in terms of the resulting
performance improvement, particularly when running on
low-resource hardware, and of its impact in localization
precision. As a reference, we also run the modified S-PTAM
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Fig. 2: Impact of different local map sizes on precision: RMSE values for relative translation and rotation errors, for each MH
sequence of the EUROC dataset, for both processing platforms. Corresponding error values for ORB-SLAM2 are included.

on a powerful desktop computer and compare the obtained
results and that of ORB-SLAM2 [3]. In this case we are not
using loop-closing on S-PTAM, for fairness we disable this
feature in ORB-SLAM2 as well.

Since the purpose of this work is to ultimately enable on-
board and real-time execution of a Visual SLAM system for
localization of UAVs, we test the S-PTAM system running on
board an Odroid XU4 computer with four Cortex-A15 cores
running at 2 GHz and four Cortex-A7 cores running at 1.4
GHz. For establishing a precision baseline without hardware
constraints, we also run S-PTAM on an Intel Core i7-7700.

For a realistic and repeatable experimentation, we used
the EUROC MAV dataset as input data. Since this is a
challenging dataset with rapid camera-motion, we fuse IMU
data using the MSF sensor fusion framework [16]. When
running S-PTAM on the Odroid XU4, we replay the EUROC
rosbag files on a desktop computer and feed data through
an Ethernet connection to the Odroid, so as to remove any
impact of I/O to the performance of the embedded system.
Moreover, we only run MH sequences since V sequences
present motion which is too fast for Odroid to follow.

In figure 1, we present the execution times for the tracking
task of S-PTAM when using our proposed local map building
strategy and that of ORB-SLAM2 (with author’s parameters
for this dataset), for different values of M (maximum size
of local map). We also show the computationally most
demanding steps of the tracking task in S-PTAM. We do

not present execution of ORB-SLAM2 on-board the Odroid
XU4 computer since tracking was quickly lost due to high
processing time for each frame.

In figure 2 we present the relative translation and orien-
tation errors of S-PTAM with different values of M , when
running on each platform. Moreover, we also measure ORB-
SLAM2 tracking precision for reference. It should be noted
that since we are interested in using the SLAM system as
a real-time localization source for autonomous navigation of
UAVs, what is of importance when measuring precision is the
error arising from camera pose reported after each tracking it-
eration, instead of the one obtained after local or even global
bundle-adjustment. This is an important difference w.r.t. to
other works where error is measured only after the complete
dataset is replayed. For this reason, we run ORB-SLAM2
against EUROC dataset while measuring localization error in
the same way, using instantaneous camera pose information.

When analyzing the results, a series of considerations can
be made. First, it can be seen that the total tracking time
(fig. 1a) of S-PTAM is much smaller than ORB-SLAM,
around 4x to 6x faster. Also, the performance of S-PTAM
on the Odroid XU4 is around and order of magnitude lower
that on the Core i7. In any case, Odroid XU4 manages to
track the camera at around 9 to 12 Hz in general, which is
close to camera frame-rate. On the other hand, on Core i7,
tracking rate is around 66 Hz, which is considerable higher
than camera frame-rate. Second, it is possible to observe the



effect of the proposed local map building strategy, where
limiting the size of this map reduces computational cost.

In order to better understand the performance improve-
ment obtained by the use of the proposed local map building
strategy, we also show the mean execution time of the
main steps of the tracking task (fig. 1b). It can be seen
that in all cases, the most demanding step corresponds to
feature extraction (detection and description). The second
most demanding step corresponds to the point to feature
matching. Here it can be seen that lowering M has a positive
impact on performance. Finally, as expected the cost of the
local map building step itself is also lessened the less points
are included in the output. On the other hand, lowering M

has a slight negative impact on the keyframe creation step.
This can be explained since a smaller local map implies that
there is a higher chance of adding points which were not
successfully matched.

In terms of tracking precision, in figure 2 it can be
seen that, in general, reducing the number of points in the
local map does not entail a significant impact on translation
or rotation relative errors. Moreover, a difference can be
observed between execution on Odroid XU4 and the Core i7
computers. This can be explained since on Odroid XU4 there
is approximately a 50% frame-loss. Finally, when comparing
to ORB-SLAM2 running on the Core i7, it can be seen that
the localization performance of the S-PTAM system is quite
similar. On the other hand, due to the high computational
cost of ORB-SLAM2, measuring the localization precision
running on Odroid XU4 was not possible.

VI. CONCLUSIONS

This work presents a local map building strategy based on
constrained covisibility marginalization of the global map,
in the context of an optimization-based SLAM. The purpose
of this strategy is to reduce the computational cost of the
tracking task in order to restrict the the size of the local map,
aiming at on-board and real-time execution of the system
on resource-constrained platforms, such as those present on
small UAVs.

In order to prove the feasibility of the proposed approach,
we implemented this strategy on the state-of-the-art S-
PTAM system and performed a series of experiments on the
challenging EUROC dataset. We also ran the ORB-SLAM2
system to establish a baseline for performance and precision.

Results show the reduction of computational time of the
tracking task, which is of significant importance for on-board
execution of the system on UAVs. Moreover, it can be seen
how the S-PTAM system manages to track the camera at
rates exceeding most standard cameras when running on a
more powerful computer. On the other hand, on a resource-
constrained platform, while performance is much lower, it is
still possible to track the camera with rapid and challenging
motions.

VII. FUTURE WORK

Analyzing the obtained results, we identify some future
work areas. First, it can be seen that feature detection, de-
scription and matching are still some of the most demanding

steps of a feature-based SLAM system. For this reason, it is
interesting to consider finer optimization of these tasks using
architecture-specific features, such as ARM’s NEON instruc-
tion set. Second, we plan to perform closed-loop experiments
by performing autonomous navigation of UAVs with the S-
PTAM system running on-board and functioning as the main
localization source. Finally, since S-PTAM already features
loop-closing, we plan to evaluate performance of the system
when running it on-board and to introduce optimization to
allow for real-time execution.
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On the use of Unmanned Aerial Vehicles for Autonomous Object
Modeling

Michael C. Welle⇤, Ludvig Ericson⇤, Rares Ambrus⇤ and Patric Jensfelt⇤

Abstract— In this paper we present an end to end object
modeling pipeline for an unmanned aerial vehicle (UAV). We
contribute a UAV system which is able to autonomously plan a
path, navigate, acquire views of an object in the environment
from which a model is built. The UAV does collision checking
of the path and navigates only to those areas deemed safe. The
data acquired is sent to a registration system which segments
out the object of interest and fuses the data. We also show a
qualitative comparison of our results with previous work.

I. INTRODUCTION

Mobile robots are slowly making their way into everyday
life, with robustness and operational up-time increasing every
year. [1] report deploying mobile robots in unstructured
environments (offices and elderly care homes) for durations
of up to 6 months. Such experiments are pushing the bo-
undaries of what these systems are capable of, and widen
the frontier to the next set of issues to be addressed, such
as exposure to large amounts of data, learning patterns about
the environment, life-long robust localization and navigation,
etc.

For robots to operate successfully for extended periods
of time, their understanding of the environment needs to
adapt as new data becomes available. In our work we are
interested in analysing changes in the environment, and in
building predictive models of where objects or people are
likely to be at some future time. The basis for this is a
robust perception system, able to reliably segment, model
and re-identify objects of interest in the environment.

In previous work [2] we have looked at autonomously
navigating around objects of interest and acquiring multiple
views, which are fused into canonical models of the objects.
We have seen that recognition of these objects in future
observations increases with the number of views initially
acquired by the robot. Unfortunately, when deploying such
systems in unstructured environments (e.g. an office or a
home) for extended periods of time, it quickly becomes
apparent that a mobile robot’s path is quite often obstructed
by natural clutter (tables, chairs, etc.). This implies that in
most situations a robot can potentially navigate to one or two
additional vantage points within a room, which is often not
enough.

In this work we address the first steps in solving this issue.
Our aim is to augment the capabilities of an indoor mobile
robot by pairing it with an Unmanned Aerial Vehicle (UAV).
UAVs have a much wider reach as compared to wheeled

⇤The authors are with the Centre for Autonomous System at
KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
{mwelle,ludv,raambrus,patric}@csc.kth.se

Fig. 1: The quadrotor drone used in the experiments. It is
equipped with a Primesense RGBD camera looking forward
and a set of reflective IR-markers for motion capture positi-
oning.

mobile robots, and would thus allow the exploration of the
environment from new angles which would otherwise be
inaccessible. This would also allow the robot to overcome
issues such as missing data due to occlusions or oblique
surfaces, and would facilitate applications such as tracking
or recognition. However, unlike mobile robot navigation,
autonomous indoor flying is still very much a challenge, both
technical and from a safety point of view. While a number
of commercial standard mobile robot platforms are available
with off-the-shelf navigation and localization capabilities,
UAVs for indoor use are often built from scratch to fit the
needs of the research in question. In addition, the flight time
is limited to only a few minutes.

In this paper we present an end to end object modeling
pipeline with an emphasis on the part from where an object
to be observed has been identified. To limit the scope
and focus on the perception and object modeling part, we
make a number of simplifying assumptions to account for
the abovementioned challenges. We make use of a motion
capture system for positioning the drone. In the past we have
shown that a mobile robot can robustly segment out objects
of interest in the environment through change detection [3].
This is what we envision as the means with which the objects
to be observed are generated. In this work we use a simpler
method, which facilitates running experiments with the UAV
in a safer, more confined space (a cage with nets on all sides).



The contribution of this paper is a UAV system which is
able to autonomously plan and follow a path, while keeping
an object in the environment in view. The UAV does collision
checking of the path and navigates only to those areas
deemed safe. While navigating, the UAV collects RGBD
views which are sent to a registration system that segments
out the object of interest and fuses the data. We also show
a qualitative comparison of our results with previous work.

II. RELATED WORK

This paper presents a system and hence the related work
is rather broad in scope. We focus here on discussing related
work for view planning and object modeling.

In [4] the view planing problem (VPP) is surveyed. In [5]
the authors propose an information entropy-based approach
to the VPP. With a metric that measures the information
gain for a possible next view point of a camera, they are
able to pick the next best view out of the set containing all
possible next view points. Repeating this in succession gives
a path that gives a solution to the view planning problem.
In [6] autonomous multicopters are used to build a 3-D
model of outdoor structures. [7] discusses the setup of a UAV
outdoors but adding an obstacle avoiding system. Similarly,
[8] employs a freely available 2-D map of buildings in order
to construct a rough 3-D model and inspect and refine it
with a UAV. Bircher et al. [9] focus on structural inspection
in their work, and they employ a two-step optimization
paradigm to find good viewpoints. In the context of GPS-
denied environment [10] presents an online path planning
approach in cluttered environments. An area that has many
similarities to the UAV research is underwater robots. They
also have more degrees of freedom compared to a regular
wheeled robot on land. Work presented in [11] shows a
sampling based design of an inspection route. Also from the
underwater domain, [12] presents a ”Next Best Underwater
View” that considers the placement of a light source. The
approach can deal more effectively with distortions during
the mapping process.

Our work also deals with object modeling by fusing
RGBD data. Closest to our work is that of Faulhammer
el al [2], where object models are created autonomously
with a mobile robot, by acquiring additional views. The
biggest difference between our work and that of [2] is that
we run our experiments on a UAV - a platform much more
difficult to control. In addition, while [2] has access to the
robot odometry and uses a camera tracker to obtain the
camera poses, our registration method uses a minimization
framework which exploits the structure of our problem, and
which does not rely on an initial guess for the camera
poses. Since our aim and that of [2] are similar, we show
a qualitative comparison with their method in the results
section. The work of Prank et al [13] also deals with object
model creation, however the focus is on a user-friendly
system which allows the easy and robust creation of such
models on a turntable. We include the models we obtain of
our objects using their method in the results section.

Fig. 2: An overview of the system presented in the paper.
The input is a partial object to be observed and the output is a
(more) complete object model. The main steps in the project
are view planning, plan execution and object modeling data
fusion.

Finally, we obtain the resulting object model through a
scene differencing operation. Herbst et al. [14] and Finman
et al. [15] also use scene differencing for segmenting out
objects, however the emphasis is not on creating accurate
3D models, but either on SLAM or on improving segmenta-
tion. Moreover, neither method explicitly addresses the view
planning problem in the context of an autonomous agent.

The related works mentioned here do solve parts of our
problem but to the best of the authors knowledge we present
the first end to end solution for autonomous object modeling
using UAVs in indoor environments including view planning
with collisions avoidance.

III. OVERVIEW

An overview of our system is shown in Fig. 2. The input
is a cluster of points corresponding to a partial observation
of an object and the output is an object model. The main
steps in the pipeline are view planning, plan execution and
object modeling data fusion. Sections IV-A, IV-B and IV-
C describe these in more detail. Figure 3 shows a snapshot
from one of the experiments. We can see to the left the UAV
hovering near an object sequentially moving between the
view points generated by the view planning component. The
plan is checked for collisions, in this case typically caused
by the walls of the cage. In the upper right corner the camera
image at the same point in time is shown, with the object
clearly in view. The lower right corner show the raw RGBD
frame along with the view plan.

A. Experimental setup

To better understand some of the decisions made in the
method section we present our experimental setup already
here.

1) Hardware: The UAV we use is shown in Figure 1.
It is a custom made platform with a 250mm base (distance
between motor axes) and a PX4 PixRacer flight controller.
The flight controller is connected via a serial link to an
onboard Intel i7 NUC computer where the computations are
performed. The main sensing modality is a Primesense 1.08
RGBD camera. We experimented with a pan-tilt-unit initially
to actuate the camera and thereby increase the degrees of
freedom available for the view planing. However, due to
weight limitations we had to settle for a staic mounting
where the camera is tilted down an angle ⌧ = 37�. The
vertical fields of view of the camera is ↵ = 45�. The
total weight of the UAV including a 5000mAh battery is
approximately 1.7kg. We use a an Optitrack motion capture



Fig. 3: A snapshot from one of the experiments. Left: A view of the UAV and the scene it looks at. Upper right: The current
view from the camera. Lower right: The view plan and the raw data from the camera.

system. All experiments are performed inside a 3x3x3m cage
with protective nets.

B. Generating the initial partial object
In [2], [3] we have shown how objects can be segmented

out from a static background. We consider this output to
be the input for our system. Because of the location for
the experiments in this paper, a cage with mattresses on the
floor, we are not able to let our wheeled robot generate this
input. Instead we implemented a simple method for obtaining
the input cluster. We first obtain the static background by
executing a flight path with the UAV inside the cage and
collecting RGBD data. Next, we place a new object in
the environment. We use the UAV to acquire an RGBD
snapshot of the environment. We segment the point cloud
by removing all points below a certain height threshold,
and we select the cluster of points closest to the camera.
This simple segmentation method requires user input (i.e. the
height at which to filter the point cloud). However, by placing
the object on the same supporting object throughout the
experiments this input is only needed once, while allowing
us to remove the dependency on the mobile robot and focus
on flying the drone, acquiring data and filtering it.

IV. METHOD
In this section we describe our approach to view planning

and object modeling.

A. View planning
We approximate the object, which is only partially known,

using a vertical cylinder. This is clearly a simplification but

experiments show that it is a good initial model. Let r and h
be the radius and height of this cylinder respectively. Figure 4
illustrates the cylinder and the way we calculate the view
point candidates in cylindrical coordinates. From before we
have that the vertical field of view is ↵ and the downward
tilt angle of the camera is ⌧ . We want to keep the objects
in the center of the view. We furthermore want to provide
some margin of error in the positioning. We define this in
terms af an angle � with which the field of view is reduced
at each end. In our experiments we use � = 10�. We can
calculate Z and R from the figure according to

Z =
t+(2rt� + h)

t+ � t�
(1)

R =
Z

t+
+ r (2)

where

t� = tan(⌧ � (
↵

2
� �)) (3)

t+ = tan(⌧ + (
↵

2
� �)) (4)

This defines a circle with radius R and located Z + Z0

above the ground. We sample N view points on this circle
evenly spread out along the circle. Given a 2-D map of
the test environment, a simple collision check based on
proximity is employed in order to eliminate view points that
are not reachable for the UAV.



Fig. 4: View point calculation based on a cylindrical appro-
ximation of the object and trying to keep this cylinder in the
center of the image with a minimum angular margin of �.

B. Plan execution

To execute the plan, the UAV checks its current position
and moves autonomously to the nearest way point. The UAV
reaches the way point when it is within some tolerance, T 1

p ,
in X, Y and Z as well as a heading tolerance in yaw, T 1

a . This
is the starting point for the view acquisition, unless some
of view points have been removed, in which case it moves
from way point to way point to the closest end of the circle
segment broken by obstacles. Then it starts to position itself
with a tolerance of T 2

p in X,Y,Z and T 2
a tolerance in yaw. The

UAV holds this position for up to 5sec before autonomously
taking a snapshot of the RGBD-pointcloud. This procedure
is repeated until snapshots from all reachable viewpoints are
taken. The UAV continues to traverse the viewpoints back
in a safe manner until it reaches its starting view-point after
which it lands at the initial position. In our experiments we
use T 1

p = 0.4m, T 1
a = 50�, T 2

p = 0.1m and T 2
a = 10�,

C. Object modeling

Following the view planning and plan execution (data
acquisition step), a number of RGBD views V = Vi

containing the object of interest have been collected auto-
nomously by the UAV. In addition, we also have access to
the RGBD views R = Ri collected before the object was
introduced in the environment as reference. We perform a
number of registration steps to align the object views and
the reference views, after which we segment out the object
from the registered point clouds. We use image features for
the registration, with the assumption that enough texture can
be found in the environment or on the object such that salient
features can be extracted successfully. Note that we do not
use the position fix from the motion capture system as initial
guess for the registration, and instead start with the identity
matrix as the initial solution. The motion capture system has
very high accuracy, which is an unrealistic assumption for
an initial solution in a real world environment (i.e. mobile
robot odometry tends to be noisier) .

We first register the reference views R = Ri. For each
image Ri, we extract SIFT images features [16], and for
every pair Ri and Rj we compute feature correspondences

using the SIFT descriptors. We augment each remaining
feature with the depth value from the corresponding RGBD
frame, and we perform a RANSAC [17] step to remove
spatially inconsistent matches. The remaining matches are
of the form (Pi, Pj) with Pi 2 Ri and Pj 2 Rj , Pi =
(X,Y, Z) - coordinates in the camera frame of reference.
Registering these views in a common frame of reference is
done using image features in a least squares minimization
framework. We define the transformations TRi and we solve
the following minimization problem:

min
TRi,TRj

X

i

X

j

kTRi · Pi � TRj · Pjk2 (5)

(a)

(b)

(c)

Fig. 5: Object modeling results: a, b and c) show the
registered frames Vi for three experiments.

Note that when acquiring the reference views R, the UAV
is free to collect data without aiming at a specific object,
which ensures a uniform and complete coverage of the
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Fig. 6: Qualitative results of the object models built: (a) Ground truth models built on a turntable using [13]; (b) Results
from the controlled experiments of [2]; (c) Uncontrolled experiments of [2]; and (d) Our object models.

environment. This coverage ensures that enough features and
enough overlap is present between frames for a successful
registration.

The next step is to register the object views V = Vi. This
is more challenging, as the drone’s path can be obstructed
by obstacles such as walls, resulting in fewer frames and
less information for the registration. Moreover, depending
on the object introduced in the scene, the depth information
can sometimes be unreliable, especially if the camera view
axis incidental to the surface of the object is too oblique.
As above, we are interested in finding the transformations
TV i which bring the views V = Vi into a common frame
of reference. From our experiments, solving Eq. 5 for the
set of views V = Vi, where less information is available
sometimes results in failure. Instead we use the set of views
Ri as reference, and keep the transforms computed earlier
TRi fixed.

As before, we compute SIFT feature correspondences
between image pairs Vi and Vj , augmented with depth in-
formation. Next, we compute SIFT feature correspondences
between image pairs Vk and Rl. The minimization problem
becomes:

min
TV i,TV j

X

i

X

j

kTV i · Pi � TV j · Pjk2+

+
X

k

X

l

kTV k · Pk � TRl · Plk2
(6)

In Eq. 6, we force the views Vi to register with each other
and against the reference views Ri. Keeping the transforma-
tions TRi fixed is required, otherwise the registration of Ri

might be diverge if the quality of data in Vi is too poor.
We perform a final registration step where we allow only

small changes to the transforms TV i and TRi. This step fine-
tunes the registration, and has the same shape as 6, except
both TV i and TRi are varied by the optimizer. The results
of the registration can be seen in Fig. 5.

For all registration steps we use the Ceres optimization
engine [18], and the transforms (unless previously computed)
are initialized with the identity matrix. Note that because we
estimate transforms between all pairs of frames, the notion
of ”loop-closure” is implicitly taken into account in our
pipeline.

Finally, we segment out the object model by taking a point
cloud difference between the view point clouds Vi and the
reference point cloud Ri. The results of the segmentation are
shown in Fig. 6. We also perform a voxel-grid downsampling
operation of the resulting object point cloud, thus removing
some of the clutter and noise.

V. RESULTS
We perform experiments using five household items. Be-

fore each run, we first perform a flight pass with the UAV
and stop at specified way points in the cage. This gives us the
map we compare against, which would normally be provided
by the mobile robot. We then place one of the objects in the



environment (in various positions, including corners), and
we run the segmentation procedure described in Sec. III-B.
Further, we collect data at the viewpoints computed and we
extract one object model for each experiment.1

We compare our results qualitatively with the results
obtained by [2], where a mobile robot was used to acquire
views and build models of the objects autonomously. Two
types of experiments were performed in [2]: controlled and
uncontrolled. In the controlled experiments, the object was
placed in an accessible area, such that the robot was able
to navigate all around and collect additional views from all
sides. In the uncontrolled experiments, the object was placed
in more natural but less accessible locations, and the robot
was only able to collect a few additional views. Finally, we
also show ground truth point cloud models of the objects
built using a turntable with the method described in [13].

The results are show in Fig. 6. We notice that the ground
truth models are the sharpest, with the least amount of blur
or noise, and with the textures clearly visible. Fig. 6 b)
and c) show the progression when the objects are placed
from more to less accessible locations. The degradation in
quality can readily be observed when the robot can only
take a few snapshots of the objects from further away. In
contrast, our results in Fig. 6 d) are closer in quality to
the ones of [2] in the controlled experiments, even though
we conduct our experiments on a platform which is much
more difficult to control. We note that our registration and
modeling step performs successfully, and that the resulting
model contains much more information than a single scan
of the object would.

As the drone is not limited to the floor for navigation,
we conclude that the pipeline proposed has the capability
of augmenting a mobile robot system by safely navigating
to previously inaccessible locations, collecting data reliably
and using the data to create object models autonomously.

VI. CONCLUSION
In this paper we presented an end to end object modeling

pipeline for an unmanned aerial vehicle (UAV). We explained
how to generate a view plan, execute it to acquire data
and how to use this data to build object models. Our
experiments show that the quality of our models are close
to those generated by a mobile robot in situations where
the objects have been placed in easy to access locations as
presented in current state of the art in object modeling [2].
To the best of our knowledge this is the first end to end
solution for autonomous object modeling using a drone in
indoor environments including view planning with collision
avoidance.

In future work we want to relax the assumption of having
positioning information from the motion capture system and
we want to form the team between the wheeled mobile robot
and the UAV which was the motivation for the work in
the first place. We also want to investigate replacing the
wheeled mobile robot all together with one or several drones
performing modeling of indoor spaces.

1The data can be found online at goo.gl/gLn8D2
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Deconvolutional Networks for Point-Cloud Vehicle Detection
and Tracking in Driving Scenarios

Vı́ctor Vaquero⇤, Ivan del Pino⇤, Francesc Moreno-Noguer, Joan Solà, Alberto Sanfeliu and Juan Andrade-Cetto

Abstract— Vehicle detection and tracking is a core ingredi-
ent for developing autonomous driving applications in urban
scenarios. Recent image-based Deep Learning (DL) techniques
are obtaining breakthrough results in these perceptive tasks.
However, DL research has not yet advanced much towards
processing 3D point clouds from lidar range-finders. These
sensors are very common in autonomous vehicles since, despite
not providing as semantically rich information as images, their
performance is more robust under harsh weather conditions
than vision sensors. In this paper we present a full vehicle detec-
tion and tracking system that works with 3D lidar information
only. Our detection step uses a Convolutional Neural Network
(CNN) that receives as input a featured representation of the 3D
information provided by a Velodyne HDL-64 sensor and returns
a per-point classification of whether it belongs to a vehicle or
not. The classified point cloud is then geometrically processed
to generate observations for a multi-object tracking system im-
plemented via a number of Multi-Hypothesis Extended Kalman
Filters (MH-EKF) that estimate the position and velocity of the
surrounding vehicles. The system is thoroughly evaluated on the
KITTI tracking dataset, and we show the performance boost
provided by our CNN-based vehicle detector over a standard
geometric approach. Our lidar-based approach uses about a 4%
of the data needed for an image-based detector with similarly
competitive results.

I. INTRODUCTION

Autonomous driving (AD) is nowadays a reality. The
main reasons for this success are twofold. On the one hand,
research advances in related areas such as machine learning
and computer vision are obtaining a high level of scene
comprehension of the vehicle surroundings. On the other
hand, new hardware and on-vehicle sensors are providing
the community with enough data to develop new and robust
perception algorithms as well as the ability to process them
in real time.

However, there is still a long road until fully autonomous
vehicles (AV) drive along totally free in our cities. Urban
traffic is very challenging and dynamic, with numerous
intervening elements like pedestrians, cyclists, other vehicles

*These authors contributed equally to this work.
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Deconvolutional Neural Network

MH-EKF
Tracking

Fig. 1. We introduce a novel CNN-based vehicle detector on 3D range
data. The proposed model is fed with an encoded representation of the
point cloud and computes for 3D each point its probability of belonging
to a vehicle. The classified points are then clustered generating trustworthy
observations that are fed to our MH-EKF based tracker. Note: Bottom left
RGB image is shown here only for visualization purposes.

and even street furniture. To this end, accurate detection
and tracking algorithms are elements of vital importance in
AVs. These systems must be robust enough to recognise,
understand, and act in response to any possible situation
while assuring the safety of drivers, pedestrians, and other
elements in our roads.

With the advent of deep learning technologies, image-
based scene understanding involving tasks such as object
detection, semantic segmentation or motion capture have
experienced an impressive performance and accuracy boost
[1], [2], [3], [4]. However, image-based methods may suffer
a high performance decrease in real driving scenarios under
harsh environmental conditions e.g. heavy rain, snow, fog,
or even night scenes. To avoid such situations and increase
robustness, redundancy must be included in AVs. This is
commonly tackled by creating autonomous perception sys-
tems that rely on other sensors such as radar or 3D lidar
range-scanners.

Lidar sensors are specially suitable for AD purposes
since they provide very accurate spatial information of the
environment, are robust to hard climate conditions and their
performance is almost independent on the illumination of
the scene. Yet, deep learning methods deployed over 3D-
lidar point clouds are far from the successful performance
achieved on 2D-RGB images. This is mainly due to the
computational burden introduced by the change in problem
dimensionality as well as lack of annotated training data.

We present a robust and accurate vehicle detection and



tracking system that uses solely 3D lidar information as
input. A sketch of the developed system is shown in Fig. 1.
The main core of the presented approach is a tailored
Fully Convolutional Network (FCN) [3] trained to detect
vehicles from featured range and reflectivity representations
of the 3D point cloud provided by a Velodyne 64-HDL
sensor. Our FCN fulfils this task by performing a point-wise
classification of whether each 3D point belongs to a vehicle
or not. Positive samples are then clustered and 2D vehicle
poses are obtained. This is performed by choosing the best
fitting oriented bounding boxes (x, y, ✓) over the external
perimeter resulting after projecting the clusters to the ground
plane. This 2D information is finally fed to a tracker based
on a Multi-Hypothesis Extended Kalman Filter (MH-EKF)
which, along with extracted 3D features such as the heigh
of the corresponding cluster, provide the final results on 3D
tracking.

We test our system over the Kitti tracking benchmark [5],
where lidar-only methods are heavily penalised due to the
image-based 2D evaluation measurements. However, we
show the competitiveness of our approach and validate the
hypothesis of using CNN-based lidar detectors against other
geometrical methods.

II. RELATED WORK

Deep learning techniques, and more specifically Convolu-
tional Neural Networks (CNNs), have demonstrated an out-
standing performance in classical computer vision problems
such as object classification [1], [6], detection [2], [7], and
semantic segmentation [3]. However, CNNs have not yet
deployed its potential over range lidar point clouds. We next
review some approaches proposed to detect objects in such
3D sparse point clouds, and how Deep Learning methods are
approaching this task.
Classical Object Detection in Lidar Point Clouds. Ex-
tensive literature exists about detecting objects in lidar-
generated point clouds. Most common, are segmentation
approaches that try to cluster closer points together and
classify the resulting groups [8], [9], [10], [11]. These
methods typically hold for both single (2D) and multi-layer
(3D) lidars. For the latter, voting schemes are also used
to vertically fuse single-layer clusters, obtaining part-based
models of the objects [12], [13]. In autonomous driving
applications, segmentation approaches previously tend to
remove the ground-plane [14], [15], easing the clustering
and classification steps. This heuristic is useful for the com-
putation of the bounding box of the detected object, as will
be shown in Section III-C. Other subtle clustering methods
create graphs over pre-processed 3D voxels, exploiting their
connectivity later in the classification step [16], [17], [18].

Recent methods scrutinize directly the 3D range scan
space with sliding window approaches. Vote3D [19] for
example encode the sparse lidar point cloud in a grid with
different features such as mean and variance of intensity, a
grade of occupancy, and other three different shape factors.
The resulting representation is scanned in a sliding manner

with 3D windows of different sizes and orientations, classi-
fying the final candidates using SVMs and a voting scheme.

For the classification of point cloud clusters, the standard
approach inherited from RGB algorithms, is to hand-craft
features such as spin images, shape models or geometric
statistics. Details of the most commonly used 3D features
can be found in [20]. Learning procedures have also been
used to obtain useful features via sparse coding, such as the
work in [21].

Deep Learning for 3D Lidar Object Detection. Following
the feature learning tendency, and aware of the success
of CNN models, a few authors are applying convolutions
over 3D lidar point clouds. For example, 3D convolutions,
which are commonly used for video analysis (devoting its
third dimension to the time variable) have been applied
for 3D vehicle detection in [22]. However, due to the
high dimensionality and sparsity of the data, deploying this
methods over point clouds implies a high computational
burden, which is not yet practical for on-line applications.
Reformulating convolutions is a solution. In this way, Vote3D
has been very recently extended in [23] by replacing SVMs
with novel sparse 3D convolutions that act as voting weights
for predicting the detection scores. Other methods design and
apply sparse convolutions, such as [24], [25].

Another adopted approach is to obtain equivalent 2D
representations of the 3D point cloud to apply the well know
and optimized 2D convolution tools. In this way, [26] built
a front view representation in which each element encodes
a ground-measured distance and height of the 3D point. On
top of this representation they apply a Fully Convolutional
Network trained to predict the objectness of each point, and
simultaneously perform a regression of the 3D bounding
box of each vehicle. Similarly, we classify 3D points as
belonging to vehicles or background although our image-like
lidar representation includes direct information about range
and reflectivity of the points and we use a more advanced
deconvolutional architecture, as it will be shown in Sections
III-A and III-B.

The very recent evolution of [26] combines their front
view representation of the lidar information with a bird’s
eye view to generate accurate 3D bounding box proposals
[27]. These are later fused with RGB images in a region-
based fusion network, obtaining state of the art results in the
detection challenge of the Kitti dataset. However, this method
does not fulfil the lidar-only requirement that we impose in
our work.

III. VEHICLE DETECTION & TRACKING

We reformulate the task of detecting vehicles in lidar
point clouds as a per-point classification problem in which
we want to obtain the probability of each sample to be a
vehicle, therefore: p(k|pi), where k 2 {vehicle, no-vehicle};
i 2 1, ...N , and pi 2 R3 represents each point of the point
cloud P in the Euclidean space.



A. 2D Representation of Range Data

To efficiently exploit the successful deep convolutional
architectures, we project our point cloud to an image-like
representation through G(P) 2 RH⇥W . This process is
sketched in Fig. 2.

To obtain the transformation G(·), we first project
the 3D Cartesian point cloud to spherical coordinates
sph(pi) = {�i, ✓i, ⇢i}. According to the Velodyne HDL-
64 specifications, elevation angles ✓ are represented as a
H 2 R64 vector with a resolution �✓ of 1/3 degrees for the
upper laser rays and 1/2 degrees the lower half respectively.
Moreover, G(·) needs to restrict the azimuth field of view,
� 2 [�40.5, 40.5] to avoid the presence of unlabelled vehicle
points, as the Kitti tracking benchmark has labels only for
the front camera viewed elements. The azimuth resolution
was set to a value of �� = 0.18 degrees according to the
manufacturer, and hence lying in W 2 R451. Each H,W pair
encodes the range (⇢) and reflectivity of each projected point,
so finally our input data representation lies in an image-like
space G(P) 2 R64⇥451⇥2.

To get the equivalent ground-truth representation needed
for the learning process, we use the Kitti tracklets, which
are given in the RGB space. These tracklets are converted to
3D and P⇤ is obtained after labelling the inlier points. These
ground-truth 3D class labels are also encoded as one channel
in the G(·) image-like space, with pixels taking values of
1 for background and 2 for vehicles. Within the ‘vehicle’
class, we consider the associated Kitti classes for car, van
and truck. Yet, the evaluation methods of the benchmark do
not have into account truck classes, which may penalize our
Kitti measured performance.

B. Deconvolutional Networks for Vehicle Detection

For the per-pixel vehicle classification task, we propose the
deconvolutional architecture shown in Fig. 3, having in mind
the recent success of these architectures. Here we disclose
some of the key insights of our design.

To reduce the imbalance in the vertical and horizontal
dimensions of the Velodyne representations and obtain more
tractable intermediate feature maps, in the first convolutional
layer we impose twice horizontal than vertical. Initial convo-
lutional filter sizes are also designed according to the shape
of the vehicles observed in the new representation, so that
to obtain a receptive field consistent with it. Moreover, to
address the disproportion between the number of samples
of each class, we penalize misclassification of the positive
vehicle samples with ! as seen in Eq. 2.

Since our contractive-expansive design could suppose an
information bottleneck in the narrow layers, we introduce
skip connections concatenating equivalent feature maps from
both parts. These links help the learning process of the lower
layers by back-propagating purer gradients from the upper
parts. Finally, we state the classification problem at different
resolutions of the network in order to obtain a direct and finer
control of the learning process. This is done by including
intermediate losses that guide the network faster to a correct

Ground-truth

Reflectivity

Ranges

Network Inputs

Fig. 2. To obtain a useful input for our CNN-based vehicle detector, we
project the 3D point cloud raw data to a featured image-like representation
containing ranges and reflectivity information by means of G(·). Ground-
truth for learning the proposed classification task is obtained by first
projecting the image-based Kitti tracklets over the 3D Velodyne information,
and then applying again G(·) over the selected points.

solution, introducing new valuable gradients at these middle
levels.

Hence, the network is trained via end-to-end back-
propagation guided by the following loss function:

L( ˆY,Y) =

3X

r=1

�rLr(
ˆYr,Yr), (1)

where r represents the intermediate loss-control positions,
�r are regularization weights for the loss at each resolution,
and ˆY,Y are respectively the predictions and ground-truth
classes at those resolutions.

In our approach, Lr is a multi-class Weighted Cross
Entropy loss (WCE) [28], defined as:

LWCE
r = �

Hr,Wr,KrX

i,j,k

!(Yi,j)Id[Yi,j ]log( ˆYi,j,k), (2)

where Id[x0](x) is an index function that selects the proba-
bility associated to the expected ground truth class and !(k)
is the previously mentioned class-imbalance regularization
weight computed from the training set statistics.

C. Obtaining the Vehicle Bounding Boxes

The output ˆY of the designed network is a matrix laying
in the G(·) 2 R64x451 space where each pixel represents
the probability of the corresponding 3D point to belong to
a vehicle. In order to obtain the vehicle bounding boxes
needed for the tracking and evaluation steps, we first apply
the inverse transformation G�1

(

ˆY) to the network output. In
this way, we obtain the equivalent classified 3D point cloud
ˆP 2 R3 that is finally clustered by means of an euclidean
threshold. For each resulting cluster a set of features is
extracted to build the EKF observation vector, such as the
centroid, height and ‘vehicleness’ (calculated as the mean of
the classification scores given by the network to that cluster).
Clusters are then projected over a polar grid on the ground
plane, accounting for each azimuth angle only the closest
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Fig. 3. Our network encompasses only convolutional and deconvolutional blocks followed by Batch Normalization (BN) and ReLu (RL) non-linearities.
The first three blocks conduct the feature extraction step controlling, according to our vehicle detection objective, the size of the receptive fields and the
feature maps generated. The next three deconvolutional blocks expanse the information enabling the point-wise classification. After each deconvolution,
feature maps from the lower part of the network are concatenated (CAT) before applying the normalization and non-linearities, providing richer information
and better performance. During training, three losses are calculated at different network points, as shown in the bottom part of the graph.

point to the sensor. The aim of this process is to get the
external perimeter of each vehicle, which will ease the task
of fitting a 2D oriented rectangular model to any of them.

The oriented bounding box fitting process consist on
first performing an angular swept of bounding boxes in
the [�⇡

4 ,
⇡
4 ] interval. For each one we cast simulated 2D

Velodyne rays to obtain the geometrically equivalent impact
over the boxes. The best 2D fitting box is then chosen as the
one with the minimum mean square distance between the
real vehicle detected points and the simulated ones. Finally
we extract useful features for the vehicle observation vector
of the tracker, such as width, length and centre of the 2D
bounding box, as well as recover the 3D box using the
previously calculated cluster height.

D. Lidar-based Vehicle Tracking

We implemented a multi-hypothesis extended Kalman
filter (MH-EKF) for tracking bounding boxes according to
a realistic motion model suited for wheeled vehicles in road
environments. As vehicles transit on the road plane, the
2D bounding boxes (BB) are considered for tracking. Since
the true vehicle dimension and centroid are not measurable
through simple detections, we locate the BB origin at the
closest visible corner, which is indeed measurable. For each
BB we start a MH-EKF, which tracks its 2D position,
orientation and velocity. The state vector is

x =

⇥
p

> ✓ v ⇢
⇤>

=

⇥
x y ✓ v ⇢

⇤> (3)

where p , (x, y) and ⇡ , (x, y, ✓) are the BB’s position
and pose, v is the linear velocity in the local x direction, and
⇢ is the inverse of the curvature radius (so that the angular
velocity is ! = v⇢).

Due to the limited geometrical information of the detected
bounding boxes, we establish multiple hypotheses for the box
motion: i.e, one moves along the main horizontal axis, and
another one across it. Initially we assign uniform weights
to all hypotheses wi = 1/N, i 2 [1, · · · , N ]. Each EKF
estimation xi evolves normally according to the motion

model x f(x,w,�t), described as

pi  pi + vi


cos(✓i)
sin(✓i)

�
�t (4)

✓i  ✓i + vi⇢i�t (5)
vi  vi + wv (6)
⇢i  ⇢i + w⇢ , (7)

where  represents a time-update; and the measurement
model y = h(xi) + v, described as

y = (⇡i  ⇡V ) ⇡S + v . (8)

In these models, w = (wv, w⇢) and v are white Gaussian
processes,  is the subtractive frame composition, ⇡V is the
pose of the own vehicle, which is considered known through
simple odometry, and ⇡S is the sensor’s mounting pose in
the vehicle. The measurement y = (xS , yS , ✓S) matches the
result of the detection algorithm in sensor frame. At each
new observation, the weights are updated according to the
current hypothesis likelihood �i, that is,

�i = exp(�1

2

z

>
i Z

�1
i zi) (9)

wi  wi�i, (10)

where zi = y � h(xi) is the current measurement’s innova-
tion, and Zi its covariances matrix. Weights are systemati-
cally normalized so that

P
wi = 1. Finally, when a weight

drops below a threshold ⌧ , its hypothesis is discarded. A few
observations after the initial detection only one hypothesis
remains for each filter.

This basic scheme is modified with the management of
the visible corners: in cases of partial occlusion or vehicle
overtake, we may have to switch the initially detected corner
(which may has gone out of sight) by the closest currently
visible one. This is done by trivially updating the (x, y) states
to the new visible corner, leaving all other states untouched.



IV. RESULTS

We measure the performance increase provided by our
CNN-based lidar detector over the presented MH-EKF
tracker in the Kitti Tracking benchmark. Additionally, we
provide insights of the precision/recall obtained by our
DeepLidar detector and a qualitative evaluation of the full
system that can be seen in Fig. 4.

The Kitti tracking benchmark is composed of a training set
of 8, 000 Velodyne scans grouped into 21 different sequences
covering diverse urban environments. For these, 3D tracklets
defined over the corresponding RGB images are provided.
In addition, 11, 095 scans are given in a test set grouped
into 29 sequences with no annotations provided. Velodyne
data timestamps are not given for any of the sequences
in the tracking benchmark. As our tracker integrates the
observations with the vehicle odometry, we therefore had
to create synthetic timestamps simulating the Velodyne data
at 10Hz as specified by the manufactures.

A. Full Working System

We designed and trained our Deep Learning models
using MatConvNet. Networks are initialized with the He’s
method [29] and use Adam optimization with the standard
parameters �1 = 0.9 and �2 = 0.999. Data augmentation
is done with a 50% chance by performing only horizontal
flips in order to preserve the geometry properties of the lidar
information. The training process is performed on a single
NVIDIA K40 GPU for 200, 000 iterations with a batch size
of 20 Velodyne scans per iteration. The learning rate is fixed
to 10

�3 during the first 150, 000 iterations after which, is
halved. We select the imbalance regularizator ! as 25 and
the loss regularizers �r as 1, 0.7 and 0.5 respectively.

For the clustering step, we group 3D points imposing a
maximum distance of 1m. After that, clusters with less than
25 points or with a radio below than 50cms are discarded.
The remaining clusters and its respective bounding boxes are
then converted to ROS format and serve as input observations
for our tracker.

Each detected vehicle is assigned a bi-hypothesis MH-
EKF: one hypothesis assumes motion along the longest
rectangle dimension; the other across it. Each MH-EKF is
set up as summarized in Tab. I, which shows (in order)
the number of hypotheses, the pruning threshold, the initial
means and sigmas of each hypothesis, and the process and
measurement noises’ sigmas. The orientation observation
noise is set to the maximum possible error for a rectangle,
⇡
2 , and dynamically adjusted by a factor that depends on the
model fitting error and the cluster dimensions:

c = k

P
(rp � rv)

2

n(w + l)2
(11)

where rp and rv are the ranges of the real points and the
virtual ones, n is the number of points, w and l are the
width and length of the virtual rectangle, and k is a tuning
parameter experimentally set to 100. All metric units (rp, rv ,
w, l) are expressed in meters.

TABLE I
PARAMETER SETUP FOR ALL MH-EKFS

param value units / comment
N 2 along and across
⌧ 0.001
x1 xS , yS , ✓S , 0, 0 m, m, rad, m/s, 1/m
�1 2, 2,⇡/2, 20, 0.2 m, m, rad, m/s, 1/m
x2 xS , yS , ✓S + ⇡/2, 0, 0 m, m, rad, m/s, 1/m
�2 2, 2,⇡/2, 20, 0.2 m, m, rad, m/s, 1/m
�w 0.5, 0.01 m/s, 1/m
�v 0.9, 0.9, c⇡/2 m, m, rad

B. Experiments

We first evaluate the performance of our point-wise convo-
lutional vehicle detector. In order to avoid over-fitting and au-
dit the generalization capacities of the proposed architecture,
we perform a 4-fold cross-validation step during training. In
this way, we train the same architecture selecting each time
different sequences to compose a validation set of around
1, 000 samples in a manner that the vehicle vs non-vehicle
points ratio in the resulting sets remains similar. Averaged
results show that our detector is able to classify Velodyne
3D points from the validation sets with a mean precision of
82.3% and a recall of 87.6%. Notice that this measures are
point-wise, and do not refer to the number of vehicles, but to
the mean amount of points correctly classified for each scan.
However this results demonstrates the capacity of the trained
model to retain generalized information of vehicles according
to our input representations, which enables to train the final
model with the full 8, 000 samples of the Kitti training set.

In addition, we measure the contributions of our DeepL-
idar vehicle detector applied to the tracking task. For this
purpose, we evaluate the full system performance with three
different detection modules:

• Geometric: is our baseline detection approach which
uses the full raw Velodyne information as input. It
initially performs a ground floor removal, according
to [14] and applies a clustering algorithm over the
remaining points. Bounding boxes are then extracted
as described in Section III-C, to obtain the final detec-
tions. However, as there is not trustworthy information
about the vehicleness of the created clusters, additional
geometric constraints are introduced, e.g. no track is
created until a corner of the vehicle is identified.

• DeepLidar: is the proposed deep model trained over the
full training set. We therefore show the results obtained
over the testing dataset, which are provided by the Kitti
evaluation server.

• CNN-GT: its aim is to set the upper bounds of the
tracker capacities under ideally lidar vehicle detections.
For that, it simulates the perfect output of our convo-
lutional detector by using the ground-truth of our data
representation as predictions. As no noise is introduced
on the detection step with this approach, the threshold
discarding clusters with less than 25 points is lowered to
4. It is only evaluated in the training set, as ground-truth
is not provided for the test sequences.



TABLE II
QUANTITATIVE EVALUATION ON THE KITTI TRACKING BENCHMARK

Geometric DeepLidar CNN-GT
Train Test Train Test Train

Mostly Tracked (%) 7.4 10.6 - 18.5 44.5
Partly Tracked (%) 56.5 45.1 - 52.2 47.7

Mostly Lost (%) 35.9 44.3 - 29.4 7.8
Recall (%) 46.4 42.1 - 55.4 79.0

Precision (%) 44.1 37.5 - 63.8 73.9
False Alarm Rate 1.97 2.35 - 1.06 1.00

MOTA -25.7 -38.9 - 15.5 41.9

The quantitative tracking results of the proposed system
are shown in Table II. Since there is no single ranking criteria
to evaluate the tracking task, we follow the Mostly-Tracked
(MT), Partly-Tracked (PT) and Mostly-Lost (ML) evaluation
measurements from [30], as we consider that it reflects better
the contributions of the different detector schemas over the
final tracking results. This criteria accounts as MT targets
those that are successfully tracked for at least the 80% of its
life span, whereas as ML the ones with less than 20%, and
PT the rest. In addition we include the CLEARMOT MOTA
metric [31]. It is commonly used due to its expressiveness,
as it combines in one single criteria three sources of errors
(False Negatives, False Positives and ID-Switches) over the
number of ground truth objects. It reports a percentage
between (� inf, 100], which takes negative values when the
number of errors made by the tracker exceeds the number of
total objects in the scene.

The importance of our detector is stated through the
noticeable improvements with respect to the geometric base-
line method in all the metrics. Our CNN configuration is
able to reduce by almost 15% the ML targets, providing
better target tracks, which is reflected as an increase of
the MT and PT values. The difference of our DeepLidar
approach with respect to the ideal CNN-GT detector is in fact
understandable. Considering that there is no noise introduced
by the ideal detector, there is no need for setting a minimum
cluster size and therefore farther vehicles can be tracked,
which directly reflects in a better MT and MOTA. On the
other hand, the fact that this ideal system does not achieve
perfect results is explained by the own Lidar technology
(very far vehicles are impacted by very few points or not
even impacted).

It is noteworthy to mention at this point that the eval-
uation measurements for the Kitty tracking benchmark are
performed on 2D bounding boxes over RGB images. When
working only with Lidar information we need to project our
3D tracked bounding boxes to 2D images, which results in
lower image pixel-level accuracy and therefore penalise our
Lidar-only systems. As a fact, Kitti RGB images contains
almost 1.4M (375⇥ 1242⇥ 3) colour samples. When
compared to image tracking methods our CNN inputs only
have 64⇥ 451⇥ 2, which means that we perform the full
vehicle detection and tracking pipeline with just a fraction
of 4.13% over the total values of the RGB methods.

V. CONCLUSIONS

In this work we presented a full vehicle detection and
tracking system based only on 3D lidar information. It
combines a convolutional neural network performing a point-
wise vehicle detection, with a multi-object tracker. Our
CNN-based detector classifies each 3D laser point as be-
longing to a vehicle or not by using a featured 2D-lidar
representation which involves both range and reflectivity
information. The resulting positively classified points are
then grouped together to create identification hypotheses,
and fed to a multi-hypothesis Extended Kalman Filter to
track their motion. We evaluated our system on the KITTI
tracking dataset, showing that the inclusion of the CNN-
based detection module improves systematically the whole
system performance.
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Abstract— As autonomous service robots become more af-
fordable and thus available also for the general public, there
is a growing need for user friendly interfaces to control the
robotic system. Currently available control modalities typically
expect users to be able to express their desire through either
touch, speech or gesture commands. While this requirement
is fulfilled for the majority of users, paralyzed users may not
be able to use such systems. In this paper, we present a novel
framework, that allows these users to interact with a robotic
service assistant in a closed-loop fashion, using only thoughts.
The brain-computer interface (BCI) system is composed of
several interacting components, i.e., non-invasive neuronal sig-
nal recording and decoding, high-level task planning, motion
and manipulation planning as well as environment perception.
In various experiments, we demonstrate its applicability and
robustness in real world scenarios, considering fetch-and-carry
tasks and tasks involving human-robot interaction. As our
results demonstrate, our system is capable of adapting to
frequent changes in the environment and reliably completing
given tasks within a reasonable amount of time. Combined with
high-level planning and autonomous robotic systems, interesting
new perspectives open up for non-invasive BCI-based human-
robot interactions.

I. INTRODUCTION

For patients with heavily impaired communication capa-
bilities, such as severly paralyzed patients, their condition
forces them to constantly rely on the help of human care-
takers. Robotic service assistants can re-establish some au-
tonomy for these patients, if they offer adequate interfaces
and possess a sufficient level of intelligence. Generally, an
intelligent system requires adaptive task and motion planning
modules to determine appropriate task plans and motion
trajectories for the robot, that implement a task in the real
world. Moreover, it requires a perception component, e.g.,
to detect objects of interest or to avoid accidental collisions
with obstacles. Typically used interfaces, such as haptic
(buttons), audio (speech) or visual (gesture) interfaces, to
command the robotic system are intuitive and easy options
for healthy users, but difficult to impossible to use for
paralyzed individuals.

In this paper, we present a novel framework, schemati-
cally depicted in Fig. 1, that allows closed-loop interaction
between users with minimal communication capabilities and
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Fig. 1. Framework unifying decoding of neuronal signals, high-level task
planning, low-level motion and manipulation planning, scene perception
with a centralized knowledge base at its core. Intuitive goal selection is
provided through an adaptive graphical user interface.

a robotic service assistant. To do so, we record neuronal
activity elicited in the human brain, the common origin of
all types of communication, with an electroencephalography
(EEG) system. Furthermore, we adopt a convolutional neural
network approach for online decoding of neuronal activity,
in order to allow users to navigate through a graphical user
interface (GUI) provided by a high-level task planner. The
set of feasible actions displayed in the GUI, depends in turn
on the current state of the world, which is stored in a central
knowledge base and continuously updated with information
provided by the robot and a camera perception system. Once
a task has been selected, it is decomposed into a sequence of
atomic actions by the high-level planner. Subsequently, each
action is resolved to a motion for the mobile manipulator us-
ing low-level motion and manipulation planning techniques.
In the following, the individual components shown in Fig. 1
will be described in detail, before presenting a quantitative
evaluation of the overall system regarding its performance.

II. RELATED WORK

Multiple previous studies have focused on robotic systems
assisting people with disabilities. For example, Park et al. [1]
implemented a system for the autonomous feeding of yogurt
to a person. Chung et al. [2] focused on autonomous drinking
which involved locating the drink, picking it up and bringing



it to the person’s mouth. Using a hybrid BCI and head
movement control, Achic et al. [3] studied a setup with a
moving wheelchair and an attached robotic arm. None of
these systems used pure BCI control. In contrast, Wang et
al. [4] used a motor imagery BCI with three classes to
achieve low-level control of a robotic arm. More relevant,
Schröer et al. [5] developed a robotic system which receives
a BCI command from a user and autonomously assists
the user in drinking from a cup. However, this approach
only considers a single object and a fixed-base manipulator.
More recently, Muelling et al. [6] presented a shared-control
approach to assistive robotics, albeit focused on invasive
BCIs. Nonetheless, their approach could be combined with
the high-level planning approach presented in our work.

In these applications, robust decoding of brain signals is
required. Inspired by the successes of deep convolutional
neural networks (ConvNets) in computer vision [7], [8] and
speech recognition [9], [10], deep ConvNets have recently
been applied more frequently to EEG brain-signal decoding.
Deep ConvNets were already applied to decoding tasks
useful for building brain-computer interfaces. Lawhern et
al. [11] used a deep ConvNet to decode P300 oddball signals,
feedback error-related negativity and two movement-related
tasks. When evaluated cross-subject, i.e., trained on some
subjects and evaluated on others, their ConvNet yields com-
petitive accuracies compared with widely-used traditional
brain-signal decoding algorithms. Tabar and Halici [12] used
a ConvNet combined with a convolutional stacked auto-
encoder to decode motor imagery within-subject, yielding
better accuracies than several non-ConvNet decoding algo-
rithms. Schirrmeister et al. [13] used a shallow and a deep
ConvNet to decode both motor imagery and motor execution
within-subject, reaching or slightly surpassing the accuracies
of the widely used EEG motor-decoding algorithm filter bank
common spatial patterns [14]. Bashivan et al. [15] used a
ConvNet trained on fourier-transformed inputs to estimate
mental workload. In addition to the work on evaluating
ConvNet decoding accuracies, ConvNet visualization meth-
ods allow us to get a sense of what brain-signal features
the network is using [13], [15], [16]. Taken together, these
advances make deep ConvNets a viable alternative for brain-
signal decoding in brain-computer interfaces. Still, to our
knowledge, online control with deep ConvNets has not yet
been reported for an EEG-based brain-computer interface.

III. ONLINE DECODING OF NEURONAL SIGNALS

The system at hand is developed to control more com-
plex scenarios than the ones considered in previous work.
Particularly, we consider scenarios involving manipulation
of objects as well as human-robot interaction. Feasible goals
are determined by our GUI which is controlled by directional
commands. As reliable classification of brain signals into
navigation directions cannot yet be achieved directly with
non-invasive BCIs, we used a deep ConvNet approach for
decoding of multiple mental tasks from EEG (Schirrmeister
et al. [13]). This approach introduces a hybrid network,
combining a deep ConvNet with a shallower ConvNet ar-

chitecture. The deep part consists of 4 convolution-pooling
blocks using exponential linear units (ELU) [17] and max
pooling, whereas the shallow part uses a single convolution-
pooling block with squaring non-linearities and mean pool-
ing. Both parts use a final convolution with ELU to produce
output features. These features are then concatenated and
fed to a final classification layer. We trained the ConvNet
to decode five mental tasks: right hand finger and both feet
toe movements, object rotation, word generation and rest.
These mental tasks evoke discernible brain patterns and are
used as surrogate signals to control the GUI. Offline training
was done with a cropped training strategy using shifted time
windows within the trials as input data [13].

From our experience it is important to train the BCI
decoder and subjects in an environment that is as close
as possible to the real application environment to avoid
pronounced performance drops. Therefore, we designed a
gradual training paradigm within the high-level planner GUI
where the displayed environment, timing and actions are
identical to those of the real control task. The training
paradigm proceeds as follows: We first train each subject
offline using simulated feedback. Subjects are aware of not
being in control of the GUI. The mental tasks are cued
using grayscale images presented for 0.5 s in the center
of the display. At all times a fixation circle is displayed
at the center of the GUI and the subject is instructed to
fixate on it to minimize eye movements. After a random
time interval of 1-7 s the fixation circle is switched to a
disk for 0.2 s, which indicates the end of the mental task.
At the same time the GUI action (go up, go down, select,
go back, rest) corresponding to the cued mental task is
performed to update the GUI. To keep training realistic
we include a 20 % error rate, i.e., on average every fifth
action is erroneous. We instruct the subjects to count the
error occurrences to assert their vigilancy. This offline data
is used to train the individual deep ConvNets. Then, the
subjects do online training by performing the decoded mental
tasks in the GUI. Finally, we stop cueing the mental tasks.
To evaluate the performance of the BCI control, we let
the subjects create instructed high-level plans in the GUI.
These tasks are then executed by a simulated robot or the
real mobile manipulator, when available. To provide more
control over the mobile manipulator and enhance the feeling
of agency, subjects have to confirm the execution of every
planned action and can interrupt the chain of actions at any
moment during their execution. BCI decoding accuracies
for the label-less instructed tasks are assessed by manually
rating each decoding based on the instructed task steps.
Statistical significance of the decoding accuracies were tested
using a conventional permutation test with 100 k random
permutations of the labels (i.e., p-value is the fraction of
label permutations that would have led to better or equal
accuracies than the accuracy for the original labels).

IV. HIGH-LEVEL GOAL FORMULATION PLANNING

We use domain independent planning to derive the re-
quired steps for reaching a desired high-level goal in a



complex task. The user can formulate a high-level goal
without knowledge of the internal representation of objects
in the planning system and the exact capabilities of the robot.
This is achieved by an intuitive graphical user interface,
where the object parameters of the goal are specified by
incrementally refining the objects by referring to their type,
e.g., “cup” or attributes, e.g., “content = apple-juice”.

Domain independent planning identifies a sequence of
actions that transforms the current world state into a state
satisfying a goal condition. A planning task consists of: (i)
a planning domain describing static components such as the
object type hierarchy and the available actions and (ii) a
problem instance describing the objects present in the world
and their current state, as well as a goal description. While
the current state of the objects can be extracted from the
knowledge base, the goal has to be chosen in the GUI.

A restricted vocabulary is shared between the user and the
planning system. Objects or sets of objects are identified by
creating referring expressions to them composed of shared
references built on this vocabluary [18]. We briefly describe
the relevant aspects of our previous work in this area [19].
In general, a referring expression � is a logical formula with
a single free variable. � refers to an object o if �(o) is valid.
E.g., the reference �(x) ⌘ cup(x) ^ contains(x,water)
refers to all cups containing water. We restrict ourselves to
references that are simple conjunctions of facts, which is not
only preferable for computational reasons, but also allows us
to incrementally refine references by adding constraints. For
example, adding contains(x,water) to cup(x), restricts the
set of all cups to the set of cups containing water.

We distinguish between three types of fundamental object
references: individual references, typename references and
relational references. Individual references are identified by
name, such as the “omniRob” robot. Typename references
can be identified by the name of their type. While we cannot
refer to the cups in our scenario directly, we can refer to an
unspecific cup. Relational references are encountered when
objects can be referred to via predicates in which they occur
as an argument. The relations in our scenario are object
attributes. For example, the content of the cup is used to
clarify which cup is meant. These object references are
used to create references to goals. We start defining goals
with the action that achieves it as we found that this is
most natural to the user, e.g., put(x, y)^ cup(x)^ shelf (y).
After the initial selection of a goal type (e.g., drop) it is
necessary to determine the objects for all parameters of the
goal predicate or action. These parameters are refined by
constraining the previous choice until the argument is either
determined uniquely (i.e., it is impossible to constrain the
argument further) or the user declares that any remaining
option is acceptable. We exclude unreachable goals, but we
allow for goals that can only be achieved after a sequence
of preceding actions (e.g., drinking water could require to
fetch a cup, bring it to the patient, fetch a bottle and pour
the water into the cup in order to be executed). The goal
that is determined by the selection process of the GUI is
then passed to a custom domain independent planner.

V. ROBOT MOTION GENERATION

For generating paths for the mobile base, we apply the
sampling-based planning framework BI2RRT* [20]. Given a
pair of terminal configurations, it performs a bidirectional
search using uniform sampling in the configuration space
until an initial sub-optimal solution path is found. This path is
subsequently refined for the remaining planning time, adopt-
ing an informed sampling strategy, which yields a higher
rate of convergence towards the optimal solution. Execution
of paths is implemented via a closed-loop joint trajectory
tracking algorithm using robot localization feedback.

To realize pick, place, pour and drink motions efficiently,
we adopt a probabilistic roadmap planner approach [21]. The
planner uses a graph of randomly sampled task poses (end-
effector poses), which are connected by edges. To find a plan
between two poses, the planner connects both poses with the
roadmap graph and uses the A* algorithm to find an optimal
path between the start and goal pose. The execution of the
plan maps the task space velocity commands to joint velocity
commands by employing a task space motion controller. We
sample random poses around the object to determine grasp
motions. For dropping objects we extract horizontal planes
from the camera’s point cloud and sample poses above those
planes to find a suitable drop location.

VI. IMPLEMENTATION DETAILS

Implementation of our framework in the real world re-
quires several components, such as neuronal signal decoding,
scene perception, knowledge base operations as well as
symbolic and motion planning, to run in parallel. There-
fore, we distributed the computation across a network of
7 computers, communicating among each other via ROS.
The decoding of neuronal signals has four components. EEG
measurements are performed using Waveguard EEG caps
with 64 electrodes and a NeurOne amplifier in AC mode.
Additionally, vertical and horizontal EOGs, EMGs of the
four extremities and ECG’s are recorded. For recording and
online-preprocessing, we used BCI2000 and Matlab. We
then transferred the data to a GPU server where our deep
ConvNet classified the data into 5 classes. The high-level
planner GUI consists of a back- and front-end. The back-
end of the GUI uses the Fast Downward planner [22] to
iteratively build goal references and to find symbolic plans
for the selected goal. As the planning time is not crucial
for the performance of our system, we used Fast Downward
with a basic configuration in our experiments. The central
knowledge base is implemented as a ROS node, which is
able to store objects with arbitrary attribute information. All
changes in the knowledge base automatically trigger updates
of the front-end, unexpected ones interrupt the current motion
trajectory execution. Finally, we used SimTrack [23] for
object pose detection and tracking.

VII. EXPERIMENTS

To evaluate our framework, we consider the environment
schematically depicted in Fig. 2, containing two shelves and
a table as potential locations for manipulation actions. The
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Fig. 2. Experimental environment: Two shelves and a table can be
considered by the robot for performing manipulation actions. Five RGBD
sensors observe the environment. A human operator selects a goal using
EEG control and the high-level planner GUI.

user sits in a wheelchair in front of a screen, displaying
the graphical interface of the high-level planner. The robot
used in the experiments is the omniRob omni-directional
mobile manipulator platform by KUKA Robotics, which is
composed of 10 degrees of freedom (DOF), i.e., 3 DOF
for the mobile base and 7 DOF for the manipulator. Ad-
ditionally, the Dexterous Hand 2.0 by Schunk is attached
to the manipulator’s flange and used to perform grasping
and manipulation actions. The tasks we considered in our
experiments required the robotic system to autonomously
perform the following actions: drive from one location to
another, pick up an object, drop an object (on a shelf or
table), pour liquid from a bottle into a cup, supply a user with
a drink. Moreover, we use a perception system composed of
five RGBD cameras. Three of them are statically mounted at
the shelves and the table, in order to observe the scene and
to report captured information to the knowledge base. The
other two cameras are carried by the robot on-board. The
first one is located at the mobile base and used to perform
collision checks in manipulation planning. The second cam-
era is mounted at the robot’s end-effector and used for tasks
involving physical human-robot interaction. A demonstration
of our framework can be found in the accompanying video:
http://www.informatik.uni-freiburg.de/~burgetf/ecmr17/.

A. Online Decoding of Neuronal Signals
We evaluated the BCI control setup with four healthy sub-

jects (S1-4, all right-handed, three females, aged 26.75±5.9).
At the time of writing the validation, S4 was still in
progress and no validation with the mobile manipulator
was performed. In total, 52 runs have been recorded (20
with the real robot) where the subjects executed various
instructed high-level plans. For 32 runs, we used simulated
feedback from the GUI in order to generate a significant
amount of data for the evaluation. The performance of the
BCI decoding during these runs was assessed using video

TABLE I
AGGREGATED MEAN±STD RESULTS FOR 52 BCI CONTROL RUNS

(EXP. VII-A), * P-VALUE < 10�6

Runs Accuracy* Time Steps Path Optimality Time/Step
# [%] [s] # [%] [s]

S1 18 84.1±6.1 125±84 13.0±7.8 70.1±22.3 9±2
S2 14 76.8±14.1 150±32 10.1±2.8 91.3±12.0 9±3
S3 17 82.0±7.4 200±159 17.6±11.4 65.7±28.9 11±4
S4 3 63.8±15.6 176±102 26.3±11.2 34.5±1.2 6±2

52 76.7±9.1 148±50 16.7±7.1 65.4±23.4 9±2

recordings of interactions with the GUI. We rated GUI
actions as correct if they correspond to the instructed path
and incorrect otherwise. Actions which are necessary to
remediate a previous error are interpreted as correct if the
correction is intentionally clear. Finally, we rated rest actions
as correct during the (simulated) robot executions, incorrect
if the next robotic action had to be initialized and ignored
them during high-level plan creation. For evaluation, five
metrics have been extracted from the video recordings: (i)
the accuracy of the control, (ii) the time it took the subjects
to execute a high-level plan, (iii) the number of steps used
to execute a high-level plan, (iv) the path optimality, i.e., the
ratio of the steps used to the minimally possible number of
steps, and (v) the average time per step. We summarized the
results in Table I. In total, a 76.67 % correct BCI control
was achieved, which required 9 s per step. Selecting a plan
using the GUI took on average 148 s and required the user
to perform on average 16.74 steps in the GUI of the high-
level planner. The path formed by these steps is on average
34.6 % away from the optimal path. The decoding accuracy
of every subject is significantly above chance (p < 10�6).

The subject-averaged EEG data used to train the hybrid
ConvNets and the decoding results of the train/test transfer
are visualized in Fig. 3. In Fig. 3(a) we show the signal-to-
noise ratio (SNR) of all 5 classes C of the labeled datasets.
We define the SNR for a given frequency f , time t and
electrode e as

SNRf,t,e =
IQR ({median (Mi)})
median ({IQR (Mi)})

i 2 C,

where Mi corresponds to the set of values at position (f, t, e)
of the i-th task, with |Mi| being the number of repetitions.
median(·) and IQR(·) is the median and interquartile range
(IQR), respectively. The upper part describes the variance of
the class medians, i.e., a large variance means more distin-
guishable class clusters and a higher SNR. The denominator
describes the variance of values in each class, i.e., a lower
variance of values results in a higher SNR. The low SNR in
EMG channels shows that the subjects did not move during
the tasks.

The decoding accuracies achieved on the test data after
initial training of the ConvNets are visualized in Fig. 3(b). To
further support the neural origin of the BCI control signals,
Fig. 3(c) shows physiologically plausible input-perturbation
network-prediction correlation results (see [13] for methods).
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Fig. 3. EEG data and decoding results. (a) SNR of the first 4 s of data
used to train the hybrid ConvNet. Highest SNR can be observed in the
alpha (7-14 Hz) and lower beta (16-26 Hz) bands. These frequency bands
are robust markers of task related mental tasks. Note that the non-EEG
channels (top row) were withheld from the ConvNets at any time and
are displayed as negative control. Not all channels are displayed because
of space constraints. (b) Confusion matrix of decoding accuracies for the
train/test transfer. Accuracies are well above the theoretical chance level of
20 %. (c) Topographically plausible input-perturbation network-prediction
correlation maps in the alpha (7-13 Hz) frequency band. For details on the
visualization technique we refer the reader to [13].

B. Fetch and Carry Task
The first experiment, considering the use of the real robot,

evaluates the complete system in fetch-and-carry tasks. The
goal was to transfer an object from one location to another,
e.g., from a shelf to the table, using the robot. To fulfill
such tasks the robot typically needs to execute four subtasks:
approach object location, grasp object, approach other loca-
tion, drop object. The user was instructed to select a pre-
defined goal using the EEG-controlled high-level planner.
Moreover, we selected a random initial placement for the
objects in each run, in order to cover different environment
states. The experiment was repeated ten times by the user.
Table II shows the averaged results for the experiment.
The second column indicates the overall number of desired
action calls, as scheduled by the high-level planner, as well
as the number of calls actually performed. The third to
fifth columns represent the success rate, mean and standard
deviation for the runtime of actions, respectively. Note,
that the number of scheduled and actually executed actions

TABLE II
AGGREGATED RESULTS FOR 10 RUNS (EXP. VII-B)

Actions # Executions Success Runtime [s]
(# Scheduled) Executions [%] Mean Std

Grasp 10 (10) 90.0 37.56 4.62
Drop 9 (10) 89.0 34.13 5.75
Approach 19 (20) 100.00 33.05 18.48

Total 38 (40) 94.74 34.42 14.02

TABLE III
AGGREGATED RESULTS FOR 10 RUNS (EXP. VII-C)

Actions # Executions Success Runtime [s]
(# Scheduled) Executions [%] Mean Std

Grasp 34 (30) 91.0 40.42 10.31
Drop 30 (30) 97.0 37.59 4.83
Approach 80 (80) 100.0 20.91 7.68
Pour 10 (10) 100.0 62.90 7.19
Drink 13 (10) 77.0 57.10 8.20

Total 167 (160) 95.86 32.46 15.51

might differ for two reasons. A number of executed calls,
lower than the scheduled ones, indicates that a previous
action step has failed to succeed and plan recovery was not
possible. On the other hand, a higher number of executed
calls indicates that the user was able to achieve plan recovery
by commanding a repetition of the failed action. Moreover,
we recorded the largest standard deviation for the approach
action, which can be attributed to the diverse complexity of
the planning problem for the mobile base and the distance to
travel between the selected grasp and drop location. In total,
our system achieved a success rate of 80% for the entire task.
Planning and execution required on average 140.63±36.7 s.
Errors were mainly caused by object detection issues, i.e.,
the system was not able to detect the object or the detection
was not precise enough to be able to successfully grasp or
drop an object.

C. Drinking Task
The last experiment evaluates the direct interaction be-

tween user and robot. Therefore, we implemented an au-
tonomous robotic drinking assistant. Our approach enables
the robot to fill a cup with a liquid, move the robot to the user
and finally provide the drink to the user by execution of the
corresponding drinking motion in front of the user’s mouth.
In addition to the techniques described above, successful
pouring and drinking using a robot requires the detection
of the liquid level in the cup and a reliable detection and
localization of the user’s mouth.

To detect the liquid level while pouring, we follow a
vision-based approach introduced by Do et al. [24]. Given
the camera’s viewing angle and the liquid’s index of refrac-
tion, the liquid height is determined from the depth measure-
ment using a relationship based on Snell’s law (see [25] for
more details). Using this knowledge, we first detect the cup,
extract the depth values for the liquid and finally estimate the
real liquid height. The type of liquid and hence the index of
refraction is assumed to be given beforehand. The viewing



angle can be determined from the depth data. A Kalman
filter is then used to track the liquid level and compensate for
noise. Once it is detected that the liquid level has exceeded
a user defined value, a stop signal is sent to terminate the
pouring motion.

For detection and localizing of the user’s mouth, we adopt
a two step approach. In the first step, we segment the image
based on the output of a face detection algorithm in order
to extract the image region containing the user’s mouth and
eyes. Afterwards, we detect the position of the mouth of the
user, considering only the obtained image patch. Regarding
the mouth orientation, we additionally consider the position
of the eyes in order to obtain a more robust estimation of the
face orientation, hence compensating for slightly changing
angles of the head. The face, mouth and eye detectors are
implemented in OpenCV by applying an algorithm that uses
Haar cascades [26], [27].

Table III shows the averaged results for the experiment.
Here, only 3.75% of the 160 scheduled actions had to be
repeated in order to complete the task successfully. In one
run, plan recovery was not possible leading to abortion of
the task. Thus, our system achieved in total a success rate of
90% for the drinking task. Planning and execution required
on average 545.56±67.38 s. For the evaluation of the liquid
level detection approach, we specified a desired fill level and
executed 10 runs of the pour action. The resulting mean error
and standard deviation is 6.9±8.9 mm. In some instances the
bottle obstructed the camera view, resulting in poor liquid
level detection and a higher error.

VIII. CONCLUSIONS

In this paper, we presented a thought-controlled mobile
robotic service assistant, capable of successfully performing
complex tasks, including close range interaction with the
user, in a continuously changing environment to increase
the independence of severely paralyzed patients. Through the
use of a high-level planner as an intermediate layer between
user and autonomous mobile robotic service assistant, we
overcome the curse of dimensionality typically encountered
in non-invasive BCI control schemes, thus opening up new
perspectives for human-robot interaction scenarios.
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Multi range Real-time depth inference from a monocular stabilized

footage using a Fully Convolutional Neural Network

Clément Pinarda,b , Laure Chevalleya, Antoine Manzanerab, David Filliatb

Abstract— We propose a neural network architecture for

depth map inference from monocular stabilized videos with

application to UAV videos in rigid scenes. Training is based on a

novel synthetic dataset for navigation that mimics aerial footage

from gimbal stabilized monocular camera in rigid scenes.

Based on this network, we propose a multi-range architecture

for unconstrained UAV flight, leveraging flight data from

sensors to make accurate depth maps for uncluttered outdoor

environment.

We try our algorithm on both synthetic scenes and real UAV

flight data. Quantitative results are given for synthetic scenes

with a slightly noisy orientation, and show that our multi-range

architecture improves depth inference.

Along with this article is a video that present our results

more thoroughly.

I. INTRODUCTION

Scene understanding from vision is a core problem for
autonomous vehicles and for UAVs in particular. In this paper
we are specifically interested in computing the depth of each
pixel from image sequences captured by a camera. We as-
sume our camera’s velocity (and thus displacement between
two frames) is known, as most UAV flight systems include
a speed estimator, allowing to settle the scale invariance
ambiguity of the depth map.

Solving this problem could be beneficial for several
problems such as environment scanning or applying depth-
based sense and avoid algorithms for lightweight embedded
systems that only have a monocular camera. Not relying on
depth Sensors such as stereo vision, ToF camera, LiDar or
Infra Red emitter/receiver allows to free the UAV from their
weight, cost and limitations. Specifically, along with some
RGB-D sensors being unable to operate under sunlight (e.g.
IR and ToF), most of them suffer from range limitations and
can be inefficient in case we need long-range information
such as trajectory planning [7]. Unlike RGB-D sensors, depth
from motion is flexible w.r.t. displacement and thus robust to
high speeds or high distances as choosing among previous
frames gives us a wide range of different displacements.
For estimating such depth maps, we designed an end-to-
end learning architecture, based on a synthetic dataset and
a fully convolutional neural network that takes as input an
image pair taken at different times. No preprocessing such as
optical flow computation, nor visual odometry is applied to
the input, while the depth is directly provided as an output.
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Fig. 1. Camera stabilization can be done via a) mechanic
gimbal or b) dynamic cropping from fish-eye camera, for

drones or c) hand-held cameras

We created a dataset of image pairs with random transla-
tion movements, with no rotation, and a constant displace-
ment magnitude applied during the whole training.

The assumption about videos without rotation appears
realistic for two reasons:

• Hardware rotation compensation is mainly a solved
problem, even for consumer products, with IMU-
stabilized cameras on consumer drones or hand-held
steady-cam (Fig 1).

• this movement is somewhat related to human vision and
vestibulo-ocular reflex (VOR) [2]. Our eyes orientation
is not induced by head rotation, our inner ear among
other biological sensors allows us to compensate para-
site rotation when looking at a particular direction.

Using the trained network, we propose an algorithm for
real condition depth inference from a stabilized UAV. Dis-
placement from sensors is used to compute real depth map,
as it only differs from the synthetic constant displacement
images by a scale factor. Our network output also allows us to
a posteriori optimize the depth inference. By adjusting frame
shift to get a displacement that would make the network
get the same disparity distribution as during its training, we
lower the depth error for next inference. For example, with
large distances, ideal displacement between two frames is
higher, and thus the shift is also higher. Moreover, we use
multiple batch inference to compute multiple depth maps
centered around a particular range, and fuse them to get a
high precision for both close and far objects, no matter the
distance, given a sufficient displacement from the UAV.

II. RELATED WORK

Deep Learning and Convolutional Neural Networks have
recently been widely used for numerous kinds of vision
problem such as classification [13] and hand-written digits
recognition [14].

Depth from vision is one of the problems studied with
neural network, and has been addressed with a wide range



of training solution. Some datasets [6], [19] allow a neural
network to learn end-to-end depth or disparity [15], [22],
[4]. Reprojection error has also been used for unsupervised
training for depth from a single image [20], [23] or for
disparity between two frames of a stereo rig [12], [5].

Depth from a single image, although interesting, suffers
from a major drawback which is overfitting. No motion is
given to the network during inference, and the resulting depth
is inferred from context, whereas they can be decorrelated.
This technique can be sufficient for road driving context with
an obvious road in front of the camera, but for a UAV flight
usage, we may have to deal with very heterogeneous scenes.
On the other hand, depth from a stereo pair is only implying
a single lateral movement, and lacks a forward component
to appear realistic for any aerial stabilized footage.

For depth from more complex movement from a monoc-
ular camera, current state of the art methods tend to use
motion, and especially structure from motion, and most
algorithm do not rely on deep learning [1], [17], [11]. Prior
knowledge w.r.t. scene is used to infer a sparse depth map
with its density usually growing over time. These techniques
also called SLAM are typically used with unstructured move-
ment (translation and rotation with varying magnitudes),
produce very sparse point-cloud based 3D maps and require
heavy calculation to keep track of the scene structure and
align newly detected 3D points to the existing ones.

Our goal is to compute a dense depth map (where every
point has a valid depth) using only two frames from the same
camera, at different times, and without prior knowledge on
the scene and movement, apart from the lack of rotation and
the scale factor.

III. END-TO-END LEARNING OF DEPTH INFERENCE

Inspired by flow estimation and disparity (which is essen-
tially magnitude of optical flow vectors), a problem to which
exist a lot of very convincing methods [8], [10], we set up an
end-to-end learning workflow, by training a neural network
to explicitly predict the depth of every pixel in a scene, from
an image pair with constant displacement value.

A. Still Box Dataset

We design our own synthetic dataset, using the rendering
software Blender, to generate an arbitrary number of ran-
dom rigid scenes, composed of basic 3d primitives (cubes,
spheres, cones and tores) randomly textured from an image
set scrapped from Flickr (see Fig 2).

These objects are randomly placed and sized in the scene,
and walls are added at large distances as if the camera
was inside a box (hence the name). The camera is moving
at a fixed speed value, but to an uniformly distributed
random direction, which is constant for each scene. It can
be anything from forward/backward movement to lateral
movement (which is then equivalent to stereo vision).

B. Dataset augmentation

In our dataset, we store data in 10 images long videos,
with each frame paired with its ground truth depth. This

Fig. 2. Some examples of our renderings with associated
depth maps (red is close, purple is far)

allows us to set a posteriori distances distribution with a
variable temporal shift between two frames. If we use a
baseline shift of 3 frames, we can e.g. assume a depth three
times as great as for two consecutive frames (shift of 1). In
addition, we can also consider negative shift, which will only
change displacement direction without changing speed value.
This allows us, given a fixed dataset size, to get more evenly
distributed depth values to learn, and also to de-correlate
images from depth, preventing over-fitting during training,
that would result in a scene recognition algorithm and would
poorly perform on a validation set.

C. Depth Inference training

Our network is broadly inspired from FlowNetS [3] (ini-
tially used for flow inference) and called DepthNet. It is
described in details in [18], we provide here a summary of its
structure (Fig 3) and performances. Each convolution (apart
from depth modules) is followed by a Spatial Batch Normal-
ization and ReLU activation layer. Batch normalization helps
convergence and stability during training by normalizing a
convolution’s output (0 mean and standard deviation of 1)
over a batch of multiple inputs [9], and Rectified Linear Unit
(ReLU) is the typical activation layer [21]. Depth Module are
convolution modules, reducing the input to 1 feature map,
which is expected to be the depth map, at a given scale. One
should note that FlowNetS initially used LeakyReLU which
has a non-null slope for negative values, but tests showed
that ReLU performed better for our problem.

The main idea behind this network is that upsampled
feature maps are concatenated with corresponding earlier
convolution outputs (e.g. Conv2 output with Deconv5 out-
put). Higher semantic information is then associated with
information more closely linked to pixels (since it went
through less downsampling convolutions) which is then used
for reconstruction.



Typical Conv Module
SpatialConv, 3x3
SpatialBatchNorm
ReLU

Typical Deconv Module
SpatialConvTranspose, 4x4
SpatialConv, 3x3
SpatialBatchNorm
ReLU
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Fig. 3. DepthNet structure parameters, Conv and Deconv
modules detailed above

Fig. 4. Result on 512x512 images from
DepthNet64!128!256!512. Upper-left: input, lower-left:

Ground Truth depth, lower-right: our network output
(128x128), upper-right: error, green is no error, red is

overestimated depth, blue is underestimated

This multi-scale architecture has been proven very efficient
for flow and disparity computing while keeping a very simple
supervised learning process.

The main point of this experimentation is to show that
direct depth estimation can be efficient regarding unknown
translation. Like FlowNetS, we use a multi-scale criterion,
with a L1 reconstruction error for each scale:
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the output.
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is the scaled depth groundtruth, using average pool-
ing.

• �
s

is the ouput of the network at scale s.
As said earlier, we apply data augmentation to the dataset

using different shifts, along with classic methods such a flips
and rotations. We also clamp depth to a maximum of 100m,
and provide sample pairs without shift, assuming its depth
is 100m everywhere. As a consequence, the trained network
will only be able to infer depth lower than 100m.

We applied training on several input size images, from
64x64 to 512x512. Fig 4 shows training results for mean
L1 reconstruction error. Like FlowNetS, network output are
downsampled by a factor of 4 with reference to the input
size. As Table I shows, best results are obtained with multiple
fine-tuning, with intermediate scales 64, 128, 256, and finally
512 pixels. Subscript values indicate finetuning processes.
FlowNetS is performing better than DepthNet but by a fairly



Network L1Error RMSE
train test train test

FlowNetS64 1.69 4.16 4.25 7.97
DepthNet64 2.26 4.49 5.55 8.44
FlowNetS64!128!256!512 0.658 2.44 1.99 4.77

DepthNet64!128 1.20 3.07 3.43 6.30
DepthNet64!128!256 0.876 2.44 2.69 4.99
DepthNet64!128!256!512 1.09 2.48 2.86 4.90

DepthNet64!512 1.02 2.57 2.81 5.13
DepthNet512 1.74 4.59 4.91 8.62

TABLE I. Quantitative results for depth inference networks.
FlowNetS is modified with 1 channel outputs (instead of 2

for flow), trained from scratch for depth with Still Box,
subscript indicates fine tuning process.

Fig. 5. Result on 512x512 real images input from a Bebop
drone footage

light margin while being 5 times heavier and most of the
time much slower.

IV. UAV NAVIGATION USE-CASE

A. Optimal frame shift determination

We learned depth inference from a moving camera, as-
suming its velocity is always the same. Results from real
condition drone footage, on which we were careful to avoid
camera rotation can be seen Fig 5. These results did not
benefit from any fine-tuning from real footage, indicating
that our Still Box Dataset, although not realistic in its scenes
structures and rendering, appears to be sufficiently hetero-
geneous for learning to produce decent depth maps in real
conditions. When running during flight, such a system can
deduce the real depth map ⇣ from the network output and the
drone displacement, knowing that the training displacement
was D0 (here 0.3m)

⇣(t) = DepthNet(I
t

, I
t��t

)D(t,�t)
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The actual correct interpretation of the output of DepthNet
is rather a percentage than a distance. 100% meaning max
distance for a given displacement D. We can introduce
a function � = DepthNet(I

t

,I

t��t

)
maxDistance

and a dimension-less
parameter ↵ = maxDistance

D0
for computing actual depth

using the displacement D as the only distance related factor.

⇣(t) = ↵�(I
t

, I
t��t

)D(t,�t) (3)

Depending of the depth distribution of the ground-truth
depth map, it may be useful to adjust frame shift �t. For
example, when flying high above the ground with low speed,
big structure detection and avoidance requires knowing pre-
cise distance values that are outside the typical range of
any RGB-D sensor. The logical strategy would then be to
increase the temporal shift between the frame pairs provided
to DepthNet as inputs. More generally, one must provide
inputs to DepthNet in order to ensure a well distributed depth
output within its typical range. Depth-wise normalized error
which is the essential quality measurement for values that
we want to rescale, will diverge when ground truth depth
approaches 0. Indeed, in addition to being equivalent to an
infinite optical flow, the depth-wise error cannot tend to 0,
which will make the expression error/depth tend to +1 at 0
We thus need to choose the optimal spatial displacement and
corresponding temporal shift to minimize error on the next
inference, assuming the same depth distribution, to avoid too
low or too high equivalent ground-truth. We chose the space
displacement as:

D
optimal

(t+ 1) =
E(⇣(t))

↵�
mean

(4)

With E(⇣(t)) the mean of depth values and �
mean

the
optimal mean output of �, e.g. 0.5. �(t) is then computed
numerically to get the frame shift with the closest corre-
sponding displacement possible.

B. Multiple shifts inference

As neural network are traditionally computed within mas-
sively parallel architectures such as GPUs, multiple depth
maps can be computed efficiently at the same time in a batch,
especially for low resolution. Batch inference can then be
used to compute depth with multiple shifts �(t, i). These
multiple depth maps can then be combined to construct a
higher quality depth map, with high precision for both long
and short range. We propose a dynamic range algorithm,
described Fig 6 to compute an combine different depth maps.

Instead of only one optimal displacement D(t) from E(⇣),
we use K-mean clustering algorithm [16] on the depth map
to find a list of clusters on which each shift will focus.
The clustering outputs a list of n centroids C

i

(⇣) and
corresponding D

i

(t) and �(t, i). n is an arbitrary chosen
value, usually ranging from 1 to 4.

Final DepthMap is then computed from fusing these
outputs using a weighted mean for each pixel. Each weight
is actually a linear interpolation from 0 to 1 according to
distance of depth from a target value �

mean

. That way, fusion
will favor values that are closer to this optimal value. An ✏
value is added to solve fusion when every depth map is off
its wanted range.
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Fig. 7. real condition application of the multi-shift algorithm with Tiny DepthNet Clamped. First image is input. Last two
are outputs of the network, for shifts of 50 and 13 with a drone flying forward at 1m.s�1 and at an altitude of 12m, with

corresponding displacements from sensors. Second is fused output, capped to 100m up
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For our use-case, we set �
min

= 0.1 , �
mean

= 0.4,
�
max

= 0.9 and ✏ = 10�3. i is the index of frame shift, j, k
are the spatial indices. Fig 7 shows a result of the proposed
algorithm for a batch size of 2. Notice how the high shift
detects buildings while low shift detects trees.

C. Clamped DepthNet

Our proposed algorithm is actually suffering a problem
for real condition videos, because we assume a perfect
stabilization. Therefore, on very far objects (e.g. the sky),
any minor optical flow caused by a default in stabilization
will result in a massive error in depth. Moreover, our network

being very good at recognizing shapes and giving it the same
depth everywhere, this can result in the whole sky being
computed as relatively close. We thus propose a network
designed for a simpler problem: during training on still box,
we clamp depth from 10m to 60m, with a shift of 5 images
(instead of 3 for DepthNet). These new parameters allow the
network to only focus on mid range objects, dismissing close
and far objects with respectively a too large and too small
optical flow. This training workflow is very well suited for
multiple shift depth inference. Every image pair will have a
dedicated depth to analyze, allowing the fusion to not be
bothered with redundant data, because of the high initial
range of DepthNet.

Figure 8 shows results for multiples synthetic 256x256
scenes with ground truth, along with inference speed and
a small noise added to camera initial orientation at each
frame. R(t) = R0 + Euler(N0µ(t)), with µ(t) being a
3-dimensional random unit vector and N0 a constant fixed
to 0.001. We also report performance a thin version of our
clamped network, that shows better results than DepthNet
with 1 plane only in this noisy setup. The thin network has
the same depth, but every convolution has an output half
the number of feature maps of the original DepthNet. These



Fig. 8. results for synthetic 256x256 scenes with noisy
orientation. DepthNet has been tested with 1 and 2 planes,
DepthNet Clamped with 1 to 3 planes and Tiny DepthNet

Clamped with 1 to 4 planes. Y axis is Absolute mean error
(m) divided by ground-truth depth, X axis is inference

speed, in ms

results have been obtained on a Quadro K2200m powered
laptop.

V. CONCLUSION AND FUTURE WORK

We proposed a novel way of computing dense depth maps
from motion, along with a very comprehensive dataset for
stabilized footage analysis and a technique for dynamic range
real flight computing. This algorithm can then be used for
depth-based sense and avoid algorithms in a very flexible
way, in order to cover all kinds of path planning, from
collision avoidance to long range obstacle bypassing.

A more thorough presentation of the results
can be viewed in this video. http://perso.

ensta-paristech.fr/

˜

manzaner/Download/

ECMR2017/DepthNetResults.mp4

Future works include implementation of such a path
planning algorithm, and construction of a real condition
fine tuning dataset, using UAVs footages and a preliminary
thorough 3D offline scan. This would allow us to measure
quantitative quality of our network for real footages and not
only subjective as for now. We could also use unsupervised
techniques, using re-projection errors as in [23].

We also believe that our network can be extended to re-
inforcement learning applications that will potentially result
in a complete end-to-end sense and avoid neural network for
monocular cameras.

The major drawback of our algorithm is however the
necessity for a scene to be rigid. This is obviously never the
case, and even though UAV footage are less prone to moving
objects like in autonomous driving problems, we will have
this issue whenever a moving target is to be followed. To
solve this problem, an explicit movement equation for both
the camera and the moving targets may have to be computed,
as in [20]. In any case, this problem will be a challenge and
may not be solvable with fully Convolutional networks only
as we did in this article.
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Robust Submap-Based Probabilistic Inconsistency Detection for
Multi-Robot Mapping

Yufeng Yue1, Danwei Wang1, P.G.C.N. Senarathne2 and Chule Yang1

Abstract— The primary goal of employing multiple robots
in active mapping tasks is to generate a globally consistent
map efficiently. However, detecting the inconsistency of the
generated global map is still an open problem. In this paper,
a novel multi-level approach is introduced to measure the
full 3D map inconsistency in which submap-based tests are
performed at both single robot and multi-robot level. The
conformance test based on submaps is done by modeling the
histogram of the misalignment error metric into a truncated
Gaussian distribution. Besides, the detected inconsistency is
further validated through a 3D map registration process. The
accuracy of the proposed method is evaluated using submaps
from challenging environments in both indoor and outdoor,
which illustrates its usefulness and robustness for multi-robot
mapping tasks.

I. INTRODUCTION

With the maturity of the single robot technology, the use
of a group of coordinated robots [1] in the past decade has
been gradually taken seriously. The use of multiple robots
significantly improve the efficiency and robustness in search
and rescue tasks [2] and collaborative mapping [3]. One
of the key challenges is to generate a globally consistent
map of the environment. Global map generation is generally
achieved by fusing the local maps generated by individual
robots [4]. However, this is based on the assumption that the
created local maps are consistent with no significant errors.
Fusing erroneous local maps results in an inconsistent global
map, which renders the accurate execution of autonomous
tasks infeasible. Therefore detecting inconsistency in both
local maps and fused global maps is vital for multi-robot
missions.

The development of map inconsistency detection strategies
has not received much attention, where the majority of the
research is focused on generating accurate maps and post-
processed optimization. However, map generated does not
guaranteed to be foolproof and may generate inconsistent
maps, especially in large environments and over long op-
erating times. In addition, post-processed optimization is
computationally expensive, where a proper triggering time
and quantitative inconsistency measurements are required.
Hence, there is a gap between the map generation and the
map optimization, which is the inconsistency detection of the
map. The capability to detect inconsistency in the generated
maps allows robots either to perform an efficient optimization

*The research was partially supported by the ST Engineering-NTU
Corporate Lab through the NRF corporate lab@university scheme.
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and Electronic Engineering, Nanyang Technological University, Singapore
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(a) Consistent map (b) Inconsistent map

Fig. 1. An example of consistent and inconsistent map

algorithm in order to continue the mission, or to return to a
safe location for recovery without getting trapped.

This paper presents a novel strategy that detects the
inconsistency of map generated from two levels, i.e., single
robot and multi-robot level. The inconsistency of the system
is modeled as a probabilistic distribution, where submap-
based inconsistency testing is performed on three types of
inconsistency defined on both single robot and multi-robot
level. In both levels, map inconsistency measurements are
computed by modeling the misalignment errors between
submap pairs into a truncated Gaussian distribution, and
the resultant mean and variance are used to detect the
inconsistency. Besides, the detected inconsistency is further
validated through a 3D map registration process. The fused
global map is deemed consistent only if all submap pairs of
all robots pass the inconsistency checks.

Main contributions of this work are listed below:
• A novel multi-level topological framework is proposed

to model the inconsistency of full 3D maps on both
single robot and multi-robot level.

• A submap-based probabilistic algorithm is developed to
efficiently detect and verify the three types of inconsis-
tency (i.e., sequential, local and global).

The rest of this paper is organized as follows: Sec-
tion II reviews the related literature. Section III presents
the topological probabilistic structure. Section IV details
submap-based inconsistency modeling and detection. Section
V presents the experiments. Section VI concludes the paper.

II. RELATED WORK

Various mapping algorithms have been proposed in the
past decades [5] [6], however, these methods can’t guarantee
to produce globally consistent maps all the time. To increase
the convergence of mapping, graph SLAM back-end has been
proposed to minimize the accumulated error [7]. Based on
that work, variants using dynamic covariance scaling [8] and
switchable constraints [9] have been addressed.



Fig. 2. Topological structure of map inconsistency detection. The nodes
with different colors represents the submaps of different robots. The three
types of edges show the inconsistency at different levels.

Some researchers present vision based place recognition
to trigger back-end [10], which is sensor-dependent and
needs to process huge amount of raw sensor data. Under the
condition of limited communication and memory of multi-
robot system, a compact map generated by compressing
raw sensor data is an alternative choice. However, very few
research has been conducted on detecting the inconsistency
of generated maps, except the works proposed in [11] [12]
[13]. In [11], a Bayesian representation of map posterior
is used to detect the wrong data associations. Then it is
extended to a multi-scan scenario with a cascaded map
inconsistency statistical test in [12]. Based on that work,
[13] developed a robot homing strategy whenever the map is
detected to be inconsistent. These works pioneer the map in-
consistency detection problem, and the use of this knowledge
to improve autonomous mapping missions. However, these
methods focus on sensor data level in a 2D environment
with a single robot, which is infeasible to be extended to a
multi-robot scenario in full 3D mapping missions.

In large environment, submap-based approach provides
incremental [14] and efficient [15] approach for robot map-
ping. For multiple robots coordination [16], submap is even
more suitable under the constraints of limited communication
bandwidth and coverage. As submaps are generated over a
short motion window of the robot, it is reasonable to assume
that they are locally consistent [17]. To the extent of our
knowledge, this is the first application of robust submap-
based inconsistency detection for multi-robot mapping.

III. TOPOLOGICAL STRUCTURE OF MAP
INCONSISTENCY DETECTION

This section presents the structure of submap-based in-
consistency measurement, which is shown in Fig. 2. The
submap-based inconsistency measurement is defined as a
topological structure, where the node is defined as the
submap and the edge is defined as the submap-wise in-
consistency. Then we further explain the three types of
inconsistency on single robot and multi-robot level.

A. Definition of Node
The node is defined as a submap and notation is denoted

in Eq.(1)
x
i V = {x

i m}i2nx,x2R (1)

where nx stands for the set of known submaps generated
by robot x, and R represents the set of robots {a,b,c, · · ·}.
Submap {x

i m} is generated when certain conditions have met
and is added to the topology as a new node. In this paper, a
submap is represented as a 3D probabilistic occupancy voxel
map [5]. Considering the limited size of submap will lead
to less drift, while still providing sufficient submap size for
map registration. The criterion that triggers the creation of a
new submap is based on the condition that the robot moved
for a certain distance or rotated for a certain angle.

Based on submaps generated, the local map and global
map on a higher level are defined below.

1) Local map generated by a single robot: Local map xm
generated by a single robot x consists of submaps {x

i m} with
i 2 nx, which is shown as the chain of node with the same
color in Fig. 2 and is denoted as:

xm = {x
i m, i 2 nx} (2)

2) Global map generated by multi-robot: Global map M
that integrates 3D occupancy local maps xm with x 2 R is
defined as:

M = {xm,x 2 R } (3)

B. Definition of Consistency
Map inconsistency is defined as a measurement of align-

ment between the submaps. On that basis, consistency in-
dicates that submaps have been registered properly, while
inconsistency implies a large offset between two submaps.
The inconsistency between two submaps is represented by
the edge, which defines the inconsistency between two
submaps on single robot level and multi-robot level.

1) single robot level: The submaps i, j within the local
map am connected by an edge i

j4 is denoted as single
robot level inconsistency, which has two types: sequential
inconsistency and local inconsistency.

a) Sequential inconsistency: Sequential inconsistency
is defined as the probability between consecutive submaps a

i m
and a

i�1m and is defined in Eq.(4). Sequential inconsistency
always happens when two consecutive submaps didn’t align
properly due to SLAM error like a sharp turn occurs or a
sudden drift in odometry sensor.

i
i�14= p(a

i m|ai�1m){i=2:na} (4)

b) Local inconsistency: local inconsistency is defined
in Eq.(5), which calculates the probability of a

i m over the
past submaps a

jm generated by robot a.
i
j4= p(a

i m|ajm){i=k+1:na, j=1:i�k} (5)

The calculation is not performed from i � k to i � 1
submaps because a

i m always has small overlapping with those
submaps. Local inconsistency always happens when the
robot in current submap a

i m didn’t recognize the previously
traveled submap a

jm.



2) Multi-robot level: The local maps am, bm connected
by an edge a

bL is denoted as multi-robot level inconsistency.
Global inconsistency is defined as probability of submap b

jm
in robot b over all the submaps a

i m in robot a, which is
defined in Eq.(6). Global inconsistency always happens when
two robots can not recognize the same place they visited.

a
bL = p(bm|am) µ ’

i=1:na, j=1:nb

p(b
jm|ai m) (6)

3) Overall system: With the three types of inconsistency
defined above, we can write the inconsistency measurement
for the whole system. Here, we denote the inconsistency of
the system in Eq.(7).

’
a

p(a
i m|ajm)

| {z }
single robot level

·’
a,b

p(b
jm|ai m)

| {z }
multi-robot level

=’
a

0

B@ p(a
i m|ai�1m)

| {z }
pairwise consistency

p(a
i m|ajm)

| {z }
local consistency

1

CA ·’
a,b

p(b
jm|ai m)

| {z }
multi-robot level

(7)

Since the three types of inconsistency defined can be
represented at submap-level, the inconsistency measurement
can be modeled as a Gaussian distribution f (x; µ,s2). The
modeling will be detailed in Sec.(IV).

IV. SUBMAP-BASED INCONSISTENCY DETECTION

In this section, the submap-based inconsistency measure-
ment is calculated by modeling the histogram of inconsis-
tency distance into a truncated Gaussian distribution. Then
submap-based inconsistency testing is performed and verified
by applying 3D map registration.

A. Submap-wise Inconsistency Distance

A proper inconsistency distance should be defined to
describe the discrepancy between submaps. Here, we assume
m and n as two submaps, where mi and n j are two voxels
in submap m and n, respectively. The edge connects m and
n can be any of the three types of inconsistency defined in
Sec.III.

The distance applied here is the Occupancy Iterative Closet
Point(OICP) distance defined in [4]. The OICP distance is
an error metric specially designed for 3D occupancy grid
map that combines the Euclidean distance de(mi,n j) and
occupancy probability distance d f (mi,n j). The inconsistency
distance between a pair-wise matched voxels is defined in
Eq.(8). The details of OICP distance can be found in [4].

d(mi,n j) = de(mi,n j)+d f (mi,n j) (8)

Where d(mi,n j) is the OICP distance between voxel mi
in submap m to the closest voxel n j in submap n. The
histogram of OICP distance over all the matched voxels (i, j)
is computed to show the distribution of the inconsistency
distances. Since inconsistency is defined as a probability
distribution, the histogram is further modeled into probability
distribution to describe the discrepancy between submaps.

(a) The pair-wise submaps are mis-
aligned with an error

(b) Uniform histogram is modeled
into guassian distribution

Fig. 3. An example of misaligned submaps and the histogram of
inconsistency distance

B. Modeling of Probability Distribution

For simplification, we assume the submaps m and n to
be straight lines and the probability of each voxel equals
to 1. Histograms of perfect alignment and misalignment are
modeled into Gaussian distributions f (x; µ,s2).

1) Modeling of Perfect Alignment : Assuming two
submaps are noise free and perfectly aligned, which means
the distance metric d(mi,n j) between all corresponding vox-
els equals to zero. Then the histogram is subject to a Dirac
delta distribution, which is the limit the normal distribution
when s2 ! 0.

f (x; µ,s2) =
1p

2ps2
e
�x2
2s2 ; µ = 0, s2 ! 0, (9)

However, in real environment the map will be noisy and
alignment will have a distance residual, the s2 will always
greater than zero.

2) Modeling of Misalignment: Considering the inconsis-
tency situation for straight lines, the two lines will intersect
at a point. Here, we assume the two lines intersect at the
start point, as shown in Fig. 3a. The parallel lines are not
considered since submap overlapping is a basic requirement
for inconsistency detection.

The histogram of distance distribution complies a uniform
distribution and is shown in Fig. 3b.

f (x) =

(
1

b�a f or a  x  b

0 f or a  0 or x � b
(10)

The uniform histogram can also be modeled by a Gaussian
distribution with mean µ and variance s2 as shown in
Fig. 3b.

f (x; µ,s2) =
1p

2ps2
e�

�(x�µ)2

2s2 ; µ =
a+b

2
, s2 =

(b�a)2

12
(11)

Based on the observations, the simplification reveals that
µ and s2 can be used to describe the discrepancy. In general,
large µ and s2 indicate a large misalignment error.

C. Truncated Gaussian Distribution

As shown above, the histogram can be modeled into
Gaussian distribution X ⇠ N(µ,s2). Since the distance is
absolute value, the Gaussian distribution can be modified to
truncated Gaussian distribution in the interval of [a,b]. Given



(a) Indoor experiment (b) Outdoor experiment

Fig. 4. The environment of the experiment

a normal distribution X ⇠ N(µ,s2) with the probability den-
sity function(pdf) F(x) and cumulative density function(cdf)
Y(x). Then, X ⇠ N(µ,s2) conditioned on interval a  x  b
is derived:

f (x; µ,s2;a,b) = ft(x; µt ,s2
t ) =

F(x)
Y(b)�Y(a)

(12)

Let a = a�µ
s , b = b�µ

s where truncated mean µt and
truncated variance s2

t are calculated as follows:

µt = µ +s F(a)�F(b )
Y(b )�Y(a)

(13)

s2
t = s2[1+

aF(a)�bF(b )
Y(b )�Y(a)

� (
F(a)�F(b )
Y(b )�Y(a)

)
2
] (14)

Here we set a = 0, as distance is always no less than 0,
and b = d, where d is the maximum search distance of OICP
registration algorithm. On the interval of [0,d], µt describes
the average misalignment distance, and s2

t describes the
degree of misalignment divergence.

D. Inconsistency Testing

In this part, a test is performed to detect the three types
of inconsistency definted in Sec.III.

Given all the submaps {x
i m}i2nx,x2R , the overlapping be-

tween submaps is firstly tested. Then the histogram of
misalignment distances is modeled into truncated Gaussian
distribution. An N ⇥ N square matrix G is generated that
contains Gi j value defined in Eq.(15), where N = Âx2R nx
is the total number of submaps. Here, the sparsity of matrix
G depends on the pairs of overlapping submaps.

Gi, j =
1

µt ·s2
t

(15)

Inconsistency testing is performed for each Gi, j, a large
value of Gi, j indicates consistency, while a low value im-
plies that large misalignment compared with the perfect
map alignment. A global map is consistent if all tests are
successful. For inconsistent submaps, they share a common
area, however, are not aligned properly. Hence, we apply a
novel map registration algorithm [4] to align the inconsistent
submaps and generate a N ⇥ N matrix Q. By comparing
matrix G with Q, the large difference verifies the detected
inconsistency . An overall algorithm is shown below.

Algorithm 1 Submap-Based Inconsistency Detection
Require: The generated submaps {x

i m}i2nx,x2R
Ensure: Detecting sequential, local and global inconsistency

for {x
i m}i2nx,x2R with overlapping pairs do

for single robot level do
Sequential inconsistency: i

i�14= p(a
i m|ai�1m){i=2:na}

Local inconsistency: i
j4= p(a

i m|ajm){i=k+1:na, j=1:i�k}
end for
for multi-robot level do

Global inconsistency: i
jL = p(b

jm|ai m){i=1:na, j=1:nb}
end for

end for
Generating inconsistency matrix GN⇥N
for G(i, j) > 0 do

Generating matrix Q after performing map registration
end for
Verified inconsistency matrix Gv = Q�G

(a) The ground truth of indoor 3D map

(b) The inconsistent indoor 3D map

Fig. 5. The ground truth and inconsistent map generated in indoor
environment. For local map am is consistent while the local map bm can’t
close the loop when it comes back to the starting point.

V. EXPERIMENTAL RESULTS

Experiments performed using two robots in indoor and
outdoor environments are presented in this section. Two
robots were teleoperated in both indoor and outdoor en-
vironment at Nanyang Technological University. The robot
was equipped with a Hokuyo Laser range finder for pose
estimation using Gmapping [18] and a Velodyne VLP-16
for 3D perceptions, as shown in Fig. 4. The individually
generated 3D grid maps are post-processed using C++ and
Matlab to analyze their inconsistency. Submaps are generated
at 10m intervals. The resolution of the 3D occupancy grid
map in both experiments is set to be 0.1m.



(a) Inconsistency matrix G (b) Inconsistency matrix Q after map
registration

Fig. 6. The deeper the color, the submap pair is more consistent. The large
difference of the color in the same pixel verifies the inconsistency.

Fig. 7. The top row shows the detected global inconsistency between
submap b

9m(blue color) and a
8m(red color), while the bottom row verifies the

inconsistency after performing map registration

A. Indoor Environment

The ground truth map and the inconsistent map are shown
in Fig. 5. The ground truth of the map was generated with
a very high number of particles and by moving the robot
extremely slowly and smoothly. For experiments, the number
of particles was decreased to the default value of 30. The
two separated local maps are fused to generate the global
map and the result is shown in Fig. 5b. For local map am,
8 submaps were generated. And 9 submaps were generated
for the local map bm.

Square matrix G17⇥17 is generated to describe the in-
consistency as shown in Fig. 6a. As for single robot level
inconsistency detection, G[1:8,1:8](Gaa) shows the inconsis-
tency between submaps a

1:8m , and G[9:17,9:17](Gbb) shows the
inconsistency between submaps b

1:9m. For multi-robot level
inconsistency, G[9:17,1:8](Gab) represents the global consis-
tency between submaps b

1:9m and submaps a
1:8m. The two

map sessions started and ended at the same position and
is marked with a star in Fig. 5b. Note that only sequential
inconsistency detection is performed, so the matrix is not
symmetric.

1) Single robot level: For local map am and bm, the
sequential consistency i

i�14 are accepted. As shown in
matrix G, all the pixels representing sequential inconsistency
is with high values. Local inconsistency for map am is also

Fig. 8. The matrix Gv shows the
verified inconsistent pairs by ident
ifying the difference between Fig
.6a and Fig. 6b in indoor scenario

Fig. 9. Verified inconsistency matrix in
outdoor environment. The deeper color
represents a higher probability of in-
consistency

accepted, which means the local loop is closed. For example,
the high value of G(8,1) and G(7,1) indicates last two submaps
a
7m, a

8m aligned properly with first submap a
1m . However, the

low value for G(13:16,10), G(15,9), and G(17,9) indicate the local
inconsistency detected in bm. For example, G(14,10) shows
the inconsistency between b

6m and b
2m. And G(17,9) shows the

misalignment between first submap b
1m and last submap b

9m.
2) Multi-robot level: The measured global inconsistency

is presented in lower left part in Fig. 6a, and is based on the
overlapping area between am and bm in Fig. 5b. Pixel G(9,1)
is with a high value, because robot a and b started at the
same position and aligned properly. Then G(17,1) and G(16,2)
are with a low value, due to the misalignment between last
two submaps b

9m, b
8m and start position of a

1m and a
2m. The

low values of G(16,8) and G(17,8) also detects the inconsistency
between submaps (b

8m,a8m) and (b
9m,a8m).

3) Map Registration: As mentioned before, inconsistency
is caused by misalignment between submaps. Here, a map
registration algorithm is applied to verify the potential in-
consistency detected. Square matrix Q is generated and is
shown in Fig. 6b, which shows that the previously incon-
sistent submaps have been aligned after performing submap
registration.

At single robot level, the sequential inconsistency re-
mains unchanged, which validated our measurements. For
am, the local inconsistency is also validated. For bm, the
local inconsistency value of Q(14,10), Q(15,10), Q(17,9) have
increased sharply, which indicates these pairs have been
aligned after map registration. At multi-robot level, the global
inconsistency value Q(16,8), Q(17,1) and Q(17,8) have all been
detected with a big change. An example of Q(17,8) is shown
in Fig. 7, which is a detailed explanation of the inconsistency
between submap b

9m and a
8m.

4) Verified Inconsistency Matrix: The verified inconsis-
tency matrix Gv is generated by identifying the large dif-
ferences before and after map registration in corresponding
consistency matrix G and Q. As illustrated in Fig. 8, local
inconsistency is verified in local map bm for Gv

(14,10), Gv
(15,10)

and Gv
(17,9). Global inconsistency between am and bm is

verified for Gv
(17,1), Gv

(16,8) and Gv
(17,8). The shade of color

indicates the confidence level of the inconsistency detected.
Inconsistency detected in Gv

(13,10), Gv
(16,10) and Gv

(15,9) have
been rejected due to the slight change after performing map



Fig. 10. The inconsistent map generated in a car park. Due to the
unstructured environments and moving objects, the map is quite inconsistent.
Our method is able to detect the inconsistency accurately.

registration. This is usually caused by low overlapping areas.

B. Outdoor Environment

The outdoor experiment was performed in an open car
park in NTU. As can be seen from Fig. 4b, the environment
was quite challenging with moving cars and people. Ground
truth map was hard to generate in the environment, hence we
only show the inconsistent map and inconsistency detected in
Fig. 10. The start and end position are marked with stars. For
local map am, 13 submaps were generated. And 17 submaps
were generated for the local map bm.

Since there is no local loop for the local maps am and
bm, only sequential inconsistency and global inconsistency
is detected. The verified inconsistency matrix Gv is shown
directly to describe the inconsistency in Fig. 9.

a) single robot Level: The inconsistency of robot a is
shown in Gv

[1:13,1:13]. Pairwise inconsistency is detected in
Gv
(3,2), Gv

(6,5) and Gv
(13,12). For local map bm, the inconsistency

is shown in Gv
[14:30,14:30] for submaps bm1:17. Sequential

inconsistency is detected in Gv
(24,23) and Gv

(29,28). Three pairs
of inconsistent submaps are marked with ellipses in Fig. 10.

b) Multi-Robot Level: Gv
[14:30,1:13] represents the global

inconsistency between submaps b
1:17 and a

1:13. Global incon-
sistency is detected in Gv

(30,1), Gv
(30,2) and Gv

(28,1). In addition,
Gv
(14,12), Gv

(14,13), Gv
(15,12) and Gv

(15,13) represents the inconsis-
tency detected between (b

1m,a12 m), (b
1m,a13 m) (b

2m,a12 m) and
(b

2m,a13 m). The global inconsistency detected is shown in the
overlapping area between am and bm in Fig. 10.

VI. CONCLUSION

In this paper, the problem of measuring the inconsistency
of maps generated by multi-robot mapping missions is ad-
dressed. We proposed a multi-robot map inconsistency de-
tection strategy that evaluates the inconsistency on local and
global levels. The inconsistency is measured by modeling
the submap-wise misalignment error metric distribution into
a truncated Gaussian distribution. In addition, a map registra-
tion algorithm is applied to verify the detected inconsistency.

Our method successfully detects the inconsistency in the
challenging indoor and outdoor environment. More impor-
tantly, as shown in Fig.(8) and Fig.(9), the inconsistency of
different types(ie. sequential, local and global) are detected
with a probability distribution, which can be the uncertainty
of post-processed optimization or the signal of resetting
mapping mission. The proposed submap-based framework
is demonstrated to reduce the problem complexity and to
accurately detect inconsistency in the global maps.

In future work, it can be integrated with a multi-robot ex-
ploration mission where it provides the ability to recover and
continue the mission when the global map is inconsistent.

REFERENCES

[1] Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of
multi-robot coordination,” International Journal of Advanced Robotic
Systems, vol. 10, 2013.

[2] D. Scaramuzza, M. C. Achtelik, L. Doitsidis et al., “Vision-controlled
micro flying robots: From system design to autonomous navigation
and mapping in gps-denied environments,” IEEE Robotics Automation
Magazine, vol. 21, no. 3, pp. 26–40, Sept 2014.

[3] S. Saeedi, M. Trentini, M. Seto, and H. Li, “Multiple-robot simulta-
neous localization and mapping: A review,” Journal of Field Robotics,
vol. 33, no. 1, pp. 3–46, 2016.

[4] Y. Yue, D. Wang, P. Senarathne, and D. Moratuwage, “A hybrid
probabilistic and point set registration approach for fusion of 3D
occupancy grid maps,” in 2016 IEEE International Conference on
Systems, Man, and Cybernetics, Oct 2016, pp. 1975–1980.

[5] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, 2013.

[6] C. Fu, A. Carrio, and P. Campoy, “Efficient visual odometry and map-
ping for unmanned aerial vehicle using arm-based stereo vision pre-
processing system,” in 2015 International Conference on Unmanned
Aircraft Systems (ICUAS), June 2015, pp. 957–962.

[7] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial on
graph-based slam,” IEEE Intelligent Transportation Systems Magazine,
vol. 2, no. 4, pp. 31–43, 2010.

[8] P. Agarwal, G. D. Tipaldi, and L. Spinello, “Robust map optimiza-
tion using dynamic covariance scaling,” in 2013 IEEE International
Conference on Robotics and Automation, May 2013, pp. 62–69.

[9] N. Sünderhauf and P. Protzel, “Switchable constraints for robust pose
graph slam,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE, 2012, pp. 1879–1884.

[10] Y. Latif, C. Cadena, and J. Neira, “Robust loop closing over time for
pose graph slam,” The International Journal of Robotics Research,
vol. 32, no. 14, pp. 1611–1626, 2013.

[11] D. Hähnel, S. Thrun, B. Wegbreit, and W. Burgard, “Towards lazy data
association in slam,” in Robotics Research. The Eleventh International
Symposium. Springer, 2005, pp. 421–431.

[12] M. Mazuran, G. D. Tipaldi, and L. Spinello, “A statistical measure for
map consistency in slam,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA), May 2014, pp. 3650–3655.

[13] I. Bogoslavskyi, M. Mazuran, and C. Stachniss, “Robust homing
for autonomous robots,” in 2016 IEEE International Conference on
Robotics and Automation (ICRA), May 2016, pp. 2550–2556.

[14] J. L. Blanco, J. A. Ferndez-Madrigal, and J. Gonzez, “Toward a
unified bayesian approach to hybrid metric–topological slam,” IEEE
Transactions on Robotics, vol. 24, no. 2, pp. 259–270, April 2008.

[15] K. Ni and F. Dellaert, “Multi-level submap based slam using nested
dissection,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on. IEEE, 2010, pp. 2558–2565.

[16] M. J. Schuster, C. Brand, and b.-p. y. o. Hirschmüller, Heiko, “Multi-
robot 6d graph slam connecting decoupled local reference filters.”

[17] E. Rehder and A. Albrecht, “Submap-based slam for road markings,”
in 2015 IEEE Intelligent Vehicles Symposium (IV), June 2015, pp.
1393–1398.

[18] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE Transac-
tions on Robotics, vol. 23, no. 1, pp. 34–46, Feb 2007.



Synthesized semantic views for mobile robot localization

Johannes Pöschmann, Peer Neubert, Stefan Schubert and Peter Protzel1

Abstract— Localizing a mobile robot in a given map is a
crucial task for autonomy. We present an approach to localize a
robot equipped with a camera in a known 2D or 3D geometrical
map that is augmented with semantic information (e.g., a
floor plan with semantic labels). The approach uses semantic
information to mediate between the visual information from the
camera and the geometrical information in the map. Moreover,
semantic information is robust to appearance changes like
lighting conditions. Instead of solely relying on salient semantic
landmarks (i.e., “things” like doors) we also exploit “stuff”-
like semantic classes such as wall and floor. The presented
localization approach builds upon the idea of computing a
semantic segmentation of an incoming camera image using
a Convolutional Neural Network and subsequent matching
to semantic views synthesized from a map. We give details
about the algorithmic approach on how to semantically segment
images, synthesize images from the semantic 2D or 3D map,
the matching between images from both sources, and the
integration in Monte Carlo localization. Further, we provide a
set of proof-of-concept experiments and evaluate the influence
of the selected set of semantic classes. To work towards the
usage of hand-drawn sketches as input map, we also evaluate
the robustness of the presented approach to map distortions.

I. INTRODUCTION

The ability to recover and maintain knowledge about the
own position in the world is essential for mobile robots. The
usage of a priori known maps can significantly facilitate this
task, reducing the SLAM problem to a pure localization.
Moreover, if we can use cameras for this localization task,
the expected sensor costs are small and we can also transfer
this capability to other mobile sensor devices than robots. But
where do the maps for visual localization come from? Instead
of mapping the environment with cameras in advance, in this
paper, we work towards exploiting other sources of maps:
known 2D floor plans and hand-drawn top-view sketches of
the environment. To allow for comparison with the actual
camera view, the maps are augmented with semantic infor-
mation about walls, doors, and other objects.

The way we use the robot’s current camera image and the
map information for localization is partially inspired by the
navigation system of desert ants presented by Möller [1]. As
climatic conditions doesn’t allow the usage of pheromone
traces, desert ants developed a vision-based navigation ap-
proach: Before they leave their nest’s location, a snapshot
(home view) of the environment is taken. After an ant has
finished the foraging, it has to find its way back to the nest.
Therefore, it starts to compare the home view with synthetic
views: distorted current views that are obtained by trans-
forming the current image into possible motion directions

1The authors are with Chemnitz University of Technology, Germany
firstname.lastname@etit.tu-chemnitz.de

– the most similar image pair then indicates the correct
homing direction. Details on a technical realization of the
ant algorithm on mobile robots are provided by Möller [2].

In the here presented approach to localization using the
given quite different modalities (a 2D plan and a visual
sensor), we exploit recent advances in Deep Learning to
assign pixel-wise semantic information to images. Semantic
information serves as an intermediate layer between a current
camera image and a geometrical map in order to facilitate the
matching between both modalities. Semantic labels represent
the world in a rather abstract manner; this prevents a camera-
map matching algorithm from being sensitive to appearance
changes caused by lighting or rotation (e.g., swivel chair).
For a 2D map, semantic information about walls, floor, win-
dows, etc. can be automatically extracted from construction
plans or feasibly drawn into 2D floor plans by humans.
Humans can also easily integrate additional semantic classes
like furniture or plants. Starting from this 2D map, we create
a semantic 3D map using knowledge about the occurring
classes. Localization is done in a Monte Carlo manner using
synthesized semantic views from this map. A future use
case would be a human operator sketching the path for a
robot’s delivery task on a tablet and adding some semantic
information, encoding information like: ”Follow that way
and go left after the third tree”.

In this paper, we
• present an approach to localization in given 2D semantic

maps using synthesized semantic images and ConvNet-
based semantic segmentations from a robot’s camera

• describe the implementation in a Monte Carlo localiza-
tion system

• provide proof-of-concept experiments as well as an
evaluation of influences of chosen semantic classes and
robustness to geometrical map errors

II. RELATED WORK

The task of localizing camera images within a given map
by image synthesis can be addressed in different ways.
Our previous work [3] uses the geometrical information
of a map for a depth image synthesis at desired positions
with a subsequent comparison to a current greyscale cam-
era view. Instead of using distance information of a map
directly, Wolcott and Eustice [4] use a map enhanced with
intensity information to synthesize greyscale-similar images
for a subsequent comparison to the current view, and the
approach of Pascoe et al. [5] builds upon a map with colour
information for image synthesis. Caselitz et al. [6] show
an alternative approach for the matching of a given map
with a current camera image: Instead of using the map to



Fig. 1. Left: Accurately hand-drawn 2D semantic top-view map of an indoor environment, consisting of 10 different object classes. Annotated are the
14 ground truth positions of the robot during our real world experiments. This map is used to generate a 3D semantic pointcloud (centre), in which 2D
semantic panorama images are synthesized (top right). Bottom right: Camera images are fed into a CNN for image segmentation, resulting in a semantic
panorama image of a real world scene. Comparison of both semantic panoramas yields a image similarity and enables localization.

generate synthesized images, they used the camera image
stream to reconstruct the environment’s geometrical structure
for a subsequent point cloud matching.

Another way of localization within a given map is to ex-
ploit the semantic information of the environment. Kuiper’s
spatial semantic hierarchy paradigm [7] uses semantic in-
formation as a topological map. Vasudevan et al. [8] add se-
mantic information to observed objects (doors and household
objects) in order to build a hierarchical topological-semantic
map, with which they can annotate places (e.g., office,
corridor). Another approach is landmark-based localization.
Atanasov et al. [9] and Anati et al. [10] use object detectors
to recognize landmarks, which are annotated in the given
map, followed by particle filter localization. Our work is
closest related to [10]. Through the application of a soft
object detector, they generate a heatmap with semantic in-
formation about the occurring objects for a set of panoramic
camera images and compare them with the expected heatmap
at each particle location. In contrast, we propose a camera-
based semantic localization algorithm which does not rely
on specific, distinctive object classes, but rather works with
non-expressive classes like wall and floor. Furthermore, we
evaluate the robustness of our systems towards distortions of
the given semantic map. This opens a variety of use cases like
localization within a human-made sketch of the environment.

III. ALGORITHMIC APPROACH
Fig. 1 illustrates the involved steps. Starting from a 2D

floor plan with semantic labels, a 3D map is created. For
an assumed camera pose, we can synthesize a label image.
Given a camera image taken from the real robot pose, we can
compute a second label image using a semantic segmentation
algorithm. By comparing the two label images, we can evalu-
ate the assumed robot pose. This approach directly integrates
in the well-know Monte Carlo localization (e.g., see [11]
for an introduction): each sample provides an assumed robot
pose that can be evaluated using the above approach.
A. Synthesizing images from a given 2D semantic map

The task is to localize a robot within a 2D semantic map.
The map can be automatically generated (e.g. from floor
plans), augmented by humans (e.g., with the semantic labels)

or completely hand-drawn. In the later presented experi-
ments, a simple, colour-coded 2D map of the environment
is used (each class has a different colour). Given a 2D floor
plan, such a map can be easily created by a human with some
basic image editing software. All objects occurring in the
real world can be freely drawn within the map. Each object
class (e.g., wall, floor, table) is represented by a different
colour and is associated with a class-label and a minimum
and maximum height. With this information, the 2D semantic
map can be converted into a 3D semantic point cloud. A 2D
semantic map and the corresponding 3D point cloud of an
indoor environment are shown in Fig. 1.

To synthesize an image given this 3D point cloud (with
associated semantic class labels) and a requested camera
pose, we follow the straight forward approach described in
[3]: Each 3D point’s distance is projected onto a unit sphere
centred at the requested camera pose. The azimuthal and
polar angles are discretized to the target image resolution.
By keeping only the class label of the point with minimal
distance for each direction, this spherical grid corresponds to
the synthetic label image; pixels without projected 3D points
are set to NaN values. In contrast to the representation used
in [10], this allows for seeing multiple objects on the vertical
image axis. Again, see Fig. 1 for an example.

This preliminary approach is easy to implement but its
runtime is linear in the number of 3D points. Presumably,
the runtime could be improved by the usage of computer
graphics techniques including ray tracing algorithms and
efficient data structures like k-d trees or octrees.

B. Semantic image segmentation

To be able to compare synthesized semantic images with
real world images, we need to associate semantic information
to each pixel in an image. This is a well known task,
called semantic segmentation, for which the currently best
performing methods build upon Deep Learning techniques.
We use the “Pyramid Scene Parsing Network (PSPNet)”
[12], which bases on a Convolutional Neural Network and
achieved first rank in ImageNet scene parsing challenge
2016. We used an out of the box CNN, trained on the
ADE20k dataset [13], which includes 150 object classes,



containing both indoor and outdoor class instances. Given an
image as input, the PSPNet associates each pixel with one of
the 150 object classes. Afterwards, the resulting semantically
segmented images are transformed into spherical coordinates
in order to correspond to the synthesized-semantic-image
shape and thus enabling a holistic image comparison between
both images (see Fig. 1).
C. Holistic image comparison

We decide to use a holistic image comparison instead of
landmark based approaches, since we also want to exploit
often occurring, less-expressive classes like walls or floor
(“stuff” in contrast to “things” [14]) for localization. Conse-
quently, a key component of our approach is an expressive
similarity metric for a holistic comparison of semantic im-
ages. Therefore, a weight matrix is used that scores each
assignment of pixels of the 150 ADE20k classes used by the
PSPNet to pixels with classes present in our 2D semantic
map. Currently, the values of the weight matrix are set
empirically based on the following three key concepts:

1) Soft class matching: Full similarity between matching
classes (e.g., desk and table) results in a score of 1,
whereas partial similarity between related classes (e.g.,
chair and sofa) results in a score between 0 and 1.

2) Weighted class significance: Often occurring classes
(e.g., wall or floor) are not expressive, leading to a
smaller score between 0 and 1.

3) Class matching penalty: Overlapping of two contra-
dicting classes leads to a score between -1 and 0. Pe-
nalization of, e.g., overlapping floors and walls results
in a precise distance measurement to nearby walls.

Synthesized and segmented images are compared pixel-wise
with the following score function:

similarity =

P
pixels

w

i,jP
pixels

(1)

where w

ij

is the weight/score for the linkage between class
i from a segmented image and class j from a synthesized
image. With a similarity of 1, the two images are identical.
Negative similarities are set to 0.
D. Monte Carlo localization

Algorithm 1 gives details on how the described image
synthesis and comparison approach integrates in Monte Carlo
localization. The main loop in line 3 processes each image
and applies the described image synthesis and comparison. A
semantic segmentation J

t

is computed for the current camera
image I

t

(line 4). We use two different strategies to generate
a particle heading direction.

1) Odometry heading: Either we sample for each particle
(the loop starting in line 6) odometry and compare
a synthesized semantic image S with the semantic
segmentation J

t

using equation 1 (line 17).
2) Visual compass: Or we apply for each particle an

image comparison between J

t

and multiple S with
different directions and use the direction with highest
image similarity as the particles direction (similar to a
visual compass).

Algorithm 1: Semantic Monte Carlo localization

Data: Semantic 3D map M , image sequence I1:n, odometry
measures U1:n

Result: Particle set P , each pj 2 P is a robot pose

// initialize particle set

1 P  initParticles()
2 Scache  prepareSynthImageCache(M)
// process each image

3 for t = 1 : n do
4 Jt  computeSemanticSegmentation(It)
5 Ecache  prepareSimilarityEvaluationCache(M)
6 foreach pj 2 P do

// sample motion from odometry

7 puj  applyOdometry(pj , Ut)
// query cache for existing similarity

evaluation E of this pose

8 if isInCache(Ecache, p
u
j ) then

9 E  queryCache(Ecache, p
u
j )

10 else
// query cache for existing

synthesized image

11 if isInCache(Scache, p
u
j ) then

12 S  queryCache(Scache, p
u
j )

13 else
14 S  synthesizeImage(M,puj )
15 Scache  insertInCache(Scache, S, p

u
j )

16 end
// compare images

17 E  compareImages(Jt, S)
18 Ecache  insertInCache(Ecache, p

u
j , E)

19 end
// obtain sampling weight from E

20 wj  getWeight(E)
21 end

// importance sampling

22 P  importanceSampling(w,P )
23 end

Both strategies are described in detail in [3] and are evaluated
in section IV. The resulting similarity is used to compute
a weight w

j

for the particle resampling in line 22. For
resampling, we use the low variance sampler from [11].

A major bottleneck for runtime could be the image synthe-
sis (particularly since we use the straight forward approach
described in section III-A). To keep runtime feasible, the
above algorithmic listing includes two caching stages to
exploit the property that many particles are very close to
each other: S

cache

stores all already synthesized images, its
lifetime corresponds to the lifetime of the map. The second
cache E

cache

holds the comparison result for a synthesized
image and a current camera image. It is cleared with each
new camera image. To effectively use these caches, we have
to discretize the set of possible poses. Dependent on the
application, the synthesized images could also be computed
offline in advance. In our experiments, we precompute syn-
thesized images at a spatial resolution of 10 cm in x and y

direction and 3� in angular direction.

IV. EXPERIMENTAL SETUP
In order to evaluate the robustness of our algorithm against

map distortions and the selected semantic classes, we applied
our semantic Monte Carlo localization approach in a set of
proof-of-concept experiments.



A. Experimental setup

An indoor scene with two labs, some smaller rooms and a
corridor serves as experimental environment. Building upon
an existing floor plan, we created a metrically exact semantic
2D map and manually augmented it with a set of basic object
classes. With the idea of a hand-drawn map in mind, we
constrained the number of classes in our semantic map to
10: wall, dividing wall, floor, door, window, table, chair,
cupboard, sideboard, and sink. The resulting semantic map is
shown in Fig. 1. For our proof-of-concept experiments, we
collected camera images, odometry and ground truth pose
data of our mobile robot at 14 different positions (see Fig. 1).

For data acquisition, we used a skid-steering mobile
robot equipped with a uEye UI-1240ML-C-HQ RGB camera
mounted on a pan-tilt unit; details on our mobile robot can
be found in [15]. By using a wide-angle lens, the camera
captures images with 76� vertical and 95� horizontal field
of view. Since the pan-tilt unit can be moved in the range
of approx. �90� to +90�, we were able to capture multiple
images at one location to enhance the field of view. For each
robot position, 7 camera images are semantically segmented,
transformed into spherical coordinates, and stitched into a
single 268� panoramic image. A high number of camera
images is used to avoid distortions at the image borders of
raw images (without rectification).

The choice of the weight matrix in the holistic image
matching is crucial. As the classes wall and floor appear
more often in an indoor environment, the score for a correct
match was reduced from 1 to 0.25, whereas, more expressive
classes have higher impact on the similarity score. A match
between wall/dividing wall and floor is scored with �1.
Thereby the image similarity receives a huge penalty if the
edges between floor and wall do not match in both images,
leading to a localization with correct distances to nearby
walls. Furthermore, we apply soft class matching as ADE20k
contains many similar classes, e.g., chair, armchair, seat,
swivel chair, stool, bench, sofa, etc.. All these classes need
to be linked to our general class chair, with a matching score
between 0 and 1. For our proof-of-concept experiments,
the matching scores (and thereby the weight matrix w) are
chosen empirically, following the design guidelines presented
in section III-C. As a baseline, we use an identity matrix, in
which all scores between classes are either 0 or 1. Complete
weight matrices are available upon request.

We conduct the following experiments:
1) Local and global localization. We run all setups on

two tasks: (1) “local” localization with known initial
position and 500 particles in the particle filter and (2)
“global” localization with unknown start position and
2000 particles. We choose a high number of particles
for the known initial position case, since we need
to apply high uncertainty (�=0.5m) to our robot’s
odometry due to the severe map distortions (see Fig. 2).

2) Visual compass vs. odometry heading.
3) Scaling of the semantic map with factors ranging

between 1.1 and 1.5 in one direction and 0.91 and

0.67 in the other direction (see Fig. 2).
4) Shear of the semantic map in both directions with a

factor between 0.1 and 0.5 (see Fig. 2).
5) Variation of classes in the map with three cases: (1)

construction basic: containing wall, dividing wall and
floor; (2) construction extended: containing case (1)
and door and window; (3) furniture: containing table,
chair, cupboard, sideboard and sink.

6) Variation of panoramic field of view with following
steps: 50�, 100�, 150�, 200� and 268�.

We conduct 10 runs of each experiment to account for the
stochastic nature of Monte Carlo localization. We use the
Euclidean distance to the ground truth position for evaluation
metric and compare against plain odometry measures of our
mobile robot.

Fig. 2. Left: Original 2D semantic map (see Fig. 1) is shown dark blue.
The five overlaid images depict a map sheared with factors ranging between
0.1 and 0.5. Right: The same for scaled maps with factors ranging from
0.91 to 0.67 in x direction and 1.1 to 1.5 in y direction.

B. Experimental results
Evaluation results of the presented approach using the

visual compass and odometry heading strategy are shown
in Fig. 3 (left). Both strategies result in lower maximum
and average pose error than the plain odometry. The visual
compass based strategy achieves high localization accuracies
with distances to ground truth positions constantly below
30 cm, at some locations close to zero. Since our holis-
tic image comparison depends on a reasonable alignment
between synthesized image S and segmented image J

t

,
the multiple sampled directions in visual compass result
in more precise and repeatable localizations. Comparison
of average particle distance and average weighted distance
shows, that our image similarity metric is feasible, since
particles with a higher weight are closer to ground truth
positions than particles with a lower weight. In some (not
shown) experiments the odometry heading strategy provided
better results, presumably due to visual aliasing that can
occur for the visual compass method. In summary, the visual
compass strategy achieves the overall better results and is
therefore used in all following experimental results.

The influence of map scaling (see Fig. 2) is shown in the
first row of Fig. 4. As expected, errors rise with growing
scaling factors. Up to a scaling by factors 1.40 & 0.71, a
reliable localization, with considerably smaller errors than
robot’s odometry, is possible. Global localization is achieved
within the first three images for all cases.
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Experiment highest weight min dist. to GT highest weight min dist. to GT odometry

Unmodified semantic map 0.160m (0.023m) 0.120m (0.020m) 0.260m
Scaling by 1.10 & 0.91 0.267m (0.034m) 0.176m (0.033m) 0.488m
Scaling by 1.20 & 0.83 3.036m (0.078m) 0.363m (0.052m) 1.052m
Scaling by 1.30 & 0.77 6.836m (0.671m) 0.569m (0.073m) 1.625m
Scaling by 1.40 & 0.71 8.376m (1.565m) 0.686m (0.097m) 2.197m
Scaling by 1.50 & 0.67 8.352m (1.991m) 1.176m (0.122m) 2.768m
Shearing by 0.10 0.287m (0.028m) 0.165m (0.026m) 0.632m
Shearing by 0.20 1.396m (0.039m) 0.391m (0.042m) 1.213m
Shearing by 0.30 2.956m (0.060m) 0.534m (0.056m) 1.808m
Shearing by 0.40 3.441m (0.152m) 0.790m (0.079m) 2.407m
Shearing by 0.50 4.063m (0.388m) 1.234m (0.118m) 3.006m
200° field of view 0.160m (0.024m) 0.126m (0.023m) 0.260m
150° field of view 0.852m (0.169m) 0.189m (0.023m) 0.260m
100° field of view 0.969m (0.210m) 0.284m (0.026m) 0.260m
50° field of view 1.712m (0.082m) 0.367m (0.051m) 0.260m
Classes construction ext. 0.174m (0.024m) 0.186m (0.024m) 0.260m
Classes construction basic 1.956m (0.025m) 0.252m (0.027m) 0.260m
Classes furniture 2.674m (1.069m) 0.678m (0.266m) 0.260m

Fig. 3. Left: Results for particle heading strategies visual compass and odometry heading (described in III-D) applied to the unmodified semantic map.
Each blue (green, yellow) curve shows the median result of the (x,y) pose error of the particle with the highest weight (weighted average particle distance,
average particle distance) over ten runs and is augmented with boxplots for each image of the sequence (25th and 75th percentiles, whisker scale is 1.5,
outliers are shown as circles). Right: Comparison of highest weight particle, minimal distance particle and odometry by means of mean Euclidean distance
to ground truth positions over ten runs under usage of the visual compass method for local localization.

The influence of map shearing (see Fig. 2) is shown in the
second row of Fig. 4. Our semantic Monte Carlo localization
achieves small localization errors and high repeatability up
to a shearing with factor 0.4. A shearing factor of 0.5 leads
to severe localization error fluctuations between single runs.
Furthermore, localization gets lost in the last three images.
This is caused by ambiguous image similarity results for
image 12, leading to different resulting paths. Nevertheless,
global localization is achieved for all cases within first three
images. Summarizing, our semantic Monte Carlo localiza-
tion achieves remarkably good localization results for map
shearing with factors up to 0.4.

The influence of horizontal field of view is shown in
the third row of Fig. 4. With only 50� field of view, a
wide fluctuation between localization errors are observable,
since information provided by the image is very limited.
Still, our semantic Monte Carlo localization algorithm is
able to localize from an unknown initial position, as in
all other cases. With more than 150� the image contains
enough information for a reliable localization. Summarizing,
a large field of view panoramic image is crucial for reliable
localization results.

The influence of classes within the semantic map is
shown in the fourth row of Fig. 4. Localization with only
furniture classes did not work in this experiment: Without
walls, the synthesized images contain a lot of objects from
adjacent rooms, which are not present in the real camera
images (since there are walls, of course). Furthermore a lot
of information is missing in scenes, for which our robot
mainly observes walls and floor. On the other hand, walls,
dividing walls and floor (“construction basic“) offer enough
information for a coarse but reliable localization in the
margin of our robot’s odometry. With additional information
from classes window and door (”construction extended“),
localization accuracies rise as expected. Summarizing, our
semantic Monte Carlo localization depends on the classes
wall and floor, which offer enough information for a rough

localization and prevent confusing views into adjacent rooms.
Additional classes facilitate a precise localization.

The achieved localization results are summarized in Fig. 3
(right). The baseline approach, an identity matrix for image
comparison, is sensitive for map perturbations, thus reliable
results are only achieved within slightly modified maps. The
minimal particle distance shows, that the ground truth posi-
tion is not lost in most cases, but the particles rather diverged
into multiple clusters. Sometimes the highest weight particle
is located in a cluster far from the ground truth position
because the identity matrix leads to ambiguous similarity
measurements. Therefore, the choice of the weight matrix is
essential for our semantic Monte Carlo localization, since it
considerably improves robustness against map perturbations.

V. DISCUSSION

In this paper, we presented a semantic Monte Carlo
localization algorithm based on holistic image comparison
of a synthesized map view and the result of a semantic
image segmentation. A set of prove-of-concept experiments
showed its ability to localize a mobile robot, equipped only
with a RGB camera and odometry sensors, within a given
2D semantic map. Furthermore, we applied a wide range
of perturbations to the given semantic map, in order to
investigate our system’s robustness. Experimental results are
promising, since reliable local and global localization is
achieved in a wide range of map deformations. Additionally,
our semantic Monte Carlo localization algorithm does not
depend on distinctive classes or landmarks, but rather on
common classes like walls and floor, with which it achieves
a rough localization. Also, our system depends on a large
field of view panoramic image.

Currently, a key part of our localization algorithm, holis-
tic image comparison, is handcrafted and uses empirically
chosen parameters (e.g. weight matrix w). Presumably, our
system could greatly benefit from better image similarity
measurements, e.g., using (supervised) learning of class
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Fig. 4. First row: Results for synthetic scaling of the original semantic map (see Fig. 2). Second row: Results for synthetic shearing of the map (see
Fig. 2). Third row: Results for different horizontal field of views. Fourth row: Results for variation of classes in the semantic map with three cases (see
IV-A for more information). Each orange curve shows the (x,y) pose error of the robot’s odometry. Each blue respectively yellow curve shows the median
result of the (x,y) pose error of the particle with the highest weight over ten runs and is augmented with boxplots for each image of the sequence (25th
and 75th percentiles, whisker scale is 1.5, outliers are shown as circles) in the case of local respectively global localization.

weights and mutual influences. Further, the evaluation of the
different strategies for heading direction estimation (visual
compass or odometry) motivates the development of a com-
bined approach as direction for future work.

Based on the achieved results, our future work aims at
applying our semantic Monte Carlo localization algorithm to
real world scenarios. One promising use case is localization
in truly hand drawn sketches, since our localization algorithm
is robust against map deformations, enabling a variety of
applications in human robot interaction, e.g. navigation of
autonomous transportation robots in a construction site based
on a sketch of the surroundings. Another reasonable use case
is localization within a building based on fully automatic
preprocessed floor plans.
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Adaptive Sampling-based View Planning under Time Constraints

Lars Kunze1 and Mohan Sridharan2 and Christos Dimitrakakis3 and Jeremy Wyatt4

Abstract— Planning for object search requires the generation
and sequencing of views in a continuous space. These plans
need to consider the effect of overlapping views and a limit
imposed on the time taken to compute and execute the plans.
We formulate the problem of view planning in the presence of
overlapping views and time constraints as an Orienteering Prob-
lem with history-dependent rewards. We consider two variants
of this problem—in variant (I) only the plan execution time is
constrained, whereas in variant (II) both planning and execution
time are constrained. We abstract away the unreliability of
perception, and present a sampling-based view planner that
simultaneously selects a set of views and a route through them,
and incorporates a prior over object locations. We show that
our approach outperforms the state of the art methods for
the orienteering problem by evaluating all algorithms in four
environments that vary in size and complexity.

I. INTRODUCTION

Planning of visual search for objects in large continuous
spaces is an open problem with many aspects that make
existing solutions inadequate. A set of views must be selected
from an infinite number of possible views. To provide any
preference ordering over this infinite set, it is necessary to
have prior information about where objects might be found,
and for that prior to be non-uniform. This formulation of
the task of finding the best set of views is a sub-modular
problem, and greedy solutions can be shown to have bounded
sub-optimality. However, it does not take into account the
costs of sequencing those views—the best set of views may,
for instance, be time consuming to visit, and there may be
another set of views that is slightly worse in terms of the
information provided but vastly quicker for a robot to traverse.

The view planning problem is further complicated by four
issues. First, some views will overlap and the value of a
view, at any point in a sequence of views, will depend
on the sequence of views taken so far. Since the values
of views are history dependent, the problem ceases to be
sub-modular. Second, the sensing process should ideally be
modeled as being unreliable, transforming the problem from
one of planning in a physical space, to one of planning
in belief space. Third, in many practical applications, the
time available to execute the planned trajectory of views is
constrained. Fourth, existing view planning approaches have
not considered the length of time used to plan, which will
determine how much of the plan can be executed.
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Fig. 1: View planning with overlapping views and time limit.
Imagine three possible views onto a table, of which a robot
can only observe two in the time available. If view v1 is taken
first (A), then the robot can next take v2 or v3 (B or C). The
reward for each of these two views depends on its overlap
with v1. The robot must account for both history-dependent
rewards and navigation costs.

We propose a solution to the first, third, and fourth of
these issues related to the challenging problem of view
planning with overlapping views and time constraints. We
do not consider unreliable perception, which transforms view
planning into a yet worse class of problems—we leave this
for future consideration. In this paper, we refer to the problem
of bounded execution time as variant (I), and to the problem
of bounded planning and execution time as variant (II).
We assume the ability to use sensor inputs to generate 2D
and 3D maps of the environment, for navigation and object
recognition; and assume prior knowledge about the locations
of objects. We make the following key contributions:

• We show that the view selection and view sequencing
problem can be posed as an orienteering problem (OP)
with redundant views and history-dependent rewards.

• We present a Gibbs sampling-based view planning
algorithm (GVP) that produces approximate solutions,
but will provably converge in the limit to an optimal
sequence given a finite set of views.

• We extend our algorithm (GVP) to learn, from a batch
of example problems, how to divide the available time
between thinking and acting.

• We evaluate our approaches on a range of environments
under different time constraints and compare them to
the state of the art.

To locate any given object, our algorithm (GVP) first generates
a much larger number of candidate views than can possibly be
searched in the available time, orders them by the probability
of providing a view of the object, and selects the m best
views for subsequent analysis. A sampler incrementally selects
a sequence of views that simultaneously maximizes the
likelihood of finding the object, considering the field of view
overlap and the viewing history, and minimizes the time taken
to do so—see Fig. 1. Many such sampling processes are run,
each of which is terminated when the time limit is reached,
and the robot chooses the best sequence of views.



For variant (I), we compare GVP to a randomized OP
solver, and to two solvers for the traveling salesperson
problem (TSP) (1) a fast but sub-optimal greedy TSP
solver (TSP-G); and (2) an optimal but slow TSP solver
based on dynamic programming (TSP-DP). We show that
GVP typically outperforms other algorithms for problems
of different sizes and different bounds on execution time.
On small problems, TSP-DP produces better solutions, but
it is challenging to terminate in reasonable time for larger
problems–GVP is thus an effective, if sub-optimal, solution.
For variant (II), we evaluate the performance of our algorithm
in simulated environments, for object search tasks. We show
that our adaptive algorithm outperforms fixed policies.

The remainder of the paper is organized as follows. We
discuss related work in Sec. II, and the problem formulation in
Sec. III. Sec. IV describes our sampling-based view planning
algorithm and implementation details. Sec. V discusses
experimental results, and we conclude in Sec. VI.

II. RELATED WORK

Early work on object search discussed its intractability in
a continuous space, even under some simplifying assump-
tions [1]. Subsequent approaches have employed different
strategies to address the complexity, e.g., visual saliency [2];
planning at the level of rooms and views with associative
knowledge [3], [4]; and search with qualitative spatial
relations [5]. Some approaches assume reliable observations,
whereas others reason under partial observability using a mix
of qualitative and probabilistic reasoning for efficient search,
e.g., for estimating target location at the level of rooms [6]
or locations in rooms [7], [8].

The fundamental problem of view planning for object
search can be viewed as a generalization of the art gallery
problem and the watchman problem. The art gallery problem
is NP-hard, and is a generalization of the guarding prob-
lem where sensors have infinite range, bounded only by
obstacles [9]. A randomized algorithm developed for this
problem provides a high probability of bounded error between
its coverage and the optimal solution [10]. Approximate
algorithms have been proposed for art gallery problem
sequenced by a traveling salesman problem (TSP) [11]. With
unreliable sensing, the joint art-gallery and watchman problem
is a continuous space, continuous action POMDP, but even
discrete state, discrete action POMDPs can become computa-
tionallu intractable. Researchers have partially addressed this
intractability through hierarchical decompositions [4].

Our view planning problem is related to planning in belief
space, e.g., for task and motion planning [12], although
we do not plan in belief space. Also, unlike probabilistic
roadmaps [13], we do not restrict the solution space too
much, since we consider time constraints. There is also some
relation to work in temporal logic planning [14], although
existing approaches do not address the issues of interest and
do not scale like our approach.

Our view planning problem is most related to the orien-
teering problem (OP) [15]. In an OP, a rewarding sequence
of locations must be visited, where each location can have

(in general) a different associated reward. We use a sampling-
based algorithm for the OP as one of the baselines for
comparison [16]. OPs, are however, typically stationary
reward problems, whereas we must solve a varying-reward
OP, also called general OP [17].

We assume reliable perception and work with a continuous
state, continuous action MDP with a history-dependent reward
function. Our novel contribution is an algorithm for the joint
problem of selecting views (art-gallery) and planning a route
in continuous space. We present a randomized algorithm
that interleaves the selection of views with the selection
of the route. Unlike previous work, including those that
used stochastic branch and bound [18] or Monte-Carlo tree
search [19], our method has very low space complexity.

III. PROBLEM FORMULATION

We decompose the problem of view planning for object
search with time constraints in a continuous environment
into two parts: (i) transforming the continuous problem into
a discrete problem; and (ii) solving the discrete problem
using a sampling-based approach. We consider the discrete
problem as an OP with history-dependent rewards, i.e., given
a fully connected graph of locations s 2 S, a cost function
C(s, s0), and a time limit T , maximize the expected reward
R(s0, s1, . . . ) obtained from a sequence of visited locations—
the reward of a location depends on the locations that have
been visited before. We investigate two variants of this
problem formulation. Variant (I) considers only the execution
time (TE) when solving the view planning problem within a
time limit, i.e., TE  T . Variant (II) considers both planning
time (TP ) and execution time (TE), i.e., (TP + TE)  T .

IV. SAMPLING-BASED VIEW PLANNING

This section provides an overview of our algorithm,
followed by a detailed description (Sec. IV-A), an adaptive
extension (Sec. IV-B), and the implementation (Sec. IV-C).
We assume that we are given a: (1) 2D map (M2D); (2)
3D map (M3D); (3) probability distribution P of a robot at
location s observing an object of a certain type; and (4) cost
function C(s, s0) that provides the temporal cost of moving
between locations s and s

0.
To search for objects within time limit T , the robot

generates a trajectory s = s0, s1, . . . , st0 composed of a
sequence of locations st (t = 0, . . . , t0). Here, t indexes
waypoints in the trajectory—the time from the t-th to the
t+1-th location is not fixed, and t

0 denotes the index of the last
feasible waypoint given time limit T . We use � : s ! {0, 1}
to denote whether or not we can observe the object at location
s. Then P (�t = 1 | �1:t�1, s1:t), with �t = �(st), is the
probability of a positive observation at the next time step
given the trajectory history—Sec. IV-C describes how we
compute these probabilities. Given T , P and C, the objective
is to find a trajectory s that maximizes expected reward R:

RT (s) = RT (s1:t0) =
t0X

t=1

P (�t = 1^�k = 0 8k < t); (1)

with total cost not exceeding time limit T :



Algorithm 1: View planning (phase one): OP construction
1 Function GVP-OP-CONST (M2D, P, tc)

Input : 2D map M2D ; prob. dist. of perceiving an object P (based
on M3D), target coverage tc (0 < tc  1)

Output : Set of locations S; cost function C

2 begin
3 S  ;
4 Cov(S) 0

5 while Cov(S) < tc do
6 s sampleLocation(M2D)
7 S  S \ s

8 Cov(S) Cov(S) + P (s)

9 /* Filter redundant locations s 2 S with zero/low probability (P)
such that the coverage constraint holds*/

10 S  filterRedundantLocations(S)

11 /* Calculate the cost C(s, s

0
) for all location pairs */

12 for s 2 S, s

0 2 S do
13 C(s, s

0
) computeCost(M2D, s, s

0
)

14 return S,C

C(s) = C(s1:t0) =
t0X

t=1

C(st�1, st)  T. (2)

Instead of exhaustively exploring all possible trajectories
s, we generate them from a distribution, which prefers
trajectories that look the best myopically, and puts a non-zero
probability on every path.

A. The Sampling-based Algorithm

The core idea of our algorithm is a two-phase anytime
sampling-based optimization of the reward function. The first
phase (Alg. 1) transforms the continuous problem into an OP,
and samples a set of possible locations S until the search
area is covered to a certain degree (Lines 3-8):

Cov(S) =
X

s2S

P (s) � tc (3)

where tc denotes a given target coverage1. Locations with
zero or low probability are filtered out to satisfy the coverage
constraint (Line 9), and the cost C(s, s0) for all location pairs
is calculated (Lines 12-13).

The second phase (Alg. 2), which solves the OP, first
selects the m best locations from S (Line 4), and updates
and normalizes P by taking view dependencies into account
(Line 6). Next, it generates a series of trajectories defined as
an ordered sequence of locations, i.e., sk = (sk0 , s

k
1 , . . . , s

k
tk),

within time limit T (Lines 8-20). All trajectories start from the
current robot pose, i.e., 8k, s

k
0 = s0. The tth location of the

kth trajectory (skt ) is sampled from the following distribution
without replacement (Line 14):

s

k
t ⇠ P (�k

t = 1 | �k
1:t�1, s

k
1:t)

e�%C(skt�1,s
k
t )

Z

(4)

where t = 1, . . . , tk and �k
1:t�1 = 0 if we have not found

the object yet. The exponential expression is the transition
distribution of choosing the next location based on costs, and
Z is a normalizing constant. The sampling procedure only
stops when time limit T is exceeded, and discards the last

1
Cov(S) takes the dependency of views into account.

Algorithm 2: View planning (phase two): OP solving
1 Function GVP-OP-SOLVE (S, P,C, T, ns,m, %)

Input : Set of locations S; prob. dist. of perceiving an object P ; cost
function C; time limit T ; number of trajectories ns; number
of locations to be considered m (0  m  |S|);
regularization parameter %

Output : Sequence of locations s
2 begin
3 /*Select the m best locations form S according to P */
4 S

0  selectMBestLocations(S,m, P )

5 /* Update and normalize P according to S

0 */
6 P  updateAndNormalize(P, S

0
)

7 /* Generate a set of trajectories S (of size ns) */
8 S  ;
9 for k  1 to ns do

10 /* Initialize sequence with current robot location*/
11 sk  (s

k
0 )

12 t 1

13 while C(sk) < T do
14 s

k
t  sampleNextLocation(P,C, sk, %)

15 sk  append(sk, skt )
16 S

0  S

0 \ s

k
t

17 /* Update and normalize P according to new S

0 */
18 P  updateAndNormalize(P, S

0
)

19 t t+ 1

20 S  S \ sk0:t�2

21 s⇤  arg max

sk2S
RT (sk)

22 return s⇤

location, i.e., all sampled trajectories account for the time
constraint in Equation 2. However, the trajectories can be of
different length. Finally, % � 0 is a parameter used to adjust
the influence of the cost function. If % = 0, e�%C(skl�1,s

k
l )
/Z

is a uniform distribution, and reward is only based on location
and not costs—higher the value of %, greater the preference
for locations with lower costs, leading to more cost-effective
trajectories. When a decision must be made, the trajectory
with the highest reward (so far) is chosen for execution
(Equation 1) (Lines 21-22). If there is a tie, the trajectory
with the smallest expected cost is chosen. We experimentally
analyzed the effect of the parameters in both algorithms.
However, finding an optimal setting for the parameters is
beyond the scope of this paper.

B. Adaptive View Planning

The algorithm for variant (I) do not include planning time
within the time constraint2. To account for the planning time
TP in variant (II), we revised the constraint as TP +TE  T ,
resulting in a trade-off between planning time and execution
time. To maximize the expected reward RT acquired during
execution, the robot is required to minimize its planning time.
As an algorithm’s planning time is influenced by parameters
b
T , ns, and m, their optimal values need to be determined3.
Since they depend on T and on the problem size |S|, we
determine them experimentally.

2We assume a complete plan should be produced before execution. This
assumption can be relaxed by allowing concurrent planning and execution.

3In adaptive view planning, we use b
T to refer to the algorithm’s parameter,

and T to refer to the given time constraint; whereby we assume that b
T  T .



Let us assume a robot is given a new search problem with
time limit T 0 and size |S0|. For an optimal solution, the robot
need to determine values of the parameters that maximize the
reward function RT . Since the planning time TP is included
in the time limit, the robot cannot search the parameter space
exhaustively. We propose to approximate the surface of the
reward function from known problems. We assume that the
robot has computed the reward functions over the parameter
space ( bT , ns, and m) for some (but not all) search problems,
and uses this information to interpolate (or extrapolate) the
reward function for new search problems. We index pre-
computed reward functions by T and |S|, i.e. r(T, |S|). To
determine the parameters ( bT , ns, m) that maximize the reward
for a new problem hT 0

, |S0|i, adaptive extension sampling
performs the following steps:

1) Select two known problems hT1, |S1|i and hT2, |S2|i
2) Interpolate (or extrapolate) r(T 0

, |S0|) from the pre-
computed functions r(T1, |S1|) and r(T2, |S2|).

3) Find the maximum in r(T 0
, |S0|) and return the corre-

sponding b
T , ns, and m.

In this work we have used a linear interpolation method.

C. Implementation

This section describes the integration of our algorithm with
other components, and our algorithm’s implementation.

a) Integration on a robot: We integrated our view
planner with the perception and action components of a
simulated SCITOS A5 robot (http://metralabs.com)
equipped with a 2D laser range finder, a depth camera, and a
semantic camera. The range finder is used to create M2D for
robot navigation. The cameras are mounted on a pan-tilt unit
(PTU) and have the same field of view. The depth camera is
used to generate M3D. The semantic camera is used for object
recognition—it returns true (false) when an object of a given
type is (is not) in the field of view. Recall that we assume
perfect perception as we are primarily interested in evaluating
the planning algorithm—a more realistic sensor model can
be included if needed. We also use the motion planning and
navigation routines from the Robot Operating System (ROS).
The robot and the camera can thus be controlled by specifying
a target pose the PTU’s angles respectively.

b) Sampling of locations (S): Step 1 of Alg. 1 samples
locations s 2 S until a predefined area of M3D is covered
(based on P ). Each location s is composed of robot pose
(x 2 X) and view pose v 2 V variables, i.e., s = (x, v).
We first sample a robot pose x from M2D and verify that
the robot can reach it. We then generate a number (nv) of
random pan and tilt angles for the PTU (can use fixed angles
too), and use the SCITOS robot model’s forward kinematics
to compute the poses of the cameras on the PTU. At each
pose x 2 X , the robot takes several views v 2 V . We repeat
this process until the predefined space is covered.

c) Probability distribution P (�t = 1|s1:t): The proba-
bility distribution P is based on the assumption that objects
rest on surfaces. From a given M3D, we first extract the
supporting surfaces based on the estimated normal of each
voxel. Then, we identify the supporting surfaces’ voxels that

would be observed at each generated pose, by counting the
number of voxels that lie within a frustum projected to the
pose s. This provides the initial distribution over views, i.e.,
P (�0 = 1). Since we sample views without replacement,
we remove any selected views, update the probabilities of
dependent views, and normalize the distribution. We treat
overlapping views as mutually dependent; once a view is
chosen, we update the probabilities of all dependent views.
We do this until we reach a plan length t

k.
d) Cost function C(s, s0): The cost, represented as time

in seconds, of moving between locations s and s

0 is the
maximum of two sub-costs (1) navigation cost Cnav; and (2)
pan-tilt unit cost Cptu—we assume the robot can navigate
and operate its PTU concurrently:

C(s, s0) = C((x, v), (x0
, v

0)) (5)
= max(Cnav(x, x

0), Cptu(v, v
0)).

To compute the navigation cost for a pair of robot poses
(x, x0), we call the motion planner in ROS, retrieve a trajectory
of waypoints, calculate the linear and angular distances
between all consecutive waypoints, multiply them by their
respective velocities, take the maximum of the linear and
angular durations, and sum them up. The PTU cost is
calculated by multiplying the differences between the current
and the target pan-tilt angles by their respective velocities,
and computing the maximum of these values.

V. EXPERIMENTAL EVALUATION

We evaluated our view planning algorithm in simulation4.
For variant (I), we compared our algorithm with baseline
algorithms in four simulated office environments that vary
in size and complexity (Tab. I). The hypothesis was that our
algorithm would scale better than the baseline algorithms,
especially in larger environments. We used the expected
reward as the performance measure. For variant (II), we
demonstrate the selection of our algorithm’s parameters as
a function of problem size (|S|) and time limit (T ), thus
supporting scaling by adapting to spatio-temporal constraints.
The hypothesis was that our adaptive approach would outper-
form fixed strategies in novel environments. We measured
the (a) expected rewards from the generated plans; and (b)
performance when the plans were executed in a simulated
environment—for the latter, performance was measured by
the number of objects found.

A. Experimental Results: Simulation

Simulation trials were conducted in the robot simulator
MORSE [21]. For each environment in Tab. I, we generated
2D and 3D maps, and sampled locations such that 95% of
the space was covered. In all environments, the robot had a
predefined starting location.

1) Variant (I): For different time limits T , we compared
our algorithm (GVP) with a stochastic algorithm for the
OP [16] (OP-S), and two sequential approaches that greedily
select m best views and sequence them using a TSP solver–
one sequences greedily (TSP-G) and the other uses dynamic

4An evaluation of the algorithm in the real world is given in [20].



TABLE I: Experimental Environments
Environment E1 E2 E3 E4

Size (m2) Small
(32m2)

Medium
(96m2)

Large
(168m2)

Huge
(240m2)

Coverage
(%)

95% 95% 95% 95%

Locations
(|S|)
(unfiltered)

91 (322) 139 (402) 319
(1462)

399
(1533)

3D occ.
grid size
(#voxels)

2362 4519 8775 12950

3D
occupancy
grid maps

programming (TSP-DP). We expect our approach to scale
better in larger environments as it chooses locations freely
from the initial distribution—TSP-based methods compute a
solution for a fixed set. Tab. II summarizes the results.

Since the sampled locations cover 95% of the space, 0.95
is the maximum reward possible. All approaches degrade in
performance as the environments grow larger. Among the two
sampling-based approaches, GVP is superior to OP-S in all
environments, except in E2 with T = 120. Although OP-S
achieves a comparable performance in smaller environments,
performance is much worse in larger environments. Similarly,
TSP-G performs well for the small environments, but the
results for the larger environments are poor, as hypothesized.
TSP-DP provided good results in multiple trials, but it could
not compute a solution in environments E1-E3 for longer
intervals, e.g., although planning time is not considered, a
solution could not be computed on a standard laptop in
 10 minutes—TSP-DP was able to sequence no more than
21 locations. The performance of the TSP-based approaches
depends on the spatial distribution of the best m views. Hence,
their performance cannot be predicted easily. Overall, our
algorithm provides effective, if sub-optimal, solutions for a
range of environments and time limits.

2) Variant (II): The planning time of the algorithms would
have had a considerable effect on the results reported above
if it were included in the time limits, e.g., TP (in seconds)
of algorithms in Tab. II were: OP-S (5-7); TSP-G (4-6);
TSP-DP (4-584); and GVP (102-321). We performed an
additional set of over 55k trials that evaluated the expected
reward by considering both TP and TE (for E1 and E3).
In Fig. 2, we illustrate the expected reward in environment
E3 corresponding to two conditions: (a) TE  T , and (b)
TP + TE  T . The expected reward in (b) was calculated
based on partial trajectories—only locations visited within T

contributed to the reward. The reward function in (a) shows a
rapid increase with respect to m; most of the configurations in
(a) lead to a high reward (mainly dependent on m). However,
in (b), configurations with large ns and m lead to low or
even zero rewards as planning with an increasing number of
views and trajectories becomes more expensive. The selection
of appropriate values for parameters is thus critical.

TABLE II: Comparison with baseline algorithms. Configura-
tion for OP-S and GVP: ns = 250; m = 80; % = 1.0.

OP-S TSP-G TSP-DP GVP
T RT TE RT TE RT TE RT TE

Environment E1
120 0.81 119 0.59 67 0.95 116 0.89 113
240 0.93 234 0.92 131 0.95 136 0.95 237
360 0.94 359 0.95 216 - - 0.95 358
480 0.94 471 0.95 235 - - 0.95 429
600 0.95 597 0.95 272 - - 0.95 479

Environment E2
120 0.51 119 0.35 116 0.25 45 0.36 110
240 0.54 239 0.70 233 0.90 239 0.57 239
360 0.64 341 0.83 328 0.92 265 0.68 358
480 0.91 479 0.89 450 - - 0.95 477
600 0.91 597 0.91 587 - - 0.95 530

Environment E3
120 0.17 118 0.17 135 0.08 64 0.28 118
240 0.28 226 0.30 220 0.36 207 0.39 237
360 0.35 334 0.46 332 0.61 358 0.57 324
480 0.50 477 0.57 458 0.87 459 0.60 478
600 0.56 597 0.66 552 - - 0.76 596

Environment E4
120 0.08 118 0.10 96 0.05 59 0.17 117
240 0.12 233 0.20 217 0.15 230 0.30 239
360 0.26 356 0.29 337 0.24 317 0.42 353
480 0.32 470 0.37 437 0.45 479 0.54 479
600 0.36 597 0.52 583 0.72 575 0.67 597

(a) TE  T (b) TP + TE  T

Fig. 2: Reward function for E3 (T = 600) considering
(a) only execution time, and (b) both planning time and
execution time. The range of parameter values explored
ns 2 {5, ..., 1000},m 2 {5, ..., |S|}, bT 2 {30, ..., 600} (only
maximal reward with respect to b

T is shown).

Our adaptive view planning algorithm determines values of
parameters ns and m for a given time limit T and problem
size |S| based on planning results of known environments
(cf. Sec. IV-B). For instance, consider environments E1 and
E3 to have been explored—Fig. 2 shows some of the reward
functions for these environments. Based on these reward
functions we derive parameters for a novel, medium-sized
environment (E2) through interpolation, and a large-sized
environment (E4) through extrapolation. We hypothesize that
our adaptive approach, can outperform fixed strategies in novel
environments because it can better adjust to the problem size.

Fig. 3 shows the average performance of our adaptive
approach and two fixed strategies (f1 and f2) in 3900
simulations of object search tasks in all environments (E1-E4).
Each trial is successful if a single object (whose location
is unknown) is perceived. Performance is measured as the
percentage of successful trials. The adaptive policy performs
at least as well as the fixed strategies in all cases but one. The
performance improvement is statistically significant in E2,



(a) E1 (b) E2

(c) E3 (d) E4
Fig. 3: Average performance per time T . Average fraction
of successful trials for single-object search tasks in E1-E4,
considering TP and TE . For each time limit T , each strategy
was executed multiple times, proportional to the surface area
of an environment (E1: 20x, E2: 40x, E3: 80x, E4: 120x;
with a total of 3900 searches).

E3, E4 when our adaptive approach is compared with fixed
strategy f1. Similarly, the results are statistically significant in
E3 and E4 when our approach is compared with f2. The fixed
strategies use the full set of views (|S|), whereas the adaptive
strategy only uses a subset of views according to the problem
size and time limit, thus reducing planning time and leaving
more time for execution. The performance improvement is
particularly pronounced in the larger environments (E3, E4)
where the fixed strategies perform poorly.

Results in Fig. 3 indicate that adaptive parameter selection
generalizes to unknown environments (E2 and E4), and that it
outperforms the best fixed strategy (ns = 100,m = |S|, bT =
T ). This is not entirely surprising, as any fixed strategy
will eventually fail as problem size and/or time limit are
changed. The adaptive strategy performs worse than one of
the fixed strategies in E2 (T = 240). Although our adaptive
strategy chose the optimal set of plan parameters based on the
reward function, the actual performance was sub-optimal. If
robot encounters a significant mismatch between the expected
reward and its actual performance, this could be an indication
that its prior knowledge (here P ) is incorrect. In such
situations, a robot can optimize its parameters from its actual
performance, e.g., through reinforcement learning. These
results encourage us to further explore adaptive planning.

VI. CONCLUSIONS

This paper has presented a sampling-based algorithm for
the challenging open problem of view planning for object
search under time constraints. We posed this problem as an
OP with history-dependent rewards, and imposed a time limit.
Experimental results indicate that our approach outperforms
state of the art methods. Furthermore, our adaptive strategy
generalizes well in comparison with fixed sampling strategies
for object search in different (novel) environments.

Although the proposed approach has been integrated with
the components of a mobile robot, the algorithm itself does
not depend on any kinematic structure, e.g., it can be used to
plan views of a camera on a manipulator arm or a quadcopter.

Future work will further explore view planning with time
constraints, under partial observability.
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Predicting Travel Time from Path Characteristics
for Wheeled Robot Navigation

Peter Regier Marcell Missura Maren Bennewitz

Abstract— Modern approaches to mobile robot navigation
typically employ a two-tiered system where first a geometric
path is computed in a potentially obstacle-laden environment,
and then a reactive motion controller with obstacle-avoidance
capabilities is used to follow this path to the goal. However, when
multiple path candidates are present, the shortest path is not
always the best choice as it may lead through narrow gaps and
it may be in general hard to follow due to a lack of smoothness.
The assessment of an estimated completion time is a much
stronger selection criterion, but due to the lack of a dynamic
model in the path computation phase the completion time is
typically a priori not known. We introduce a novel approach
to estimate the completion time of a path based on simple,
readily available features such as the length, the smoothness,
and the clearance of the path. To this end, we apply non-linear
regression and train an estimator with data gained from the
simulation of the actual path execution with a controller that
is based on the well-known Dynamic Window Approach. As
we show in the experiments, our method is able to realistically
estimate the completion time for 2D grid paths using the learned
predictor and highly outperforms a prediction that is only based
on path length.

I. INTRODUCTION

A fundamental ability of a mobile robot is collision-
free navigation in the environment. Many state-of-the-art
navigation systems employ a two-stage approach to realize
this in an efficient manner. Here, the first stage is dedicated
to plan a spatial global path through the environment from
the position of the robot to the goal location. Such global
path planning is commonly carried out using a grid-based
A* planner [1]. To smoothly follow the globally computed
2D path afterwards, one typically employs a local reactive
collision avoidance system that efficiently generates velocity
commands for the robot [2], [3], [4].

Robots nowadays are facing the challenge of having to
solve tasks with ever increasing complexity. In several real
world applications, the predictability of the completion time
of such tasks plays an important role. In particular in multi-
robot scenarios where the actions of multiple robots need
to be accurately coordinated, the prediction of the task
completion time is pivotal for time-efficient planning. Such
scenarios include cooperative floor-cleaning and household
tasks, long term autonomous driving systems [5] that need
to estimate their travel time for a more efficient power
supply management, and museum tour-guide robots that have
to schedule their guiding precisely in order to guarantee
sufficient entertainment of the visitors [6].

All authors are with the Humanoid Robots Lab, University of Bonn, 53113
Bonn, Germany. This work has been supported by the European Commission
under contract number FP7-610532-SQUIRREL.

Fig. 1. Motivation of our approach. The robot can choose between two
options to reach the goal location. The shorter path (red) leads through dense
clutter where the robot needs to drive carefully and needs accurate sensing
and pose estimation to avoid collisions. The second path (green) is longer
but leads through wide free space where the robot can drive with a faster
velocity profile. The work presented in this paper learns to predict the travel
time along 2D paths from training data to decide which path leads to the
fastest completion time.

When it comes to navigation, and most applications of
mobile robots involve phases of locomotion in an environment,
the travel time can make up a significant amount of the total
task completion time. The fastest option, however, often
differs from the shortest or cost-minimal solution found using
2D path planning on a cost grid map. Consider for example
Fig. 1, where the robot has two options to reach the goal
location. The first option (red path) contains narrow passages
with several cluttered objects. The second option (green path)
traverses solely free space. Taking the red path, the robot
needs to drive slowly since it needs accurate sensing and
precise motion execution to avoid collisions. At very tight
spots the robot even has to stop frequently and rotate in order
to adjust its heading. In contrast, the green path leads through
free space where the robot can drive with higher velocities.
Thus, the robot is faced with the question which route to
choose to reach the goal location as quickly as possible.

With two-stage navigation systems where a global path
planner is combined with a local motion controller, the precise
outcome of the motion execution is typically difficult or
impossible to predict in advance, especially when traversing
narrow or cluttered passages. A reactive robot control system
such as the popular Dynamic Window Approach (DWA) [4]
can neither ensure a time-optimal trajectory, nor control
stability, nor convergence of the system [7]. Additionally,
many sources of noise randomly influence the navigation
performance, i.e., the slippage of the wheels, noise in the



sensor measurements, and inaccuracies in the localization.
The resolution of the grid-based environment representation
or the choice of the navigation cost function can also influence
the performance significantly.

In this paper, we present a novel method to predict the
travel time for a mobile robot based on path features that
are available ahead of the execution time. This will allow
the robot to evaluate different options and choose the path
that is predicted to be the most time-efficient. Given a
2D path in a grid representation of the environment, our
method predicts the completion time by means of regression
analysis based on general path characteristics such as its
length, clearance, and curvature. We extensively evaluated
our method in various environments of different complexity.
As the experiments show, our method is able to realistically
estimate the completion time of 2D grid paths and outperforms
a prediction that is solely based on the path length. To
the best of our knowledge, this is the first approach that
can efficiently predict the completion time of navigation
tasks without applying computationally expensive calculations
using an exact kino-dynamic model of the robot.

II. RELATED WORK

Grid-based planners are usually very fast in computing a
spatial global path to a goal location and are widely used in
navigation systems for wheeled robots [8], [9], [10]. Typically,
these systems employ a local reactive collision avoidance
method to generate actual velocity commands for the robot
to follow a globally computed 2D path such as the DWA [3],
[4] or the Nearness Diagram Method [2]. Note that the
global paths typically contain sharp corners in the vicinity of
obstacles so that these low-level reactive systems explicitly
take into account deviations from the global 2D grid path to
achieve smooth trajectories with a faster progress towards the
goal location compared to stopping and turning on the spot. A
different technique was developed by Stachniss and Burgard
who suggested to plan directly in a 5D space in a local
channel around the global 2D path with A* [11]. This space
additionally contains the orientation as well as discretized
translational and rotational velocities. In this way, smooth
trajectories that directly consider kino-dynamic constraints
are obtained.

All the approaches mentioned above assume that the time-
optimal trajectory lies close to the computed 2D path, which
is often the case but might not be true in the presence of many
obstacles. In such cases it might actually be better to also
take into account different paths with fewer obstacles that
need to be passed. Therefore, we present a method that learns
the time the robot needs to navigate along a given 2D path
based on path characteristics. Based on general features of a
2D path, the robot can then estimate the completion time it
would need to follow the path towards the goal location and
choose the best option among different possibilities.

Murphy and Newman considered robots operating in large
outdoor environments and developed an approach to trade off
the risk of planning a path with suboptimal length for planning
time and plan over probabilistic costmaps [8]. To create

such a probabilistic costmap, one typically needs a priori
knowledge about the terrain such as an overhead image of
the environment. The work of Murphy and Newman focuses
on traversing special types of terrain, whereas our approach is
optimized for dealing with challenging indoor environments
with mainly flat floor where the terrain properties play a minor
role for the performance. Zhu and Qingbao proposed path
planning based on a genetic algorithm [12]. The authors
introduced functions to describe path characteristics that
allow to choose an optimized path from a given set. This
approach does not consider the motion control system of the
robot. Philippsen [13] used probabilistic navigation functions
to trade off the risk of colliding with dynamic obstacles
against the length of a detour to avoid those. However, the
approach requires tuning and user-defined heuristics and does
not involve a trained model.

Lau et al. [7] developed an approach to time-optimal control
from sparse way points to the goal based on quintic Bézier
splines. Starting from a given straight-line path, the trajectory
is optimized for smoothness and time taking into account
the constraints of the system. In this paper, we consider
general navigation in environments of different complexity
also containing highly cluttered and narrow passages. Our
goal is to estimate the travel time based on simple, readily
available features describing the path characteristics and in
this way enable the robot to choose the best option, i.e., the
path assumed to lead fastest to the goal using a standard
DWA-based controller that generates velocity commands in
an efficient manner.

Recently, Regier et al. proposed to estimate obstacle
densities beyond observed areas based on already detected
objects and predict corresponding traversal costs [14]. The
authors hereby assume that the robot possesses only partial
knowledge about the obstacles in its surrounding. The work
presented in this paper can be combined with such a prediction
step in order to recompute the best path whenever new
information about obstacles becomes available.

III. NAVIGATION FRAMEWORK

In this work, we assume that a 2D grid map representation
of the environment is given and consider a mobile robot
control system that applies a classical two-stage navigation
approach, where the global path is computed by a grid planner
on a costmap.

Afterwards, the task of the reactive local controller is
to find velocity commands that allow the robot to follow
this global path with collision-free motions. A well-known
approach is to use roll out or look-ahead methods as in
the DWA [3], [4]. A DWA-controller considers at each time
step only a local costmap, which is a small fraction of the
environment model allowing the system to operate in real time.
The basic principles of the DWA approach are as follows:

At each time step, a local goal on the global 2D path is
determined right outside the local costmap. In the second step,
a set of feasible steering commands from the robot control
space is computed to reach the local goal. For each sampled
velocity command a simulated trajectory is determined and



evaluated through a predefined cost function. Based on the
evaluation, the velocities of the best trajectory are taken for
the control. The terms of the cost function used to evaluate
the trajectories are based on the distance to the global path,
the distance to the local goal, and the traversal cost given by
the costmap.

Such a two-layered approach can generate robust, collision-
free motion even in obstacle-laden environments. However,
the highly unpredictable nature of the DWA controller as
well as the influence of noisy perception and localization
make the estimation of the completion time of a motion task
a difficult endeavor. The cheapest path in a costmap is not
always the best choice as it may lead through narrow or
cluttered passages and it may be in general hard to follow
without slowing down and rotating on the spot.

To illustrate this, we performed two navigation experiments
in a large cluttered environment where the robot had the
choice to drive through or around the cluttered region. Fig. 2
shows this scenario with the two paths and their corresponding
velocity profiles. The red profile in Fig. 2 shows that driving
around a cluttered region allows the robot to navigate at
full speed and reach the goal in a shorter time even though
the total path length is longer. Driving through the dense
clutter, however, leads to higher localization errors due to
more frequent rotations, repeated velocity drops in order to
avoid collisions and on-spot rotations, which are necessary
in regions with very little space to navigate.

Thus, the estimated completion time is in many situations
a much stronger selection criterion than the path costs, but
due to the lack of a dynamic model in the path computation
phase the completion time is typically not known a priori.
In the following, we introduce a novel approach to estimate
the completion time from path features to enable the robot
to choose the most promising path among different possible
routes through the environment.

IV. PREDICTING TRAVEL TIME FROM PATH
CHARACTERISTICS

In principle, the only way to predict the completion time
is to simulate the path execution and measure the time the
robot takes to navigate to the goal. Our idea is to apply a
machine learning approach and to train a predictor function
for the execution time based on a small number of generic
features that can be efficiently computed from a given global
2D grid path.

A. Features for Describing Path Characteristics

We define a path P = {p0,p2, . . . ,pn} between the current
position of the robot and the goal location as a sequence
of two-dimensional coordinates (nodes) pi = (xi,yi) , i 2
{0 . . .n}, as illustrated for an example path in Fig. 3.
A segment si of the path is then given by the vector
si+1 = pi+1 �pi. We found out that the length of the path,

its clearance, and smoothness are expressive features that can
be used to effectively estimate the time the robot needs to
travel along the path towards the goal location. These features
are described in detail in the following:
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Fig. 2. Example velocity profiles of a robot driving through and around
the cluttered region. Obstacles are displayed in grey. In order to reach
the goal, the robot has the choice to either navigate through (blue path)
or around (red path) the clutter. The corresponding velocity profiles are
displayed to indicate common navigation issues that arise from navigating
close to multiple obstacles. Considering the red profile, it is easy to see
that the robot can constantly drive close to the maximum velocity and, thus,
reaches the goal after only 34s with a traveled distance of 18.54m. The blue
profile shows that constant speed drops occur, which are necessary in order
to avoid collisions. Additionally, on-spot rotations are performed if too tight
directional changes are necessary. This leads to a lower traveled distance of
14.46m while the execution time increased to 55.36s.

Fig. 3. Visualization of the features we use for path characterization. The
figure shows an example path from the robot’s current positions (grey circle)
to the goal location through an environment with three obstacles (yellow
rectangles). The path consists of three segments and two nodes. The angles
a1,2, a2,3, and q used in Eq. (2) are also shown. The shortest distances
between the segments and the obstacle cells are illustrated as black dashed
lines and are used in Eq. (3).

1) The total length of the path is given by the sum of the
lengths of each path segment:

Lp =
n

Â
i=1

|si| (1)

2) The average smoothness of a path expresses its devia-
tion from being a straight line:

Sp =
q +Ân�1

j=1 a j, j+1

n
, (2)

where q is the angle between the initial heading of the
robot and the first path segment, and a j, j+1 denotes
the angle between two path segments s j and s j+1. For
example, a1,2 in Fig. 3 denotes the angle between s1
and s2.



3) Finally, the average path clearance is computed as
follows:

Cp =
Ân

i=1 max{Dmax �Dmin (si,cocc) ,0}
n

(3)

using the shortest distances Dmin (si,cocc) between each
path segment si and the occupied cells cocc closer than
a threshold Dmax > 0. We assume that obstacles with
a distance greater than Dmax have no effect on the
task execution. The clearance is illustrated in Fig. 3
as a dashed line from a path segment si to its closest
obstacle.

B. Prediction of Travel Time

Using the three path features defined above, we train a
predictor function

Tp = F (Lp,Sp,Cp) (4)

that estimates the expected path execution time Tp based on
the total length, average smoothness, and average clearance
of the path. These features are readily available before the
actual path execution starts by a local controller.

C. Regression Models

Regression is a common tool in statistical analysis to find
relationships among variables. The goal of the regression
analysis is to find a model that fits well the given data points
use it for prediction afterwards. Different models can map
different types of relationships between the variables. Linear
regression, for example, is a very fast algorithm, but can only
model linear coherences. A special case of linear regression
is the simple linear regression that fits the data with a simple
regression line. Linear regression, in contrast, models the
relationship among several independent variable to predict
the requested dependent quantity. For systems with non-linear
behavior, linear predictors are often not sufficient. Better
results can be achieved with more advanced methods. Support
vector machines, for example, are kernel methods that map
the data input into a high-dimensional feature space using
kernel functions. This kernel trick allows to detect non-linear
coherence in data sets.

To find the right regression approach for our problem,
we evaluate the simple linear regression, linear regression,
and support vector method for the task of completion time
prediction based on the path features length, smoothness, and
clearance that are described above.

V. EXPERIMENTS

In this section, we discuss the data collection process,
the regression analysis, as well as the prediction results in
different environments.

A. Data Collection

Our goal is to obtain a single regression model that covers
as many scenarios as possible. In order to gather data that
is well distributed over the feature space, we performed
experiments on a variety of maps such as the Willow office
environment and artificially created maps (see Fig. 4). One

Fig. 4. Maps used in the experiments. (a) Office environment created
by Willow Garage, (b) narrow maze-like environment, and (c) cluttered
environment with many randomly distributed obstacles.

type of artificial maps we used are highly cluttered maps
consisting of uniformly distributed or Gaussian distributed
pillars, where pillars are randomly generated in varying
quantity of 75 pillars per hundred square meters, 50 pillars
per hundred square meters, and 25 pillars per hundred
square meters with varying radii from 20-60 cm according
to the distribution used. Another type of artificially created
maps consist of narrow maze-like structures with a corridor
width between 0.6 m and 0.9 m. We generated three different
artificial maps of both types.

To collect training data, we used the Gazebo simulation
environment [15] to simulate a model of the omnidirectional
Robotino robot by Festo Didactics. We first compute a global
path from the current position of the robot to a goal position
and then let the robot follow this path with a DWA-controller.
To obtain ground truth data, we measure the task completion
time when the position of the robot is close to the x-y-
coordinates of the goal position. The final heading is not
considered. In each experiment, the start position, the initial
heading of the robot, and the goal position were chosen
randomly. We used an A*-planner for computing the global
path. The lengths of the grid-based paths varied between
4 m and 50 m. The A*-planner and the DWA-controller are
implemented in the ROS navigation stack [16].

The choice of the parameters of the navigation systems
has a pivotal influence on the performance of the robot
during the experiments. We found the following parameters
to work best in practice. We used a resolution of 5 cm for
the global costmaps of the environments and 1 cm for the
local map. The frequency of the control loop was set to
8 Hz and the size of the local costmap was chosen to be
1.5 m ⇥ 1.5 m. The maximum linear velocity was set to 0.6 m

s
and the maximum rotational velocity was set 0.6 rad

s . The
acceleration limits for linear and rotational movement were set
to 0.7 m

s2 and 0.7 rad
s2 , respectively. Naturally, the capabilities

of the underlying physical system are instilled into a trained
regressor. A deviation from the configuration parameters at a
later time may work to some extent, we have not evaluated
this in our work so far, but in general it must be assumed
that the model is not transferable to a new system with
significantly different navigational capabilities. The training
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Fig. 5. Completion time of the simulated execution of the generated paths
in the three environments (yellow) over path length. With increasing length,
the data spreads broader around the regression line (blue). These results
were obtained from the experiments with noisy localization.

must be performed for each individual combination of robot
and navigation software.

We created two data sets with each containing 5500 nav-
igation tasks. The first dataset was gathered without any
sources of noise, i.e., no noise in the sensors and without
slippage of the wheels. In particular this also includes a perfect
localization. Naturally, this model is not entirely realistic, but
it helps to analyze the data with respect to the correlation
of the features with the estimate. The second data set was
collected from experiments with a localization system that
adds noise to the simulation due to faulty pose estimates.
Note that in the second data set, the sensors and motion
itself are still noise-free. Using these two data sets, we can
evaluate our model with noise in comparison to noise-free
results and also see how much the noise in the system affects
the navigation performance.

B. Regression Results

In this section, we present the results of our regression
analysis. For every data set, we learned an estimator for
each of the different approaches. We used a simple linear
regression (SLR) method based on the path length alone as
computed in Eq. (1), a linear regression (LR) model which
considers all the features mentioned above (see Sec. IV-A),
and we trained a support vector machine for regression (SVR),
also using all features. For training and testing we used
WEKA, a well-established data mining software [17]. To
evaluate the different regression models, we performed a
10-fold cross validation on the data set, i.e., during one
validation run, 90% of the data set is used for training and
the other 10% for testing this specific model. In the next
validation round, another subset of 10% is used for testing
and we repeated this process 10 times until every subset of
the data set has been tested. We computed the average of the
root mean square errors (RMSE) of every ten testing runs.
As a reference, we additionally computed the RMSE of the
constant average estimator over the entire data set.

It is not sufficient to assume a linear distribution, as
in particular in the presence of clutter and narrow gaps
our navigation system exhibits a highly non-linear behavior.
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Fig. 6. Comparison of four different regression methods for perfect (red)
and noisy (blue) localization. The regression methods are the constant
average estimate (Avg), a simple linear estimate (SLR) based on path length
only, linear regression (LR) using all features, and support vector machine
regression (SVR) also using all features. As can be seen, the SVR has
the smallest RMSE of all approaches. This non-linear model seems to be
the best approximation for our robot and controller setup. Furthermore, we
see a clear improvement of the LR model in comparison to SLR with the
additional independent features.

Nevertheless, linear models are easy to fit and fast to compute
and thus serve as a good reference. Fig. 5 illustrates the
completion time of every run in the dataset over the path
length (computed according to Eq. (1)). Note that the spread of
the data points (yellow) around the linear regression line (blue)
increases with path length.

The regression results depicted in Fig. 6 show that the
features introduced in Sec. IV have a substantial influence
on the time estimation, as we can see a 14% improvement
for both data sets of the LR compared to SLR. A further
reduction of the prediction error can be achieved using the
non-linear model. Using the SVR results in a RMSE that
is further reduced by 15% compared to the LR for the data
set with perfect localization and 22% for noisy localization.
These results support that the system behaves highly non-
linear and a linear regression method is not sufficient if a
more accurate estimate is desired.

Comparing both data sets against each other, we can clearly
see the influence of the noisy localization which is close to
real-world runs. The results also show that some of the noise
can be estimated by our approach, since the error reduction
from LR to SVR is larger for noisy compared to perfect
localization. This improvement stems from the fact that a
much higher localization error correlates with certain non-
linear behaviors, e.g., rotating fast on the spot or traversing
monotone environments with only few features. Thus, the
non-linear SVR method is best suited for real-world scenarios.

The evaluation shown in Fig. 6 is well suited for a com-
parison of the different regression approaches. Additionally,
we are interested in the relative root mean square error of
the estimate, which is defined as follows:

sest =

vuutÂN
i=1

(Yi�Y 0
i )

2

Y 2
i

N
, (5)

where Yi is the completion time of experiment i, Y 0
i is the

corresponding estimated value, and N is the number of
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Fig. 7. A environment with two rooms and a corridor, that was not used for
the training data, with three different path options to get from the start to the
goal. The longest path (red) leads the robot through wide free-space area. The
shortest path (blue) guides the robot through narrow space between obstacles.
An alternative path (yellow) leads partly through the narrow passages and
through wide-space. The the evaluation of the path is shown in Tab. I.

experiments in a set. As we evaluated a wide variety of
scenarios which contained both very short and very long
paths, sest is a better measurement of the relative deviation
per experiment, as we first scale every separate squared error
by the corresponding completion time. We computed the
values of Eq. (5) for both the LR and SVR due to the superior
performance compared to SLR. For the LR and SVR, sest
evaluates to 0.32 and 0.13, respectively. These results show
that the use of SVR not only highly decreases the average
deviation, but also shows an improved estimate for the whole
spectrum of path lengths. As these results show, our approach
is able to predict the path completion time with an error of
only 13% in average.

C. Temporal Gain

To demonstrate the temporal gain when applying our
prediction, we performed an experiment on a completely
new map (see Fig. 7). In this experiment, three different path
choices to navigate from start to the goal location exist. The
first option is the shortest path (blue), which leads through
narrow areas. The red path is the longest, but it is smooth and
has a high clearnace to obstacles. The third alternative consists
of segments of the other two paths. Based on the completion
time predicted by our approach, the longest path is chosen
as the fastest option followed by the shortest path. The third
path is the slowest according to our prediction. By executing
all three options in simulation, the actual completion time in
Tab. I confirms the prediction and the path choice. The actual
temporal gain when executing the red path in comparison to
the execution of the shortest path amounts to 6 s, which is
9.8% of the travel time.

VI. CONCLUSIONS

In this paper, we presented a technique to estimate the
completion time for 2D grid paths. The completion time is
in general not known in advance as it strongly depends on
the capabilities of the underlying motion controller. Through
a low-dimensional categorization of the paths using three
generic features—their length, smoothness, and clearance—
and the simulation of a large variety of motion tasks on
different types of maps, we were able to regress an estimator
that predicts the path completion time with a low error
of around 10% before motion execution starts. Naturally,

TABLE I
EVALUATION OF THE PATHS SHOWN IN FIG. 7

red yellow blue
length 28.5145 m 26.0843 m 20.9335 m
clearance 0.2685 0.4401 0.5131
smoothness 0.0137 0.0457 0.0483
prediction time 47.373 s 58.756 s 50.392 s
completion time 55.512 s 63.751 s 61.511 s

as the completion time depends strongly on the navigation
performance of the robot, it needs to be trained individually
for a specific hardware and motion controller combination.
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Deep Detection of People and their Mobility Aids for a Hospital Robot

Andres Vasquez Marina Kollmitz Andreas Eitel Wolfram Burgard

Abstract— Robots operating in populated environments en-
counter many different types of people, some of whom might
have an advanced need for cautious interaction, because of
physical impairments or their advanced age. Robots there-
fore need to recognize such advanced demands to provide
appropriate assistance, guidance or other forms of support. In
this paper, we propose a depth-based perception pipeline that
estimates the position and velocity of people in the environment
and categorizes them according to the mobility aids they use:
pedestrian, person in wheelchair, person in a wheelchair with
a person pushing them, person with crutches and person
using a walker. We present a fast region proposal method
that feeds a Region-based Convolutional Network (Fast R-
CNN [1]). With this, we speed up the object detection process
by a factor of seven compared to a dense sliding window
approach. We furthermore propose a probabilistic position,
velocity and class estimator to smooth the CNN’s detections
and account for occlusions and misclassifications. In addition,
we introduce a new hospital dataset with over 17,000 annotated
RGB-D images. Extensive experiments confirm that our pipeline
successfully keeps track of people and their mobility aids, even
in challenging situations with multiple people from different
categories and frequent occlusions.

I. INTRODUCTION

Mobile robots operating in populated environments need to
perceive and react to the people they encounter. Our research
is part of the project NaRKo, which aims at employing
autonomous robots for delivery tasks as well as for guiding
people to treatment rooms in hospitals. Hospital environ-
ments pose special challenges to autonomous robot opera-
tion, because the people interacting with the robot might
have very different needs and capabilities. It is therefore
desirable for the robot to adapt its behavior accordingly, e.g.
by adjusting its velocity and path when guiding a person
with a walking frame compared to a healthy person without
motion impairments.

Our work targets the detection and categorization of people
according to the mobility aids they use. Privacy concerns play
an important role in the hospital, which is why our approach
is based only on depth data. However, depth data conveys
a lot less information than RGB images, which makes the
problem more challenging. We propose a perception pipeline
which uses depth images from a Kinect v2 camera at 15
frames per second and outputs the perceived class, position,
velocity and the tracked motion path of people. Our object
detection pipeline uses the Fast R-CNN method proposed

*This work has been partially supported by the German Federal Ministry
of Education and Research (BMBF), contract number 01IS15044B-NaRKo
and by the DFG under grant number EXC 1086.

The authors are with the Faculty of Computer Science,
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Fig. 1. We present a depth-based perception pipeline that estimates the
position, velocity and the class of people, recorded in different populated
environments, including a hospital. Top: a person with crutches is detected
at the right corner of the image and the class estimation predicts high
probability for the respective class. Second and third: the person is occluded
by another person and the estimated class switches gradually to pedestrian,
while the tracker keeps the track alive. Bottom: the class estimator reflects
the ambiguity of the belief about the class of the person. We show RGB
images for visualization purposes only.

by Girshick [1], which takes an image together with a
set of regions of interest (ROIs) as its input and outputs
classification scores for each ROI. We propose a fast depth-
based ROI proposal method that uses ground plane removal
and clustering to generate a set of regions and applies a set
of local sliding templates over each region. We compare our
method against a dense sliding window baseline and show
that our approach is significantly faster and yields improved
performance. The perceived class of each ROI as well as
its position in the world frame are further processed by
our probabilistic position, velocity and class estimator. In
addition to tracking the position and velocity of each person
in the environment with a Kalman filter, we use a hidden
Markov model (HMM) to estimate the class of each track.
As depicted in Fig. 1, the probabilistic position, velocity
and class estimator resolves occlusions and outputs a prob-
ability distribution over the five classes, taking the previous
observations into account. This paper further presents our
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Fig. 2. Our pipeline operates on depth images collected from a Kinect v2 sensor. To achieve a fast runtime we present a depth-based region proposal
method that generates regions of interest based on Euclidean clustering, which we feed into a Fast R-CNN detection network. We filter the resulting
bounding box detections using a Kalman filter for position and velocity estimation of people. Further, we employ a hidden Markov model for filtering the
class predictions over time.

hospital dataset that contains over 17,000 annotated RGB-D
images with 960x540 pixel resolution. It is publicly available
at http://www2.informatik.uni-freiburg.de/
˜

kollmitz/MobilityAids. We collected the dataset in
the facilities of the Faculty of Engineering of the University
of Freiburg and in a hospital in Frankfurt. The webpage also
shows a video of the final results of our approach.

II. RELATED WORK

People detection and tracking is a widely studied field in
both computer vision and robotics. Given the large amount of
previous work in this area, we will focus only on approaches
that integrate both people detection and tracking in a com-
bined system. Further special emphasis is laid on approaches
for mobile platforms that are equipped with vision-based
sensors such as cameras or RGB-D sensors.

Ess et al. [2] address the problem of multi person tracking
and detection using a stereo vision system mounted on a
mobile platform, integrating visual odometry, depth estima-
tion and pedestrian detection for improved perception. Choi
et al. [3] propose a method to track multiple people from a
moving platform based on a particle filter approach. Several
different detectors are used such as upper body, face, depth-
based shape, skin color and a motion detector. Recently,
extensive frameworks that include several people detection
and tracking methods for mobile robots operating in indoor
environments have been presented [4, 5]. In comparison to
the mentioned frameworks, we focus on a multi-class detec-
tion problem and do not only track position and velocity but
also the class throughout time. Further, previous approaches
rely on manually designed detectors for different body parts
while we use a single neural network detector that learns
those body features automatically.

Our work is further related to the research area of ob-
ject detection, which recently is dominated by deep neu-
ral network approaches, most prominently by region-based
convolutional neural networks [1, 6], which achieve very
good results but are not applicable for real-time yet. An
interesting extension to the region-based CNN detection
approaches is the very recently introduced region-based fully

convolutional neural network presented by Li et al. [7],
which increases the test-time speed. Recently Redmon and
Farhadi [8] proposed an approach that formulates object
detection as a regression problem. It can operate in real-
time and achieves very impressive performance on several
object detection benchmarks. We also employ a region-based
convolutional neural network classifier and, to achieve a fast
runtime, we combine it with our depth-based region proposal
method. Recent work on multi-class object recognition and
detection applied to mobile robot scenarios include a Lidar-
based wheelchair/walker detector [9] and a human gender
recognition approach [10]. To the best of our knowledge
there exists no prior work that presents multi-class people
detection applied to service robot scenarios.

Region of interest (ROI) extraction is often used to speed
up the detection process and to reduce the number of
false positives. Often employed is the assumption that most
objects occur on a dominant ground surface and several
methods exist that generate ROIs based on this ground plane
assumption [11, 12, 13]. Munaro and Menegatti [11] detect
and remove the ground plane, then they apply Euclidean
clustering. To overcome the problem of having two or more
people in the same cluster they run an additional head
detector. Our method is similar, although we use a local
sliding window approach with templates that are applied to
each cluster instead of a head detector. The people detector
of Jafari et al. [14] extracts ROIs by fusing point clouds over
a time window to compute a 2D occupancy map. Spinello
and Arras [15] also exploit depth information to reduce the
number of candidates in a sliding window approach for
people detection in RGB-D data. However, their approach
is sensitive to false depth readings that can result in very
large proposal windows. Chen et al. [16] present a more
evolved method to generate ROIs formulating an energy
function that encodes informative features such as object
size priors, ground plane and depth information. Despite
good performance, the algorithm has a computation time
of approximately one second. Our ROI extraction approach
instead is fast and simple.

Another contribution of this paper is a novel, annotated



large-scale dataset for multi-class people detection. In the
literature there are several other datasets that include multi-
class labels for people, mostly from the area of human
attribute recognition [17, 18] or more specifically gender
recognition [10]. Our dataset can be valuable for the robotics
community, because on one hand it provides a large number
of labeled images and on the other hand it is recorded
from a mobile platform. Very recently and most similar to
our dataset Sudowe et al. [19] recorded video sequences of
people from a moving camera for the task of human attribute
recognition.

III. PEOPLE PERCEPTION FRAMEWORK

Fig. 2 gives an overview of our overall system, which
takes as input a stream of depth images, computes a set
of ROIs, classifies those proposals and filters the network
output over time. Specifically we filter the position and
velocity of a person using a Kalman filter and their category
using a hidden Markov model. The resulting output of our
framework, which contains the class, position and velocity
of people, is visualized in Fig. 1.

A. Fast Depth-Based Region Proposals Generation

To obtain the regions of interests we follow a sequence of
steps. After converting the depth image into a point cloud
representation we remove all points belonging to the ground
plane, apply Euclidean clustering and slide a set of local
sliding templates over the obtained segments, see Fig. 3.

1) Ground plane removal: For a fast ground plane esti-
mation we apply Random Sample Consensus to estimate the
parameters of the ground plane. After the removal of the
ground plane we segment the point cloud by means of the
Euclidean clustering method.

2) Local sliding templates: People of the five classes have
different outlines in the images, because of the different
typical shapes. A pedestrian, for example, takes up a rather
narrow and tall part while a person in a wheelchair will
take up a wider and lower part. To account for the different
contours we use five different local sliding templates as
shown in Fig. 3. All five templates are projected around the
centroid of each computed point cloud segment to compute
the ROIs. The first bounding box considers the size of an
average pedestrian with height h

p

= 1.75m and width w
p

=

0.4m, this rectangle is our template box T1 for detecting
pedestrians and the front views of the other categories except
people using wheelchairs. We stretch T1 horizontally with a
factor of 1/3 to each side to obtain the template box T2 for
side views of people using crutches or walking frames. In
the same way, T1 is stretched again with a factor of 2/3 to
obtain T3 for the side view cases of people pushing people
in wheelchairs. Finally, we obtain the template boxes T4 and
T5 for people using wheelchairs by reducing the height of
T1 and T2 by a factor of 1/4.

Note that a candidate in the point cloud might contain
only a part of a human body and since we do not have this
prior information, we take into account that the centroid of
a segment is not always the center of a body. Therefore, we

SegmentsInput image

Templates

T1

T2

T3

T4

T5

ROIs

Fig. 3. We obtain regions of interest (ROIs) from depth images, based
on point cloud segmentation and the use of templates. For demonstration
purposes, we only show the template T1 applied to each segment in the
lower right image.

horizontally slide these five proposals to l different positions
around the center of the candidate, using a stride of n

s

pixels.
Accordingly, we end up with 5l proposals for every segment
that will be fed into the Fast R-CNN detector.

B. Detection using Fast R-CNN

The input of the Fast R-CNN network is a color-encoded
depth image together with a set of ROIs and its output
are both softmax scores for each ROI and bounding box
coordinates from a regression layer. We use the deep network
architecture proposed by Mees et al. [20], which contains 21
convolutional and six max pooling layers (GoogLeNet-xxs).

1) Training: Fast R-CNN jointly optimizes a multi-task
loss that contains a softmax classifier and a bounding box
regressor. We build the set of ROIs for the training stage
by applying a dense multi-scale sliding window approach
using our five template bounding boxes previously described
(T1, . . . , T5). We slide them at different scales all over
the image, which produces a set of dense ROIs containing
more than 29’000 bounding boxes for a single image, from
which we sample during training. For every sampled ROI,
we compute the overlap with a ground-truth bounding box.
This overlap we measure in terms of Intersection over Union
(IoU). A sample with IoU greater than 0.6 is considered
a positive training example of the class contained in the
ground-truth bounding box. Samples with IoU below 0.4 are
instances of the background class. We run stochastic gradient
descent SGD for 140,000 iterations, using a learning rate of
0.001 and momentum of 0.9.

2) Test-time detection: Fast R-CNN outputs scores sr
m

for
each class m 2 {1, . . . ,M} and each proposal r. The class
cr corresponding to each proposal is the one with the highest
score:

cr =

M

argmax

m=1
sr
m

(1)

Since we manage 5l different proposals (local sliding tem-
plates) for the same candidate segment, we will have several
proposal classes cr for one segment. We assign the final
class of the segment as the class with the highest number
of appearances for all associated proposals. Note that this



procedure assumes that each segment contains not more than
one person, and in practice this assumption works reasonably
well. Two segments corresponding to the same person or very
close segments in the point cloud might result in overlapping
detections. We overcome this problem by applying non-
maximum suppression (NMS) as a final step. NMS chooses a
subset of the remaining cr, which is the final output c of the
Fast R-CNN detector. The corresponding position (x

c

, y
c

, z
c

)

of the person in camera coordinates is obtained from the
bounding box coordinates, which are also provided by the
Fast R-CNN network, and the distance of the segment from
the camera.

C. Probabilistic Position, Velocity and Class Estimation

The detection stage provides us with a set of coordinates
for each bounding box containing a person of the form
(x, y, z, c), where (x, y, z) is the detected pose of the person
transformed from camera coordinates into the world frame
and c is the perceived class. The world frame transformation
requires knowledge of the robot’s position in the environ-
ment, which we obtain from its odometry. Our position,
velocity and class estimator computes the belief Bel(x) of
the person state x = (x

x

, x
y

, x
ẋ

, x
ẏ

, x
c

), where (x
x

, x
y

)

represent the person’s true position and (x
ẋ

, x
ẏ

) the true
velocity on the ground plane and x

c

represents the true class.
Each person has one Kalman filter and one HMM associ-

ated to it. The Kalman filter uses a constant velocity motion
model, where the motion and the observation noise are ob-
tained experimentally by analyzing the labeled ground truth
trajectories and the corresponding Fast R-CNN detections of
people in the training data set. We solve the data association
problem between frames using the Mahalanobis distance

d2
ij

= vT
ij

(t) ˆS�1
(t)v

ij

(t) (2)
with v

ij

= z
i

(t)�H(t)x̂
j

(t) (3)
and ˆS(t) = H(t) ˆP (t)HT

(t) +R(t), (4)

where x̂(t) and ˆP (t) are the predicted state mean and covari-
ance at time t, z(t) is the observation, H(t) the observation
model and R(t) the observation noise of the filter. The
observation and filter indices at time t are i and j. We use
the Hungarian algorithm to assign tracks to observations,
according to the pairwise Mahalanobis distances. If the
distance is larger than a threshold, the observation is not
paired to a track. Instead, a new Kalman filter is initialized.
If there is no observation for a track, we perform a prediction
without observation update.

Each Kalman filter has one HMM associated to it for
estimating the class x

c

of the tracked person, according to

p(x
c,t

| c1:t) = ⌘p(c
t

| x
c,t

)

X

xc,t�1

p(x
c,t

| x
c,t�1)p(xc,t�1 | c1:t�1). (5)

Eq. 5 models the probability of the tracked person to belong
to a given class x

c,t

, given the past observations c1:t. Here,
x
c,t

is hidden, since we only get measurements c
t

for it.
The measurement model p(c

t

| x
c,t

) connects the hidden

with the observed variable for time step t. The HMM further
assumes that the class x

c,t

can randomly change from one
time step to the next, represented by the transition model
p(x

c,t

| x
c,t�1). In a hospital, a possible transition could be

person with crutches ! pedestrian ! person in wheelchair
for a patient who has just finished physiotherapy and hands
over his crutches to return to his wheelchair. We need to
further specify the class prior p(x

c,1) for the initialization of
the HMM.

The output of deep neural network classifiers like Fast R-
CNN can be interpreted as p(x

c,t

| c
t

), since it represents
a probability distribution. However, training with one-hot
encoded labels results in very peaky distributions and over-
confident estimates. Therefore, we will not employ the net-
work scores sr

m

directly for our HMM. Instead, we analyze
our training data to determine the underlying probability
distributions statistically. To this end, we first generate and
label all proposals for each frame in the validation set of our
data, given by our ROI generator and obtain a classification
output for each ROI. The percentage of labels for each
class determines the class prior p(x

c,1). The measurement
model p(c

t

| x
c,t

) is determined by the amount of detections
for each class, given a certain label. As a side node, the
measurement model corresponds to the classifier’s confusion
matrix. The transition model p(x

c,t

| x
c,t�1) is given by the

amount of transitions from one class to the other with respect
to the total number of transitions.

Due to the limited amount of examples in the validation
set, we might not observe all class transitions, even if they
are possible. Therefore, we assign small probabilities to all
unobserved but possible transitions and misdetections, using
a Dirichlet prior. The data association for the HMM is
given by the Kalman filter. If a tracked person is in the
field of view of the camera and there is no observation
c
t

for time step t, we treat it as a background detection
in the HMM. If the track is outside the field of view, we
apply the transition model to the previous state estimate
without considering an observation. The position, velocity
and class estimator removes tracks with a standard deviation
in position above a threshold. Furthermore, tracks which are
estimated as background with a probability above a threshold
are deleted.

IV. EXPERIMENTS

In this section we evaluate the performance of the two
submodules Fast R-CNN object detection and Kalman filter
tracking. Additionally, we present quantitative results for the
combined perception pipeline. For these experiments we used
our hospital dataset. Finally, we present a real-robot scenario
where the robot uses our perception pipeline in order to give
special assistance in a person guidance task.

A. Dataset

In order to train and evaluate our pipeline we annotated
our hospital dataset. Images were collected in the facilities
of the Faculty of Engineering of the University of Freiburg
and in a hospital in Frankfurt using a mobile Festo Robotino



TABLE I
OBJECT DETECTION PERFORMANCE IN TERMS OF MEAN AVERAGE

PRECISION (MAP) USING SOLELY FAST R-CNN.

MAP
Ours 73.0 89.6 39.5 66.9 54.9 64.98
DSW 70.6 86.9 42.0 69.4 49.5 63.67

TABLE II
PERFORMANCE ON INOUTDOORPEOPLE [20] TEST SEQUENCE 4.

AP
Ours 70.0

DSW [20] 71.6
Upper-body detector [14] 69.1

robot, equipped with a Kinect v2 camera mounted 1m above
the ground and capturing images at 15 frames per second.
The robot was controlled by a notebook computer running
ROS (Robot Operating System).

The dataset is subdivided into subsets for training, valida-
tion, and evaluation of the pipeline. We use two test sets to
evaluate the performance of the pipeline. Test set 1 is used
to evaluate the Fast R-CNN detector, and it has two sets of
annotations used for different experiments, whereas Test set
2 is used for the overall evaluation of the pipeline and its
ground truth labels consider also occluded objects. Test set
1 is used also as validation set to design the hidden Markov
model (HMM) and the tracking algorithm. Fig. 4 shows the
number of instances for each class contained in the set.

B. Detection using Fast R-CNN

In order to evaluate the object detection performance,
we use the standard mean average precision (MAP) metric.
We compare the final detection performance using proposals
from a dense sliding window method against our fast depth-
based region proposal method. In order to create the set of
dense sliding window proposals, we applied our templates
on the implementation of Mees et al. [20]. Tab. I compares
both approaches at an IoU of 0.5. Our depth-based proposal
method performs better than the sliding window baseline
method.

We also compare the runtime of both methods on a
computer with 12-Core CPU and a GeForce GTX TITAN X
with 12GB of memory. Following the dense sliding window
algorithm, the set of ROIs for a single image contains
approximately 29,000 bounding boxes, while our approach
generates an average of 450 proposals. By using dense
sliding window (DSW), a single frame is classified in 297
ms, whereas our algorithm requires 43 ms. Our approach
is therefore a better choice for employment on a real-world
system. We also evaluated the classification performance by
means of a confusion matrix where the three most noticeable
confusions correspond to 26.8% of people using crutches
that were confused with people pushing other people in
wheelchairs, 31.7% of people using walking frames that were
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Fig. 4. Number of instances per class in our dataset.
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Fig. 5. Object detection performance evolution with respect to stand-alone
Fast R-CNN. Addition of the two modules KF and HMM to the Fast R-CNN
baseline improves overall MAP and recall.

classified as pedestrians and 23.8% of people using crutches
classified as pedestrians. Qualitative detection results are
shown in Fig. 6.

Further, we compare our detector on the InOutDoorPeople
dataset [20] against a dense sliding window approach and an
implementation [5] of the depth-based upper-body detector
by Jafari et al. [14]. This dataset only contains labels for
pedestrians. Therefore, all class predictions of our network
are counted as detections of pedestrians. Table II shows
that our approach outperforms the upper-body detector but
achieves slightly worse results than the DSW baseline. We
hypothesize that our detector would improve if trained solely
on pedestrians. For all experiments we use the same network
that we trained on five classes, without retraining.

C. Multi-Tracking using Kalman Filter

To evaluate the performance of the tracking algorithm we
use the CLEAR MOT metrics proposed by Bernardin et al.
[21] which considers the Multiple Object Tracking Preci-
sion (MOTP) and the Multiple Object Tracking Accuracy
(MOTA). We obtained a MOTP of 70.60% and 62.19% of
MOTA.

D. Framework Evaluation

We further aim to evaluate our complete pipeline in
order to assess the contribution of different stages such as
classification, tracking and class estimation in the overall
detection performance. In this experiment, we challenge the
overall system to estimate the position and class of temporar-
ily occluded people. We compare the performance of the
pipeline in terms of MAP and recall. Results were obtained
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Fig. 6. Qualitative object detection results obtained using our trained Fast R-CNN network. Left: positive examples. Right: cases of failure with missed
detections and wrong classifications. We show the RGB image only for demonstration purposes.
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Fig. 7. Variation of the performance with respect to the distance.

using our Test set 2 that contains four sequences. Each
sequence was evaluated independently and at each frame we
use Intersection over Union and the Hungarian algorithm to
find ground truth detection pairs. Hypotheses outside of the
field of view of the camera were not considered. Test set 2 is
especially challenging because of occlusions, which explains
the drop in MAP compared to Test set 1. As can be seen
in Fig. 5, the addition of the Kalman filter and the HMM
improves the performance of the overall pipeline. The MAP
improves by 4.6% from 47.37% to 51.98% compared to the
raw Fast R-CNN output. Recall increases from 64.77% to
73.33%.

We also assess the variation of the performance with
respect to the distance from the sensor. For a given distance
d, this experiment considers detections and ground truth
bounding boxes up to d meters only. Fig. 7 shows that
our method performs best when detecting people up to five
meters, achieving an MAP of 54.81%. The performance
decreases to 51.98% MAP for larger distances and also
notably for very short distances.

E. Person Guidance Scenario

To show the applicability of our framework to a real-
world service robot task, we test our system in a person

guidance scenario. The robot’s task is to guide visitors to
the professor’s office in our lab, building 80 at the Faculty
of Engineering of the University of Freiburg. The professor’s
office is located at the first floor, opposite the staircase at the
main entrance. An elevator is available at the other side of
the corridor for people with walking impairments.

Our robot uses a laptop computer with an 8-Core CPU
and a GeForce GTX 1080 with 8GB of memory in order
to process data at approximately 15 frames per second. We
use the ROS navigation stack1 for the navigation parts of
the experiment. We select the initial waiting pose of the
robot close to the main entrance as well as two goal poses,
see Fig. 8. The robot observes an area of interest 3m in
front of it and within ±20

� from its center. Once it detects
a person in this area, it waits for 4 s and until the confidence
for one category exceeds 90% before navigating to one of
the two goals. For pedestrians, it navigates to the goal by the
stairs; people with mobility aids are guided to the elevator.
In addition, the robot adjusts its velocity according to the
perceived category of the person. Once it reached its goal, it
returns to the waiting position and waits for the next visitor.
The robot further uses predefined speech commands to ask
the visitors to follow it and inform them how to proceed to
the professor’s office once its navigation goal is reached.

We tested thirteen guidance runs with different people
from our lab. Each category was tested twice, except pedes-
trian for which we tested five runs. In all of the runs, the robot
perceived the correct category and successfully navigated the
person to the correct location. However, in some runs, the
people had to adjust their positions to trigger the navigation,
because they were too close to the robot or outside of the
observed area. The experiment confirms that our approach

1
http://wiki.ros.org/navigation
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Fig. 8. We use our framework to provide assistance in a person guidance experiment. The robot’s task is to guide all pedestrians to the nearest staircase
(left image) and all people with mobility aids to the elevator (right image). We told the test subjects to approach the robot at the initial position and then
follow the robot’s predefined speech commands.

can be applied on a real robot. Further, it shows how our
framework can be used to give appropriate assistance to
people, according to their needs.

V. CONCLUSIONS

We proposed a perception system to detect and distinguish
people according to the mobility aids they use, based on a
deep neural network and supported by tracking and class
estimation modules. Our experiments show an increase in
performance by the addition of these two modules to the
pipeline. Moreover, we demonstrated that our approach for
the proposal generation can speed up the classification pro-
cess by a factor of up to seven compared to a dense sliding
window baseline while achieving better performance. Ad-
ditionally, we introduce an RGB-D dataset containing over
17,000 annotated images. In our person guidance experiment
we showed that our detection pipeline enables robots to
provide individual assistance to people with advanced needs.
In the future, we plan to use sensor data from multiple
sources to improve our pipeline such as using laser range
finder readings to increase the accuracy of the proposal
generation at larger distances. We will further examine how
the additional information provided by our framework can
improve the behavior of robots in populated environments,
for example during autonomous navigation.
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Mobile Robot for Retail Surveying and Inventory Using Visual and
Textual Analysis of monocular pictures based on Deep Learning

Marina Paolanti1, Mirco Sturari1, Adriano Mancini1, Primo Zingaretti1 and Emanuele Frontoni1

Abstract— This paper describes a novel system for automat-
ing data collection and surveying in a retail store using mobile
robots. The manpower cost for surveying and monitoring the
shelves in retail stores are high, because of which these activities
are not repeated frequently causing reduced customer satisfac-
tion and loss of revenue. Further, the accuracy of data collected
may be improved by avoiding human related factors. We use a
mobile robot platform with on-board cameras to monitor the
shelves autonomously (based on indoor UWB Localization and
planning). The robot is designed to facilitate automatic detection
of Shelf Out of Stock (SOOS) situations. The paper contribution
is an approach to estimate the overall stock assortment based
of pictures from both visual and textual clues. Based on visual
and textual features extracted from two trained Convolutional
Neural Networks (CNNs), the type of the product is identified
by a machine learning classifier. The approach was applied
and tested on a newly collected dataset and several machine
learning algorithms are compared. The experiments yield high
accuracy, demonstrating the effectiveness and suitability of the
proposed approach, also in comparison of existing state of the
art SOOS solutions.

I. INTRODUCTION

Temporary Shelf Out of Stock (SOOS) situation is a con-
siderable problem in the retail field. SOOS events are often
strongly related to planogram design, where a planogram is
the way how the stock keeping units (SKUs) are organized
among the shelves [1]. The global average out-of-stock rate
is estimated to be about 8%. This means for retailers about
4% losses in sales [2]. The out-of-stock situations arise from
several reasons. The 70-90% of stockouts are caused by
defective shelf replenishment practices. Instead, the 10-30%
resulting from the supply chain problems. The first one leads
to SOOS while the second one leads to store-OOS [3]. We
are mainly focused in case of the items are available in the
store warehouse or backroom but they are out-of-stock on
the shelves. This situation frequently occurs with fast moving
consumer goods (FMCG) which are depleted faster than their
replenishment [4]. Higher checking frequency could reduce
the SOOS related problems to a greater extent.

At present, several surveys are human-based at defined
intervals, because if these are carried out assiduously, they
would be expensive and time consuming, leading to lesser
profit margins [5]. Furthermore, the data collected by humans
is erroneous and unreliable. RFID based technologies are
useful in dealing with SOOS situation apart from automating
the supply chain management [6], [7], but these solutions

1Marina Paolanti is with Dipartimento di Ingegneria dell’Informazione
(DII), Universitá Politecnica delle Marche, 60131, Ancona, Italy
m.paolanti@pm.univpm.it

Fig. 1: A usual example of combined SOOS and Promo in
a supermarket shelf.

require altering the store environment to accommodate anten-
nae, sensors etc. Thus, more time and money for deployment
are required. RFID-based solutions which require item-level
tagging are also expensive for low cost grocery items.

In this context, we propose ROCKy (Retail Out of stoCK)
a mobile robot for detecting SOOS in real-time as well
as on-demand, with a novigation approach based on carts
and basket tracking system based on the assumption that
where shoppers are passing and purchasing are the place
to survey for SOOS. In addition to the identification of
SOOS and misplaced items, ROCKy can provide several
other value added services, like surveying and informing
customers for promotions or discounts. It is also able to
model changes in planogram and store layouts. It could
also be used to monitor the warehouse and runs surveillance
during night time. Finally, our approach enables retailers to
compare the impact of different shelf layouts (planograms)
on issues such as ease of selection, trading up and the
overall shopping experience. Advantages of using robots for
localization and main contributions of this paper are the
proposed vision based surveying approach for SOOS and
marketing materials and promo, the novel navigation system
based on data coming from a monitor system and using
carts and baskets tracking data, the first real scenario testing
and dataset collection on this particular application. ROCKy
consists of a TurtleBot [8], equipped on-board Kinect camera
for navigation, a low-power netbook for running fundamental
algorithms and a top camera for shelf image collection .
It actually uses two cameras to capture images and videos
of the shelves on either side of the robot (shelves on left
and right side when passing in an aisle). The TurtleBot with
cameras is shown in Figure 2.



Fig. 2: TurtleBot robotic platform with cameras and UWB
tags for localization

The ROCKy tracking system is based on Ultra-WideBand
(UWB) technology for robots collaboration. The system pro-
vides the use of several UWB antennas properly positioned
inside a predetermined area and powered battery tags free to
move inside the area. This techonology helps it to build up
a map of the store and avoid obstacles, including customers
pushing trolleys. Using the Kinect camera ROCKy captures
images of the shelves in the store every minute during the
business hours. The images obtained by ROCKy can be
divided into three categories:

• positive: images of shelf with products at a special offer;
• neutral: images of planogram in a standard layout;
• negative: images of SOOS situations.
This paper also introduces an approach to estimate the

overall content of the images acquired by ROCKy, based on
both visual and textual information [9]. In fact, to classify
these pictures as positive, neutral and negative, it is essential
not only to judge the visual elements but also the included
text at once. While a picture showing cookies with the phrase
”Special Offer 50% off“ is positive, the same picture contain-
ing the words ”Gluten Free“ might be neutral. The picture
category is identified by a machine learning classifier based
on visual and textual features extracted from two specially
trained Deep Convolutional Neural Networks (DCNNs). The
visual feature extractor, applied to the whole image, is based
on the VGG16 network architecture and it is trained by fine-
tuning a model pretrained on the ImageNet dataset. The
textual feature extractor has to detect and recognize texts
before extracting features. The textual feature extractor is
based on the DCNN architecture proposed by [10] and is cre-
ated by fine-tuning a model that has been previously trained
on synthesized planogram images. Based on these features,
six state-of-the-art classifiers, such as kNearest Neighbors

(kNN) [11], [12], Support Vector Machine (SVM) [13],
Decision Tree (DT) [14], Random Forest (RF) [15], Naı̈ve
Bayes (NB) [16] and Artificial Neural Network (ANN) [17],
are compared to recognize the overall planogram image
content. The approach has been applied to a newly collected
dataset “ROCKy Dataset” of pictures acquired by ROCKy
in a real retail environment during business hours. This
dataset comprises 4200 images containing visual and textual
elements concerning shelves in the store target. In contrast to
many existing datasets, the true content is not automatically
judged by the accompanying texts but it has been manually
estimated by human annotators, thus providing a more pre-
cise dataset. The application of our approach to this dataset
yields good results in terms of precision, recall and F1-score
and demonstrates the effectiveness of the proposed approach.

The paper is organized as follows: Section II is an
overview of the research status of robots and techonologies
employed in retail field; Section III describes the UWB
techology used to monitor the trajectories in store; Section IV
introduces our approach consisting of a visual model (Sub-
section IV-A), a textual model (Subsection IV-B), a fusion
model (Subsection IV-C) and gives details on the “ROCKy
Dataset” (Subsection IV-D); final sections present results
(Section V) and conclusions (Section VI) with future work.

II. RELATED WORK

This section is an overview of the papers in retail fields
in which the robots as well as computer vision technologies
are applied. In [18], the authors use a network robot system
to incorporate recommendation methods used in e-commerce
system into a real-world retail shop. While sensors like LRF
and cameras are employed in order to analyze pre-purchase
behaviour of customers [19], the physical robots are used
to present recommendations and show directions. In another
paper [20], Matsuhira et. al. has developed a robotic transport
system to assist people during shopping. The system consists
of two robots: one for following the customer and the other
acts as shopping cart carrying purchased items. The on-board
robot sensors and environmental cameras facilitate human-
robot interaction. In [21], it is presented RoboCart that assists
visually impaired customers to navigate a typical grocery
store and carry purchased items. It is based on RFID tags for
localization and laser for navigation. A mobile robot system
for assisting and interacting with customers is presented
in [22]. The mobile robot was capable of moving from one
location to another and could accept inputs from a customer
and give output verbally or in written messages. A shopping
cart that can detect the items lying on the bottom of shopping
cart is developed in [23], [24]. It used a visual sensor that
identifies products using visual features like SIFT. The aim
was to speed up the check out process. Purohit et al. [25]
have developed SugarTrail, a system for indoor navigation
assistance in retail environments that does not require exist-
ing maps. By using the measurement sequence as combined
signatures (paths), the proposed system learns traversable
path-clusters to build a navigable virtual roadmap of the
environment. A similar work proposed for retail field is [26].



The authors discuss the results and implications of front-
end and formative evaluation studies that they conducted
during the development of MyGrocer, a second-generation
pervasive retail system. They developed this system, that
improves shopping experience, to investigate grocery supply-
chain optimization using pervasive computing technologies.
Currently, in intelligent retail environment two strategy are
adopted for monitoring the customers behaviour and trajec-
tories inside the store during the shopping experience: UWB
tecnologies and RGB-D cameras. The UWB technology for
indoor tracking is one of the most promising solution in
terms of accuracy, reliability, battery life and system cost,
and it is able to monitor the movement of consumers in
stores and to send tracking data to a cloud server. It allows to
derive several information on the shoppers behaviour inside
the store (flows of walking, most visited areas inside the
space dedicated to the shopping and average travel times).
Other useful information are provided by computer vision
technologies. In fact, several papers have proposed the use
of RGB-D cameras for shoppers monitoring in front of a
shelf [27], [28]. The design of an embedded wireless sensor
network able to detect in real time a shelf out-of-stock event
is presented in [29]. In particular, the authors present a shelf
detector sensor based on a low cost and low power wireless
sensor network design that can automatically discover SOOS
for all the stores of a retail chain. In this paper, we improve
our previous experiences in solutions for intelligent retail
envronment, by proposing ROCKy to monitor the shelves
autonomously (based on indoor UWB Localization and plan-
ning). The robot is designed to facilitate automatic detection
of SOOS situations. The important contribution is also an
approach to estimate the classification of stock assortment
by shelves pictures acquired by ROCKy. The details of the
proposed scheme is discussed in the next sections.

III. SYSTEM OVERVIEW AND UWB NAVIGATION
TECHNOLOGY

ROCKy robotic system detects SOOS in real-time as
well as on-demand. The system leverages the structured
movement trajectories in store to enhance accuracy and
minimize time for surveying. This aspect is important for
robots collaboration. The authors have experience in mobile
robot localization using computer vision techniques [30],
[31]. On the contrary, ROCKy navigation is based on UWB
localization and tracking technology. The same system is
used in the real store used for results and test, to localize
and track carts and baskets for marketing research purposed
and consumer behaviours. The system is able to monitor the
trajectories in stores and send the collected tracking data to
a cloud server. These data, properly processed and stored in
a database, are useful to obtain information about ROCKy
and customers behaviour during the day. UWB signals are
transmitted with a shorter duration, consuming less power
and can operate in a wide area of the radio spectrum. UWB
and RFID can operate in the same area without interference
thanks to the differences in signal types and radio spectrum.
Moreover, UWB signal is able to pass through walls, devices

and clothes with no interferences. The technology has been
used to deploy a RTLS (Real Time Locating System), in
order to collect real time localization data. Tests conducted in
a real store achived an accuracy in the position measurement
of 20 cm in terms of indoor localization and a smart power
management provides a high autonomy for the battery-
powered tags. Conventional wireless applications (such as
RFID, WLAN and others) do not reach this value, and so it
is very useful when a high levels of precision in real time for
2-D and 3-D localization is required. The UWB radio module
DWM1000 advent (IEEE802.15.4-2011 UWB compliant) by
decaWAVE, at a low price (10$ per 1000 unit), has given a
great number of tracking solutions, developed by European
companies. The parameters, that can be measured, are: time
of arrival, the direction of arrival and the signal strength.

The components that compose the tracking system are
listed below.

• Anchors: static devices (antennas) that form a grid
covering the whole store. They are placed in the dropped
ceiling of the shop and gather signals from the tags.
This data are forworded (timestamps of received signals
and tags related information such as ID and battery
level) to the RTLS server. The anchors are connected
and powered via Ethernet through a PoE switch to the
RTLS server. Since all the anchors must be at the same
time, one of them is chosen as the master anchor for
synchronizing them.

• Tags: mobile devices to be tracked. They send data
to the anchors at a specified transmission rate as well
as a broadcast message, received by the anchors in a
communication system (this makes their number fully
scalable). The tag presents also an accelerometer for
movement detection that prolongs battery lifetime. In
this way, new data are sent only if the tags exceed a
certain and adjustable threshold.

• RTLS Server: collects data from the anchors, estimates
the 3D position of tags and sends these to the cloud
server. A TDOA (Time Difference of Arrival) algorithm
is used for estimating a tag position through multilat-
eration. It takes into account only timestamps coming
from at least three anchors with the same time.

The RTLS Server sends localization data on a TCP/IP socket.
A software is developed to collect from the stream the fol-
lowing information: master ID, tag ID, position coordinates
(x, y and z), battery level of the tag and timing informa-
tion (such as tracking system and RTLS server timestamp).
ROCKy is using previous collected daily information about
the carts and basket store heat-map to plan its navigation
based on maxima in the heatmap (Fig 3). Navigation system
uses waypoints in the red areas assuming that most visited
store categories are also the most affected by SOOS.

IV. VISUAL SURVEYING METHODS
In this section, we introduce the combined use of visual

and textual features as already done in [9]. The framework
for joint visual and textual analysis as well as the dataset used
for evaluation comprises three main components: the visual



Fig. 3: The Store heatmap based carts and basket tracking
using UWB tags is the base for motion planning of the
ROCKy platform. The heatmap is a daily localization data
aggregation of about 300 carts and baskets moving in the
store in 10 hours, tracked at 1Hz.

feature extractor, the textual feature extractor and the fusion
classifier. For visual and textual feature extraction we use
two especially trained DCNNs. Then, the visual and textual
features are combined and fed into the fusion classifier. For
estimating the overall content of image, we compare common
machine learning algorithms. Further details about the main
components are given in the following subsections.

The framework is comprehensively evaluated on the
“ROCKy Dataset”, a proprietary dataset collected for this
work. The details of the data collection and ground truth
labelling are discussed in Subsection IV-D.

A. VISUAL FEATURE EXTRACTOR
The visual feature extractor provides information about

the visual part of a picture and is therefore trained with
image labels indicating the visual category of the images.
The training is performed by fine-tuning a VGG16 net [32].
We fine-tune by cutting off the final classification layer (fc8)
and replacing it by a fully connected layer with 3 outputs
(one for each category class). In addition, the learning rate
multipliers are increased for that layer so that it would
learn more aggressively than all the other layers. Finally,
loss and accuracy layers are adapted to take input from the
new fc8 layer. Since the image classifier serves as feature
extractor, the output of the next to last fc7 layer is passed to
the overall polarity classifier. The image feature extractor is
implemented using standard Caffe tools [33].

B. TEXTUAL FEATURE EXTRACTOR
The textual feature extractor aims at providing information

about the textual category of a picture. It is therefore trained
with image labels indicating the textual category of the
images. The textual feature extractor consists of multiple
components. The central component is a character-level
DCNN with an architecture, as described in [10], which has
been extended by one additional convolution layer. The extra
convolution layer, inserted before the last pooling layer, has

a kernel size of 3 and produces 256 features. The textual
feature extractor was trained in two phases: first training
a base model on synthesized planogram images and then
fine-tuning that base model on our dataset. Since the text
is embedded in the picture as pixels, the text has to be
transformed to characters before it can be processed by the
character-level DCNN. For this purpose, the following steps
have been performed:

1) Text Detection: individual text boxes are detected in an
image with the TextBoxes Caffe model [34].

2) Text Arrangement: detected text boxes are put in order
based on a left-to-right, top-to-bottom policy, thus
forming logical lines.

3) Text Recognition: each text box is processed by the
OCR model [35] to transcribe the text of the box.

4) Text Encoding: the recognized text is encoded into one-
hot vectors based on the alphabet of the character-level
DCNN.

The textual features of the next to last layer of the
character-level DCNN are passed to final fusion classifier.

C. FUSION CLASSIFIER

On the basis of the visual and textual features, the fusion
classifier estimates the overall content of an image. For
this purpose, it is trained with labels indicating the overall
category of the images.

Based on all features, six state-of-the art classifiers, kNN,
SVM, DT, RF, NB and ANN are compared to recognize the
overall content of the images and we evaluate performance
in terms of precision, recall and F1-score.

D. ROCKY DATASET

In this work, we build a visual and textual retail dataset
from the pictures acquired by ROCKy. The “ROCKy
Dataset” is composed of shelves images. As stated previ-
ously, these images are divided into three categories. In
particular, it includes:

• 1400 positive images;
• 1400 neutral images;
• 1400 negative images.
To obtain the ground truth of the collected pictures,

the true content has been manually estimated by human
annotators, thus providing a more precise and less noisy
dataset. All pictures are annotated with respect to their visual,
textual and overall content.

Figure 4 shows three examples of pictures of “ROCKy
Dataset”. Figure 4a is a negative picture; Figure 4b is a
neutral image; and Figure 4c shows a positive picture. As
can be seen, the overall content does not only depend on the
visual content of a picture, but also on its textual content.

V. RESULTS AND DISCUSSION

In this section, the results of the experiments conducted
on “ROCKy Dataset” are reported. In addition to the per-
formance of the fusion classifier, we also present the perfor-
mance of the visual and textual category classifiers which



(a) (b) (c)

Fig. 4: Pictures of “ROCKy Dataset”. Figure 4a is an example of negative picture, Figure 4b represents a neutral image and
Figure 4c shows a positive picture.

TABLE I: Performance evaluation of the visual model

Category Precision Recall F1-Score

positive 0.83 0.82 0.82
neutral 0.86 0.89 0.88
negative 0.72 0.67 0.69
MEAN() 0.81 0.79 0.80

form the basis of the visual and textual feature extractors
and are key to the overall classification.

The experiments are performed by splitting the labelled
dataset into a training set and a test set. Each classifier
will only be trained based on the training set. Likewise, the
test set is also fixed in the beginning and used for all test
purposes. The dataset is split into 80% training and 20%
test images, taking into account all permutations of overall,
visual, and textual annotations.

In order to create the visual feature extractor we trained
a DCNN to classify the visual part of a picture. The per-
formance of the visual classification is reported in Table I.
As can be seen, high values of precision and recall can be
achieved, especially for pictures with positive and neutral
visual content. The recognition of visually negative pictures
is more difficult due to the smaller amount of available
training data. Generally, retailers pay more attention to
the SOOS situation and they tried to solve this problem
immediatly when it occours.

For creating a textual feature extractor, we trained a DCNN
to estimate the text in the pictures. Table II depicts precision
and recall of the textual classification. The performance
of the textual classification is good, but lower than the
performance of the visual classification. While the judgement
of visual and textual image content is equally difficult for
humans, the classification of text in pictures much more
challenging for machines as the text has to be detected
and recognized first before it can be classified thus beeing
more error-prone. Comparing the different classes reveals
that positive and neutral texts can be recognized better than
positive texts. This fact is also reflected by the characteristics
of the dataset.

Based on the visual and textual features, a machine
learning classifier is trained to identify the overall content

TABLE II: Performance evaluation of the text model

Category Precision Recall F1-Score

positive 0.84 0.89 0.71
neutral 0.71 0.68 0.70
negative 0.67 0.61 0.76
MEAN() 0.74 0.73 0.74

TABLE III: Performance evaluation of the Fusion Classifier.

Classifier Precision Recall F1-Score

NB 0.72 0.72 0.72
DT 0.72 0.72 0.72
RF 0.74 0.74 0.74
SVM 0.77 0.77 0.77
kNN 0.78 0.78 0.78
ANN 0.79 0.79 0.79

of a pictures. We train several classifiers, namely SVM,
DT, NB, RF and ANN and compare their performance. As
Table III shows, the performance of all classifiers is good,
with a F1-Scores ranging from 0.72 for NB to 0.79 for ANN,
thus demonstrating the effectiveness and the suitability of the
proposed approach. The performance of the overall content
classification is much higher than the performance of the
textual classification but slightly lower than the performance
of the visual classification. This comparision shows that
recognizing the overall content is more challenging than only
the visual part.

VI. CONCLUSIONS

SOOS situation is an important problem in the retail field.
In this paper, we propose ROCKy a mobile robot to detect
SOOS in real-time as well as on-demand. In addition to the
identification of SOOS and misplaced items, ROCKy can
provide several other value added services like informing
customers in the form of promotions or discounts. It is
also able to model changes in planogram and store layouts.
It could also be used to monitor the warehouse and runs
surveillance during night time. ROCKy is not trying to
replace workers, but instead free them up to spend more
time helping customers.

ROCKy consists of a TurtleBot equipped on-board Kinect
camera for navigation and a low-power netbook for running



fundamental algorithms. It uses two USB cameras to capture
images and videos of the shelves on either side of the robot.
It is based on indoor UWB Localization and planning. In this
paper, we also introduce a deep learning approach for rec-
ognizing the content of shelves pictures acquired by ROCKy
by taking visual as well as textual information into account.
The content of a picture is identified by a machine learning
classifier based on visual and textual features extracted from
two trained DCNNs. By combining DCNNs with machine
learning algorithms such as kNN, SVM, DT, RF, NB and
ANN the approach is able to learn a high level representation
of both visual and textual content and achieve high precision
and recall for classification. The experiments on “ROCKy
Dataset” yield high accuracy and demonstrate the effective-
ness and suitability of our approach. Further investigation
will be devoted to improve our approach by employing a
larger dataset and extracting additional informative features.
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Robotic Platform for Deep Change Detection for Rail Safety and

Security
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Abstract— Felix is the first robot measuring switch dimen-

sion parameters and geometrical railway ones together with

potentially dangerous situations. It increases the quality and

the consistency of the measures and offers the chance to

increase the safety of operators and ultimately of final users.

This paper presents a novel approach mixing visual and point

cloud information for effective change detection for railways

safety and security application. Main contributions are on

the proposed data platform and on the mix of point-based

measurements (switch dimensions) and on surrounding change

detection (dangerous trees or abnormal railway trawlers) based

multi-view camera and linear laser, processed by a classification

process. Results, coming from a real rail scenario using the

Felix platform, show the feasibility of the approach and the

fast surveying capabilities with strong implications on safety

and security.

I. INTRODUCTION

Railways are currently the most common transportation
means for both passengers and freights in Europe. Their ca-
pacity, speed, and reliability have increased their popularity,
even if high risks sometimes occur in term of human life
and cost of assets. The poor maintenance of the railways is
a critical point for security. In last years, several technologies
for better safety measures are introduced but this problem is
not completely solved. Thus, a proper strategy is required for
maintenance and inspection of tracks. The defects principally
include weld problems, internal defects worn out rails, head
checks, squats, spalling and shelling, corrugations and rolling
contact fatigue (RCF) as well as surface cracks [1]. The risk
of derailments increases if mud, snow, ice and debris collect
on and around tracks, as well as the trees that overhang
railway lines can be hazardous, especially within the switches
and crossings (S&C) that ensure all possible connections. A
switch consists of moving point blades that ensure a change
in the train route. S&C are key elements in a railway network
because they provide flexibility to traffic operation [2].

There are many challenges to rail community and the
infrastructure maintenance operators such as to perform
effective inspection and cost effective maintenance decisions.
In this field, several papers are proposed with the main goal
to improve the railway safety and security [3].

For this reasons, Loccioni Research for innovation and RFI
(Rete Ferroviaria Italiana, the main Italian Railways Group)
have developed Felix, the first mobile robot for the automatic
railway switch inspection, with the objective to increase
railway switches reliability, guarantee railways safety and

1Mirco Sturari is with Dipartimento di Ingegneria dell’Informazione
(DII), Universitá Politecnica delle Marche, 60131, Ancona, Italy
m.sturari@pm.univpm.it

Fig. 1: Felix robot for the automatic railway switch inspec-
tion.

solve maintenance planning problems. Felix robot is able to
monitor S&C status. It is equipped with modules to scan the
railway as profilometers that create a 3D reconstruction of the
inspected segment. According to this characteristics, Felix
is the first robot measuring switch dimension parameters
and geometrical railway ones, increasing the quality and
the consistency of the measures and offering the chance to
increase safety of operators and ultimately of final users.
The system stores, processes and displays in real time all
measurements, creating specific reports. It improves the
quality of measurement, makes surveys objective and avoids
errors in data acquisition and data transfer phases. During the
measurement, the system is remotely managed with a PDA
(Personal Digital Assistant) and a handheld remote control
unit, ensuring greater safety to the operators. The motorized
device makes it possible to analyse a sequence of several
switches. Speed and minimum distance between two con-
secutive measurements can be set on customer requirements.
Felix brings innovation to railway maintenance processes,
facilitating and enhancing them. The automation of measure-
ment makes it faster and easier to perform diagnosis and
quality control, with a significant impact on the safety of
operators and ultimately of final users. Figure 1 is a real
picture of Felix during inspection.

This paper describes a Felix evolution architecture with a
novel approach that combines multi-view visual information
and point cloud information for effective change detection on



railways safety and security application. The fusion of laser
and visual data is performed to increase the overall accuracy
of the process [4]. It can be done both on line and in real
time during the robot motion, but data can be also collected
for off line processing. Both data sources can be accessed
for human visualization. These can be finalized to human
augmented operators inspections directly at raw data level
or, after the processing for automatic change detection, with
a semantic change detection layer over imposed on the point
clouds or on the panoramic images for change detection.
In this way, the augmented operator inspection interface. is
better highlighted.

Main contributions are on the novel mobile robotics ap-
plication, on the proposed data platform and on the mix
of point based measurements (switch dimensions) and on
surrounding change detection (dangerous trees or abnormal
railway trawlers) based multi view camera and linear laser,
processed by a deep learning approach. Results, coming
from a real rail scenario using the Felix platform, show the
feasibility of the approach and the fast surveying with strong
implications on safety and security.

The paper is organized as follows: Section II is an
overview of the research status of security railways tech-
nologies; Section III introduces the proposed architecture
consisting of Point Cloud data collection and visualization
(Subsection III-A), Multi-camera data collection and visual-
ization (Subsection III-B), Data visualization for augmented
operators (Subsection III-C) and Change Detection auto-
matic processing on both data sources (Subsection III-D);
Section IV gives details on the classification process and
presents results gathered in a real scenario; final section
provide conclusions and future works.

II. RELATED WORKS
In this context, several works are proposed. In [5], the

authors have focused on the inspections methods limitations
to detect defects in the rail foot, especially in the side edges
away from the region directly below the web. They proposed
the Long Range Ultrasonic Testing (LRUT), a technique to
examine the foot of rails, mainly in track regions where
corrosion and associated fatigue cracking is likely, such as
at level crossings.

A technique based on Ground-penetrating radar (GPR) is
proposed in [6] for obtaining quantitative information about
the depth and degree of deterioration of the track. This work
aims at automating the processing and interpretation of data
to the extent whereby on-site interpretations may be achieved
with minimal intervention of the expert. This is done through
the development of new image and signal processing tools
specifically for GPR data and the range of anomalies found
on the trackbed.

A model for placing sensors on the railway track is
described in the system presented in [7]. The data are
collected from sensor nodes distributed on the railway tracks.

In [8], the authors propose a rail track inspection technique
using automated video analysis. The system replaces manual
visual checks performed by the railway engineers for track

inspection. In the paper, it is used a combination of image
processing and analysis methods in order to achieve high
performance automated rail track inspection.

For evaluating if a structure is safe or damaged and
for determining whether or not movement of the object
has taken place, change detection of linear infrastructure
features such as railways, highways, and bridges involves
the systematic measurement and tracking of the alteration in
the shape of the monitored object [9], [10]. Change detection
is for a binary answer, a situation changed or not, whereas
deformation analysis looks for a quantified change [11].
Several change detection techniques have been developed
and reviews of their applications and recommendations for
selection of suitable change detection methods have been
reported in [12].

Agouris et al. [13] developed a differential snake model for
change detection in road segments, by the use of medium-
resolution imagery with a ground pixel resolution of 5 m.
In [14], it has been proposed a Modified Iterated Hough
transform (MIHT) algorithm for change detection in roads,
employing aerial photographs and digital maps. An approach
for detecting the channel change in the Chapping River in
three periods (i.e., pre-disaster, during the disaster, and post-
disaster), based on an edge-based segmentation algorithm
and a support vector machine (SVM) classier is proposed
by Gong in [15].

Different point cloud comparison techniques have been
applied by many researchers to detect change between se-
quentially gathered point clouds [16].

The cloud-to-mesh method has been used to investigate
structural and surface deformation. Gridded data sets can
be compared to produce a DEM of difference, which high-
light areas of loss or accumulation [17]. Currently, many
researchers have implemented methods for deforming object
surface modelling that involve a simple griddding [18].
Anyway, isolationg regions of interest and creating DEMs
or surface models are time-consuming an interpolation is re-
quired. Moreover, a topographic data reduction occurs when
point cloud data are reduced from 3D to 2.5D. In [19], the
authors have stated that deformation studies are performed
by directly comparing DEMs from different TLS campaigns.
This approach is quite easy to implement using commercial
software, but general-purpose algorithms are usually not
sufficient for specific purposes such as change detection [20].

Our paper aims at describing a feasibility approach mixing
visual and point cloud informations for effective change
detection on railways safety and security application. Results
are related to inspections performed in a real scenario using
the Felix platform.

III. SYSTEM OVERVIEW

As stated previously, this system is developed in an actual
railway context that imposes constrains on the system design.
The solution proposed is described by the work flow scheme
shown in Figure 2.

This architecture can be described in 4 important steps:



Fig. 2: System Architecture.

• Point Cloud data collection and visualization (Sec-
tion III-A);

• Multi-camera data collection and visualization (Sec-
tion III-B);

• Augmented operators with data visualization features
on both raw data layer and processed data layer with
over imposed semantic annotations based on change
detection (Section III-C);

• Change detection automatic processing on both data
sources (Section III-D).

This section gives an overview of our approach.

A. Point Cloud data collection and visualization
Felix is equipped by a laser profilometer for the re-

construction of surfaces under inspection. To obtain the
high-meaningful data required for 3D reconstruction of the
inspected parts, Felix moves at a speed that ranges from
0.36 km/h to 3.6 km/h while the profilometer describes a
profile every 2�20mm. In the most critical areas of railway
switch, Felix proceeds at a slower rate to get additional
profiles. The on board computer adjusts the speed identifying
different sections of the railway from laser profiles. Laser
profilometers follow the same principles of structured light,
for which a laser line fitting on the target results deformed.
Assuming that the relative position of laser and camera are
known, triangulation laws can derive the position of the line
in an absolute reference system [21]. The laser profilometer
is a non-contact device that allows obtaining x, y, and z
coordinates, which are processed and then converted in .pts

Fig. 3: Augmented operator: web based and VR compliance
Point Cloud visualization based on Potree Viewer.

files. The collected dataset of a railway surface consists of
both the coordinates and corresponding heights of the object
surface. Finally, for each object under investigation, a 3D
point cloud is generated using the PotreeConverter tool [22].
This tool is usually employed to convert an input coordinate
files to the required point cloud data structure. The data
structure in output can be easily visualised on a web platform
based on Potree, a viewer for a large point cloud/LIDAR
datasets (Figure 3).

B. Multi-camera data collection and visualization
Commercial GoPro Inc. HD personal cameras are used

in extreme action video photography. They are compact,
light, rugged and wearable or mountable on robots. These
fullframe fish eye cameras capture still photos and/or video
in HD through wide angle lens and can be configured to
work automatically with minimum intervention or remotely
controlled. The GoPro Hero 4 Black cameras, which are
used in this paper, are set to record video with a resolution
of 1920 ⇥ 1440 at frame rates of 24 frames/s. At the
same time, these cameras take 12 MP photos (4 : 3 format
with a resolution of 4000 ⇥ 3000 and a horizontal FOV of
122.6 degrees) every 5 seconds. Six cameras are mounted
in a 360H6 rig and are fixed in the top of Felix, as in
Figure 1. The acquisition was controlled remotely and the six
videos are processed simultaneously to obtain a 360� video
using Video Stitch software and 360� panoramic photos
using Hugin software. Both softwares use the same pre-
set to calibrate the six cameras for obtaining the stitch
videos/photos. The output of this two processes can be
visualised on a web platform based on Marzipano (Figure 4).
Marzipano is a viewer of panoramic photos and 360� videos
with the capability to organize them in a virtual tour.

C. Data visualization for augmented operators
The data visualization layer is designed to be accessed by

web browsers, with mobile responsive interfaces, to allow on
field data visualization both for raw data and for processed
and classified data for change detection. The visualization
layer, using also geolocation data, can also be accessed as an
Augmented Reality (AR) layer using the AR browser Layar.
Main visualization features are:



Fig. 4: Augmented operator: web based and VR compliance
multi-view visualization based on Marzipano Viewer.

• Data navigation in the space with pan, tilt and zooming
functions;

• Layer annotation and selection on point cloud data;
• Metric dimensional measurement in distances, surfaces

and volumes;
• Areas definition and annotation for dataset annotation

and change detection classification visualization;
• Mobile accelerometers integration for immersive visu-

alization;

D. Change Detection Approach on both data sources
Railways face a lot of changes all the time due to

the defects that principally include weld problems, internal
defects worn out rails, head checks, squats, spalling and
shelling, corrugations and rolling contact fatigue, surface
cracks and the trees overhanging. 360� images are used for
change detection by applying image differencing and, thus,
point clouds can be used to detect changes in a similar way.
A change detection method should automatically find the
changes in the studied area and update the corresponding
map, model or database accordingly. Change detection can be
done in several ways: by the comparison of raw point clouds,
colored point clouds, voxels, range images, surface models
or modeled objects. The common way to compare two point
clouds is to measure distances between points in different
point clouds and evaluate if a point in one point cloud has
neighbors nearby in the other point cloud, otherwise the
point is marked as a potential change. Adding the average
color of images into the point clouds provides additional
information about the possible changes. Point clouds can
be also converted into 3D surfaces. Changes can also be
detected using object models. If the measured point cloud can
be modeled into separate classified objects, it can compared
if the objects can be found in both point clouds.

Every generated point cloud is associated with a specific
segment that is uniquely identified in the infrastructure
network. This is necessary to correctly manage S&C and
trace variation over time.

IV. CLASSIFICATION PROCESSES AND RESULTS
The proposed method uses two different classifiers work-

ing on the two described data sources: i) a feature extractors

Fig. 5: Change detection visualization based on point cloud
colorimetric features. Point Cloud visualization based on
Potree Viewer.

based on point cloud segments is used with classical machine
learning methods to obtain a segment based classification
with a linear map of changes and anomalies ; ii) a deep
learning method is used to classify different classes of
anomalies with respect to the rail road. Here below a detailed
description of proposed features, methods and related results
are presented.

Every scanned profile is represented by 4400 points, each
one described by Pi(xi, yi, zi), for each profile (left and right
side) for a total of 8800 points. Every profile is acquired at
a fixed distance of 2 mm from the previous one along the y
dimension. The full set of profilometer data is divided in 64
different slices in the x dimension and every slice is described
by 12 geometric features: 4 different statistical features (avg,
trend, min-max, standard deviation) for 3 different geometric
measures (hight, gradient, 3-point curvature). Every slice is
labelled in the data set used for the learning in two classes
(normal, abnormal) and the combination of the classes give
back to the user the location of the area affected by usury and
considered abnormal for safety reasons. The actual dataset is
composed by 11228 different real profiles and is annotated
by experts according to the EU law on railway safety. The
purpose of the classification process is the safety detection
map estimation for every new profile acquired by Felix to
be used together with image based deep learning approach
for real time dangerous area detection.

The six cameras have obtained 10100 frames with a reso-
lution of 960⇥720 and on the bases of these frames we built a
dataset. These images are divided into four classes and they
have been manually estimated by human annotators, thus
providing a more precise dataset. In particular, it includes:

• normal images;
• tree-anomaly images;
• trawlers anomaly images;
• railway lines anomaly images.
Figure 6 shows three anomaly examples. Figure 6a is a

example of track anomaly Figure 6b shows an example of
trawlers anomaly; and Figure 6c is a tree anomaly photo.

The training is performed by fine-tuning a VGG16 net [23]
to classify images into four categories similarly to what done



(a) (b) (c)

Fig. 6: Examples of anomaly. Figure 6a represents an example of track anomaly, Figure 6b shows an example of trawlers
anomaly and Figure 6c is a tree anomaly.

in [24]. A fine-tuning by cutting off the final classification
layer (fc8) is done and replacing it by a fully connected layer.
In addition, the learning rate multipliers are increased for that
layer so that it would learn more aggressively than all the
other layers. Finally, loss and accuracy layers are adapted to
take input from the new fc8 layer. Since the classifier serves
as feature extractor, the output of the last fc7 layer is passed
to the new fc8. The features extractor is implemented using
standard Caffe tools1.

Results of the experiments conducted on both profiles and
the images acquired are reported. We present the perfor-
mance of the classifiers on the basis of the features extractors
that are key to the rail road profile classification and of
the Deep Convolutional Neural Network (DCNN) for vision
based inspections.

The experiments are performed by splitting the labelled
dataset into a training set and a test set. Each classifier
will only be trained based on the training set. Likewise, the
test set is also fixed in the beginning and used for all test
purposes. The dataset is split into 80% training and 20% test.

On the basis of the features, the classifier estimates
the anomaly on active railroad. Based on these fea-
tures, four state-of-the art classifiers, k-Nearest Neighbors
(kNN) [25], Support Vector Machine (SVM) [26], Decision
Tree (DT) [27] and Random Forest (RF) [28], are compared
and we evaluate performance in terms of precision, recall
and F1-score. The task is solved using a SVM with a
quadratic degree of the polynomial kernel function. For kNN
classifier has been chosen minkowski as metric distance and
n neighbors = 5. As Table I shows, the performance of all
classifiers is good, with a F1-Scores ranging that exceed
the 70% in all the cases analysed, thus demonstrating the
effectiveness and the suitability of the proposed approach.

As Table II shows, the performance of the DCNN is
good with values of F1-score that reached the 70%, thus
demonstrating the effectiveness and the suitability of the
proposed approach, even if the smaller amount of available
training data and the higher variation in motives. The small
number of anomaly photos is due to the fact that railroad
crossing is a critical railway infrastructure anomaly/attacks

1http://caffe.berkeleyvision.org/

TABLE I: Performance evaluation of the Profiles.

Classifier Precision Recall F1-Score

DT 0.72 0.72 0.72
RF 0.74 0.74 0.74
SVM 0.77 0.77 0.77
kNN 0.78 0.78 0.78

TABLE II: Performance evaluation of the DCNN.

Category Precision Recall F1-Score

normal 0.78 0.72 0.72
tree-anomaly 0.66 0.69 0.68
trawlers anomaly 0.72 0.67 0.69
railway lines anomaly 0.71 0.67 0.69
MEAN() 0.72 0.69 0.70

and it had to be carefully controlled in order to preserve
safety on active railroad crossings.

V. CONCLUSIONS

Felix is the first mobile robot that can automatically
inspect railway points, crossings and tracks. It has been
developed with the objective to increase railway switches
reliability, guarantee railways safety and solve maintenance
planning problems. Felix robot is also able to monitor S&C
status and it is equipped with profilometers to create a
3D reconstruction of the inspected part. In this paper, we
introduce an approach for a proper change detection, in order
to improve railway safety and security. The data structure
in output can be visualised on a web platform making
faster and easier to perform diagnosis and quality control
on track degradation, with a significant impact on the safety
of operators and ultimately of final users. The main goal
is to increase points reliability, guarantee rail safety and
solve maintenance scheduling problems. This approach is
important to reduce train accidents, as well as human and
material losses suffered in these accidents, and to ensure
security in train transportation. A classification process is
carried out with the aim to automatically detect anomaly in
railway.

Future works are the the collection of more rail wear
data and the development of quality control testing systems



to customers specifications. The collected change detection
information aim to lead the way for augmented reality appli-
cations as well as tools for the security risk assessment and
management specifically tailored to the context of railway
transportation systems.

Further investigation will be devoted to improve our ap-
proach by employing a larger dataset for anomaly detection
and extracting additional informative features. Furthermore,
as we plan to put Felix robot on board of the train tractor,
it will become a sort of mobile mapping system to extract
and recognise surrounding objects [29]. In this context, a
vision based approach similar to [30] could be used to solve
localization problems in the aliased environment (i.e., an
environment where several place look the same) constituted
by the sequence of sleepers and trawlers.
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